×
10.05.2018
218.016.478b

Результат интеллектуальной деятельности: Способ определения скорости звука гидролокатором по трассе распространения сигнала до цели

Вид РИД

Изобретение

№ охранного документа
0002650829
Дата охранного документа
17.04.2018
Аннотация: Изобретение относится к области гидроакустики и предназначено для измерения скорости звука гидролокатором по трассе распространения до цели. Полученная оценка скорости звука позволит повысить достоверность при определении основных параметров цели. Предложен способ определения скорости звука по трассе распространения до цели, содержащий излучение зондирующего сигнала постоянной длительности через постоянные промежутки времени Т, прием эхосигнала осуществляют приемным устройством, определяют скорость V движения носителя приемного устройства, прием эхосигнала и измерение его параметров производят статически веером горизонтальных характеристик направленности с шириной характеристики направленности Q° не больше 2°, определяют время излучения первого зондирующего сигнала t, измеряют время приема первого эхосигнала t и номер характеристики направленности N, определяют скорость сближения, принимают решение о подвижности цели, скорость звука по трассе для неподвижной цели определяют по формуле С=2VТ/{(t-t)+T)}, а скорость звука по подвижной цели определяют по формуле , где Δt={(t-t)-(t-t)}. 1 ил.

Настоящее изобретение относится к области гидроакустики и предназначено для измерения скорости звука гидролокатором по трассе распространения.

Все измерения в гидроакустике производятся с использованием оценки скорости звука. (В.Н. Матвиенко, Ю.Ф. Тарасюк «Дальность действия гидроакустических средств». - Л.: Судостроение. 1981 г.).

Существуют прямые и косвенные методы определения скорости распространения звука в воде. Косвенные методы предполагают предварительное измерение температуры воды и солености воды и дальнейший расчет по известным номограммам скорости звука (В.А. Комляков «Корабельные средства измерения скорости звука и моделирования акустических полей в океане». СПб.: «Наука», 2003 г., стр. 50-87).

Эти способы позволяют определять скорость звука по конкретным измерениям температуры и солености, которые могут быть произведены путем забора проб воды и проведения химического анализа при процедуре измерения температуры. Измерение производится с использованием специальных судов и стандартных океанографических измерительных средств, в которые входят глубоководный опрокидывающийся термометр, термометр-глубомер, батитермограф, а также комплексные гидрологические зонды. Количество параметров измеряемых зондом и измерительных каналов зависит от выполняемых им конкретных задач. Информация об измеренных параметрах передается в бортовые приборы по кабель-тросу. Недостатком этого метода является необходимость специализированного судна и длительная процедура измерения для получения оценки скорости звука по трассе.

Существуют прямые методы измерения скорости звука при использовании конкретных приборов, которые измеряют скорость звука на глубине нахождения с использованием интерферометрических методов, фазовых методов, импульсных методов и частотных методов. Эти приборы, как правило, устанавливаются на борту судна и измеряют скорость звука при погружении до определенной глубины. Для расчетов траекторий распространения сигналов используются таблицы, снятые для всех глубин и для всех морей и океанов, в которых указаны значения скоростей звука на различных глубинах. Как правило, эти значения являются устаревшими и не всегда соответствуют решаемым задачам (стр. 98, там же). Есть разовые гидрофизические зонды, которые погружаются до дна и по мере погружения передают информацию о значении скорости звука на конкретной глубине. Этот способ является дорогим и затратным и не всегда может быть использован при решении конкретных задач для получения скорости звука по трассе.

Здесь надо учитывать то обстоятельство, что измерение происходит в одной конкретной точке по глубине и считается, что такое же распределение скорости звука будет по всей трассе распространения сигнала, что не всегда соответствует действительности. Практически никто не проводил измерение скорости звука по трассе распространения сигнала до обнаруженной цели ввиду сложности работ и трудности их сопоставления.

Известен способ измерения скорости звука по трассе с использованием взрывных источников излучения, который рассматривается в работе Роберт Дж. Урик. «Основы гидроакустики». Судостроение Л., 1978 г. Стр. 165-200.

Наиболее полно дистанционное измерение скорости звука с использованием гидроакустического канала рассмотрено в работе В.А. Комлякова «Корабельные средства измерения скорости звука и моделирования акустических полей в океане». СПб.: «Наука», 2003 г., стр. 149-153.

Известен способ дистанционного измерения скорости звука по трассе до неподвижного маяка-ответчика по патенту РФ №2581416.

Способ измерения скорости звука, содержащий излучение гидроакустического зондирующего сигнала неподвижным источником и прием зондирующего сигнала подвижным приемником, излучение зондирующего сигнала производят через постоянные промежутки времени Т, сохраняя длительность зондирующего сигнала постоянной, прием зондирующего сигнала осуществляют приемным устройством, движущимся на встречу по траектории распространения зондирующего сигнала, определяют скорость V движения носителя приемного устройства, определяют время прихода первого зондирующего сигнала t1, определяют время прихода N-гo зондирующего сигнала tN, а скорость звука на трассе между неподвижным источником зондирующего сигнала и подвижным носителем приемного устройства определяют по формуле:

C=(N-1)VT/{t1-tN+(N-1)T}.

Недостатком данного способа является невозможность определения скорости звука по трассе распространения эхосигнала от цели при работе гидролокатора по своему прямому назначению.

Техническим результатом изобретения является обеспечение измерения скорости звука при работе гидролокатора по трассе распространения эхосигнала по подвижной и по неподвижной целям.

Указанный технический результат достигается тем, что в способ измерения скорости звука гидролокатором по трассе распространения сигнала до цели, содержащий излучение зондирующего сигнала постоянной длительности через постоянные промежутки времени Т, прием эхосигналов от цели приемным устройством, определение скорости Vсоб движения носителя приемного устройства, введены новые признаки, а именно прием эхосигнала и измерение его параметров производят статическим веером N горизонтальных характеристик направленности с шириной характеристики направленности Q° не больше 2°, запоминают время излучения первого зондирующего сигнала tиз1, измеряют время приема первого эхосигнала tпр1 и номер принявшей его характеристики направленности N1, определяют дистанцию до объекта Д1=0,5С(tиз1-tпр1), где С=1500 м/с, измеряют время излучения второго зондирующего сигнала tиз2, определяют время приема второго эхосигнала tпр2 и номер принявшей его характеристики направленности N2, определяют дистанцию до цели Д2=0,5С(tиз2-tпр2) определяют скорость сближения носителя гидролокатора и цели как Vсб=[(Д21)/Т, определяют курсовой угол цели Q°=2°N2 по номеру характеристики направленности, в которой принят эхосигнал по второй посылке, и если измеренная скорость сближения Vсб находится в пределах от Vсоб до cosQ°Vсоб, где Q° меньше или равно ±10°, то считают цель неподвижной и определяют скорость звука по трассе по формуле Ср=2VсобТ/{(tпр1-tпр2)+T)}, если Vсб не находится в пределах от Vсоб до cosQ°Vсоб, то считают цель подвижной и скорость звука определяется по формуле , где Δt={(tиз1-tпр1)-(tиз2-tпр2)}, при этом время между посылками Т должно быть больше чем Т>100 м/Vсоб.

Сущность предлагаемого технического решения заключается в следующим.

Прежде чем измерять скорость звука по трассе распространения зондирующего сигнала до цели и эхосигнала до приемника, необходимо определить, какая цель, подвижная или неподвижная. Критерием для этого является оценка скорости сближения, которая определяется по двум последовательным посылкам с измерением времени распространения и дистанции Vр=[(Д21)]/T, при этом Д1=0,5С(tиз1-tпр1), а Д2=0,5С(tиз2-tпр2). В этих равенствах используется оценка скорости звука, равная 1500 м/с, что для определения скорости сближения не внесет существенную ошибку в оценку скорости сближения, поскольку она умножается на разность разности времен. Для определения подвижной и неподвижной цели принятое значение скорости звука не является существенным. При принятии решения о подвижности и неподвижности необходимо учитывать погрешность оценки курсового угла, для чего необходимо умножить оценку собственной скорости Vсоб на cos10°=0,98. Оценки времен излучения и приема эхосигналов при определении радиальной скорости использованы далее при самой процедуре измерения скорости звука.

Если зондирующий сигнал излучается в момент времени tиз1, то время распространения до объекта и обратно будет равно tпр1 и оценка дистанции Д будет равна Д1=0,5Cp(tиз1-tпр1), где Ср - реальная скорость звука. Если гидролокатор движется прямолинейно и равномерно со скоростью Vсоб и излучает зондирующие сигналы через равные промежутки времени Т, то за время между излучениями будет пройдено расстояние Дпр=VсобТ. Тогда оценка дистанции, полученная по второму зондирующему сигналу, излученному в момент времени tиз2 и принятому в момент времени tпр2, будет равна Д2=0,5Cp(tиз2-tпр2). Если учесть, что Д21-VсобТ, можем написать систему уравнений:

Д1=0,5Cp(tиз1-tпр1).

Д1-VсобT=0,5Cp(tиз2-tпр2) или Д1=0,5Cp(tиз2-tпр2)+VсобT,

0,5Cp(tиз1-tпр1)=0,5Cp(tиз2-tпр2)+VсобT,

0,5Cp[(tиз1-tпр1)-(tиз2-tпр2)]=VсобT,

откуда можно получить оценку скорости распространения звука по неподвижной цели, при которой скорость сближения Vсб находится в пределах от Vcoб до cosQ°Vсоб. После преобразования можно упростить:

Ср=2VсобТ/{(tпр1-tиз1)-(tпр2-tиз2)}=2VсобT/{(tпр1-tпр2)-(tиз1-tиз2)}=2Vco6T/{(tпр1-tпр2)-(-T)}=2VcoбT/{(tпр1-tпр2)+T}.

При работе по подвижной цели необходимо учитывать скорость перемещения подвижной цели.

Будем исходить из следующего очевидного положения. Если цель удаляется, то дистанция увеличивается, что равносильно увеличению скорости звука. Если цель приближается, то дистанция уменьшается, что равносильно уменьшению скорости звука. Поэтому для подвижной цели можно написать

р±V)=2VcoбT/{(tпр1-tпр2)+T)}

Скорость сближения определяется по формуле

V=(Д21)/T=[Ср±(Ср±ΔC)]{(tиз1-tпр1)-(tиз2-tпр2)}/T, где первый ± соответствует приближению или удалению цели, второй ± - разнице между истинным значением скорости звука Ср, которое мы измеряем, и принятым значением для определения радиальной скорости.

Для определения порядка величин рассмотрим выражение:

р±ΔC){(tиз2-tпр2)-(tиз1-tпр1)}/T.

Обозначим Δt=(tиз1-tпр1)-(tиз2-tпр2)}, тогда, раскрыв скобки, имеем

СрΔt/Т±ΔСΔt/Т.

Из этих двух слагаемых второе существенно меньше первого, поскольку ±ΔС меньше С. Если положить максимальный разброс между скоростью звука при распространению по трассе и при измерении радиальной скорости ±ΔС=±50 м/с, то при разности времен порядка Δt=0,1 с и Т=10 с имеем ±ΔСΔt/Т=±0,5 м/с. Первое слагаемое равно 1500 м/с ⋅ 0,1/10 или 15 м/с, что в 30 раз больше, поэтому этой составляющей можно пренебречь, даже при максимальной разности 50 м/с. Следует учесть, что реальная разность будет еще меньше.

Тогда

р±Ср{(tиз1-tпр1)-(tиз2-tпр2)}/T)=2VcoбT/{(tпр1-tпр2)+T)}

Cр(1±{(tиз1-tпр1)-(tиз2-tпр2)}/T)=2VT/{(tиз1-tпр1)-(tиз2-tпр2)}

Cр=2VT/{(tиз1-tпр1)-(tиз2-tпр2)}/(1±{(tиз1-tпр1)-(tиз2-tпр2)}/T)

Скорость распространения звука по трассе при работе гидролокатора по подвижной цели:

или после упрощения

Точность измерения интервала между излучениями может быть обеспечена современными методами достаточно высокая, она составляет величину порядка 0,001 с = 1 мс. Длительность излучаемого сигнала может быть выбрана порядка 1 мс, что в условиях прямого распространения обеспечит большое отношение сигнал/помеха при измерении по переднему фронту. Точность измерения скорости движения современными измерителями составляет величину меньше 0,01 м/с. (А.В. Богородский, Д.Б. Островский «Гидроакустические навигационные и поисково-обследовательские средства», Санкт Петербург, 2009 г. Изд. ЛЭТИ, стр. 48). В этих условиях ошибка оценки скорости звука при двух последовательных измерениях за счет ошибки скорости движения будет в пределах 1 м/с.

Сущность изобретения поясняется фиг. 1, на которой представлена блок-схема устройства, реализующего заявленный способ.

Гидролокатор 1 соединен со спецпроцессором 3, в состав которого входят последовательно соединенные блок 4 определения времен задержки, блок 5 определения курсового угла, блок 6 определения скорости сближения, первый выход которого соединен с блоком 7 определения скорости звука по неподвижной цели, а второй выход с блоком 8 определения скорости звука по подвижной цели. Выход спецпроцессора 3 соединен с блоком 9 управления и отображения, выход которого соединен с гидролокатором 1. На второй вход спецпроцессора 3 поступает информация от блока 2 измерителя собственной скорости.

Гидролокатор 1 является известным устройством, которое подробно описано в отечественной литературе А.С. Колчеданцев. «Гидроакустические станции». Судостроение, Л., 1982 г., А.Н. Яковлев, Г.П. Кабаков «Гидролокаторы ближнего действия» Судостроение, Л., 1983 г. В состав гидролокатора, как правило, входят антенна с системой формирования характеристик направленности, приемное устройство, передающее устройство, индикатор и система управления. Все блоки, используемые для определения скорости звука, могут быть выполнены в тех же спецпроцессорах, на которых реализуется работа приемных трактов современных гидролокационных станций. Это стандартные спецпроцессоры, которые работают по разработанным программам и жесткой логике управления при поступлении исходной информации. (Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев «Корабельная гидроакустическая техника». СПб. «Наука», 2004 г., с. 281-289). Практически все указанные процедуры могут быть реализованы на современных компьютерах и ноутбуках, в которых реализованы вычислительные программы Матлаб, Матсард и др. (А.Б. Сергиенко Цифровая обработка сигналов СПб. «БХВ - Петербург», 2011 г.). Гидроакустический измеритель собственной скорости движения блок 2 является известным устройством, которые выпускаются серийно и устанавливаются на всех современных судах (А.В. Богородский, Д.Б. Островский «Гидроакустические навигационные и поисково-обследовательские средства», Санкт Петербург 2009 г. Изд. ЛЭТИ, стр. 40-81). Блок 9 управления и отображения - известное устройство, которое содержится во всех гидролокаторах и которое обеспечивает отображение и управление результатом измерения скорости звука по трассе.

С помощью предлагаемого устройства определения скорости звука по трассе производится следующим образом. Сигнал управления с блока 9 поступает на гидролокатор 1, который формирует зондирующий сигнал и излучает его в водную среду. Прием эхосигналов осуществляется приемной антенной гидролокатора 1, которая имеет статический веер характеристик направленности. С выхода гидролокатора 1 обнаруженные эхосигналы поступают на спецпроцессор 3 в блок 4, где производится определение времен запаздывания эхосигналов tиз1, tпр1 по первому зондирующему сигналу и tиз2, tпр2 по второму зондирующему сигналу. В блоке 5 определяются характеристики направленности N1, N2 и курсовой угол обнаруженной цели Q°'. По измеренным временам задержки двух последовательных излучений зондирующего сигнала определяется скорость сближения. В блоке 7 сравниваются оценки скорости сближения и собственной скорости с учетом измеренного курсового угла. Если оценка скорости сближения Vсоб находится в пределах от Vсоб до cosQ°Vсоб, что соответствует условиям неподвижной цели, то производится определение скорости звука по трассе распространения для неподвижной цели Ср=2VсобТ/{(tпр1-tпр2)+T}. Если условия не соответствуют неподвижной цели, то производится определение скорости звука в блоке 8 по формуле для подвижной цели

Таким образом, предложенная процедура измерения последовательных временных интервалов позволяет определять скорость распространения звука по трассе по отраженным эхосигналам от неподвижной цели и от подвижной цели.

Способ определения скорости звука гидролокатором по трассе распространения сигнала до цели, содержащий излучение зондирующего сигнала постоянной длительности через постоянные промежутки времени Т, прием эхосигналов от цели приемным устройством, определение скорости движения носителя V приемного устройства, отличающийся тем, что прием эхосигнала и измерение его параметров производят статическим веером N горизонтальных характеристик направленности с шириной характеристики направленности Q° не больше 2°, запоминают время излучения первого зондирующего сигнала t, измеряют время приема первого эхосигнала t и номер принявшей его характеристики направленности N, определяют дистанцию до объекта Д = 0,5С (t - t), где C=1500 м/c, измеряют время излучения второго зондирующего сигнала t определяют время приема второго эхосигнала t и номер принявшей его характеристики направленности N, определяют дистанцию до цели Д = 0,5С (t - t), определяют скорость сближения как V = [(Д - Д) / T, определяют курсовой угол цели Q° = 2°N по номеру характеристики направленности, в которой принят эхосигнал по второй посылке, и если измеренная скорость сближения V находится в пределах от V до cosQ°V, где Q° меньше или равно ±10°, то считают цель неподвижной и определяют скорость звука по трассе по формуле С = 2 V Т / {(t - t) + T)}, если V не находится в пределах от V до cosQ°V, то считают цель подвижной и скорость звука определяется по формуле , где Δt = {(t - t) - (t - t)}, при этом время между посылками Т должно быть больше чем Т>100 м/V.
Способ определения скорости звука гидролокатором по трассе распространения сигнала до цели
Способ определения скорости звука гидролокатором по трассе распространения сигнала до цели
Способ определения скорости звука гидролокатором по трассе распространения сигнала до цели
Способ определения скорости звука гидролокатором по трассе распространения сигнала до цели
Источник поступления информации: Роспатент

Showing 31-40 of 97 items.
29.05.2018
№218.016.55dd

Устройство получения информации о шумящем в море объекте

Изобретение относится к области гидроакустики и предназначено для определения параметров объектов, шумящих в море. Заявлено устройство, содержащее многоэлементную акустическую приемную антенну шумопеленгования, блок формирования веера характеристик направленности в горизонтальной и вертикальной...
Тип: Изобретение
Номер охранного документа: 0002654365
Дата охранного документа: 17.05.2018
11.06.2018
№218.016.609c

Способ обработки гидролокационной информации

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации систем при обнаружении и классификации объектов. Задачей изобретения является автоматическое обнаружение эхо-сигналов от объектов искусственного происхождения в...
Тип: Изобретение
Номер охранного документа: 0002657121
Дата охранного документа: 08.06.2018
25.06.2018
№218.016.6575

Система и способ измерения акустических характеристик антенн с помощью подводного аппарата

Изобретение относится к области гидроакустики и может быть использовано для измерения полевых акустических характеристик корабельных антенн. Для измерения полевых характеристик корабельных приемных и излучающих антенн на подводном аппарате (ПА) установлены две излучающие антенны (АИ1, АИ2) и...
Тип: Изобретение
Номер охранного документа: 0002658508
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.65a6

Способ измерения скорости движения цели гидролокатором

Способ измерения скорости движения цели гидролокатором, содержащий излучение зондирующего сигнала, прием эхосигнала статическим веером характеристик направленности, обнаружение эхосигнала, измерение дистанции, измерение направления на объект, в котором измеряют уровень изотропной помехи после...
Тип: Изобретение
Номер охранного документа: 0002658528
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.666d

Способ определения координат движущихся источников излучения пассивным гидролокатором

Изобретение относится к области гидроакустики и может быть использовано в пассивной широкоапертурной гидролокации, а также в плосковолновой гидроакустике, атмосферной акустике и пассивной радиолокации. При пассивной локации источников излучения используют протяженные приемные системы (ПС) и...
Тип: Изобретение
Номер охранного документа: 0002658519
Дата охранного документа: 21.06.2018
05.07.2018
№218.016.6b42

Способ обработки гидролокационной информации

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации систем при обнаружении и классификации объектов. В способе обработки гидролокационной информации, содержащем излучение сигнала, прием отраженного эхо-сигнала,...
Тип: Изобретение
Номер охранного документа: 0002660081
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6d20

Способ определения глубины погружения объекта

Настоящее изобретение относится к области гидролокации и направлено на повышение эффективности определения основных параметров обнаруженной цели. Использование совместной обработки принятого эхосигнала по вертикальным и горизонтальным каналам позволит автоматически определять глубину погружения...
Тип: Изобретение
Номер охранного документа: 0002660292
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d32

Способ классификации эхо-сигнала гидролокатора

Настоящее изобретение относится к области гидроакустики и может быть использовано для обнаружения и классификации эхосигналов от объектов, при применении зондирующих сигналов средней длительности. Использование предлагаемого способа позволяет обнаруживать и классифицировать объект по одному...
Тип: Изобретение
Номер охранного документа: 0002660219
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6e9f

Система шумопеленгования гидроакустического комплекса подводной лодки

Изобретение относится к гидроакустическим средствам освещения подводной обстановки и предназначена для установки на подводной лодке. Техническими результатами от использования предлагаемой системы шумопеленгования гидроакустического комплекса подводной лодки являются формирование полного...
Тип: Изобретение
Номер охранного документа: 0002660377
Дата охранного документа: 05.07.2018
12.07.2018
№218.016.6fb4

Система противоторпедной защиты гидроакустического комплекса подводной лодки

Изобретение относится к гидроакустическим средствам самообороны подводной лодки. Техническими результатами от использования предлагаемой системы противоторпедной защиты гидроакустического комплекса подводной лодки являются увеличение сектора обзора в горизонтальной плоскости до 360° и...
Тип: Изобретение
Номер охранного документа: 0002661066
Дата охранного документа: 11.07.2018
Showing 31-40 of 71 items.
27.04.2016
№216.015.3780

Гидроакустический способ определения пространственных характеристик объекта на дне

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения параметров положения объекта, обнаруженного на дне с использованием гидролокатора ближнего действия. Способ содержит излучение зондирующего сигнала в момент времени t, после излучения измеряется...
Тип: Изобретение
Номер охранного документа: 0002582623
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.395a

Гидроакустический способ обработки рыбопромысловой информации

Использование: изобретение относится к области морского рыболовного промысла и может повысить эффективность процесса вылова рыбы с использованием гидроакустических средств. Сущность: гидроакустический способ обработки рыбопромысловой информации содержит обнаружение рыбного скопления...
Тип: Изобретение
Номер охранного документа: 0002582624
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5383

Гидролокационный способ обнаружения подводных объектов в контролируемой акватории

Изобретение относится к области гидроакустики и предназначено для автоматического обнаружения малоподвижных объектов. Гидролокационный способ обнаружения подводных объектов в контролируемой акватории, при котором последовательно облучают водное пространство сигналами, принимают эхосигналы от...
Тип: Изобретение
Номер охранного документа: 0002593824
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5587

Способ измерения радиальной скорости объекта по его шумоизлучению

Изобретение относится к области гидроакустики, в частности к способам измерения радиальной скорости движения объекта. Способ заключается в следующем. С помощью антенны принимают сигнал шумоизлучения объекта, осуществляют дискретизацию принятого сигнала и измерение спектра сигнала по набранной...
Тип: Изобретение
Номер охранного документа: 0002593622
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5ff6

Гидроакустический способ измерения глубины погружения неподвижного объекта

Использование: настоящее изобретение относится к области гидролокации и предназначено для использования в станциях освещения ближней обстановки при измерении параметров обнаруженного объекта. Сущность: способ измерения глубины погружения, содержащий излучение двух последовательных во времени...
Тип: Изобретение
Номер охранного документа: 0002590932
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8811

Способ определения глубины погружения нижней точки айсберга

Изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры обеспечения навигационной безопасности при работе в условиях нахождения айсбергов. Способ определения глубины погружения нижней точки айсберга содержит излучение зондирующего...
Тип: Изобретение
Номер охранного документа: 0002603831
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.89fb

Способ автоматического обнаружения и классификации объекта в водной среде

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматической и автоматизированной классификации морских объектов, применительно к гидролокационным станциям ближнего действия. Техническим результатом предлагаемого технического решения является...
Тип: Изобретение
Номер охранного документа: 0002602759
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9cfa

Способ автоматического определения гидролокатором курсового угла обнаруженного объекта

Настоящее изобретение относится к области гидроакустики и может быть использовано для измерения координат обнаруженного объекта с использованием гидролокатора ближнего действия. Использование предлагаемого технического решения позволяет автоматически измерять курсовой угол обнаруженного объекта...
Тип: Изобретение
Номер охранного документа: 0002610520
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.ac1a

Способ определения дистанции гидролокатором

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения сигнала гидролокатора и, в частности, для повышения точности измерения дистанции при использовании зондирующих сигналов большой длительности. Использование предлагаемой процедуры измерений...
Тип: Изобретение
Номер охранного документа: 0002612201
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.c917

Способ автоматического определения параметров айсберга гидролокационным методом

Изобретение относится к области гидроакустики и может быть использовано в навигационных приборах (гидроакустических станциях) обнаружения ледяных образований (в том числе айсбергов) и оценки его характеристик. Способ предназначен для автоматического определения осадки айсберга для защиты...
Тип: Изобретение
Номер охранного документа: 0002619311
Дата охранного документа: 15.05.2017
+ добавить свой РИД