×
10.05.2018
218.016.3d05

Результат интеллектуальной деятельности: Способ формирования титановых пористых покрытий на титановых имплантатах

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций. Способ формирования титановых пористых покрытий на титановых имплантатах включает воздушно-абразивную обработку, очистку от технологических загрязнений, индукционный нагрев имплантационной конструкции и электроплазменное напыление порошкового материала, при этом воздушно-абразивную обработку проводят абразивным порошком дисперсностью 100-250 мкм при давлении воздушной среды 0,2-0,5 МПа, очистку от технологических загрязнений проводят путем ультразвуковой очистки в водном 4-6% растворе поверхностно-активных веществ, последующей промывки в дистилированной воде или водном растворе этилового спирта и сушки на воздухе, индукционный нагрев титановых имплантатов осуществляют до температуры 200-400°С при частоте тока на индукторе 90±10кГц и потребляемой удельной электрической мощности 0,2-0,4 Вт/кг, затем проводят электроплазменное напыление титанового порошка дисперсностью 60-160 мкм с дистанции 100-120 мм при токе дуги 400-450 А и поддержании температуры имплантата в интервале 200-400°С. Техническим результатом изобретения является повышение адгезионно-когезионной прочности пористых титановых покрытий, сформированных на внутрикостных частях имплантатов методом электроплазменного напыления. 1 з.п. ф-лы, 2 ил., 1 табл., 2 пр.

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций.

В настоящее время для формирования на внутрикостных частях титановых имплантируемых конструкций гетерогенной поверхности, характеризуемой наличием микроразмерных структурных элементов, используется электроплазменное напыление. Считается, что сформированные данным методом на внутрикостных частях имплантатов пористые металлические покрытия обладают остеокондуктивными свойствами [Калита В.И. и др. Формирование композиционных пористых покрытий на поверхности имплантатов низкотемпературной плазмой // ФХОМ. - 2005. - №.3. - с. 39-47; Калита В.И., Д.И. Комлев. Исследование пористых покрытий на внутрикостных имплантатах // ФХОМ. - 2008. - №.2. - с. 48-51]. Физико-механическая сущность электроплазменного напыления обусловливает неоднородность структуры получаемых покрытий, а также высокую скорость кристализации напыляемого материала, что приводит к повышению доли аморфной фазы формируемого покрытия и выражается в низких показателях адгезионно-когезионной прочности и микротвердости.

Известен способ изготовления внутрикостных имплантатов [патент RU на изобретение №2443434 / И.П. Мельникова, А.В. Лясникова, В.Н. Лясников // Способ изготовления внутрикостных имплантатов. - 2012]. Формирование покрытия, с равномерной пористой структурой, осуществляют путем послойного нанесения плазменным напылением на металлическую основу титана и механических смесей, состоящих из титана и керамических материалов. Первый и второй слои толщиной 5-10 и 50-115 мкм формируют напылением порошка титана дисперсностью 3-5 и 50-100 мкм с дистанции 70-80 и 100 мм соответственно. Третий слой, толщиной 15-20 мкм, формируют напылением механической смеси титана дисперсностью 40-70 мкм и гидроксиаппатита дисперсностью 5-10 мкм с соотношением 60-80 и 20-40 мас.% соответсвенно при дистанции напыления 80 мм. Четвертый слой толщиной 20-30 мкм формируют плазменным напылением с дистанции 70 мм порошкового материала, состоящего из смеси порошков оксида алюминия или гидроскиапатита дисперстностью 1-3 мкм или 40-90 мкм в количестве 70-95 мас.% и 5-30 мас.% соответственно, подвергнутых отжигу в течение 1,5-3 часа и последующей перетирке.

Основным недостатком способа являются: стоимость порошкового материала, низкие физико-механические свойства формируемого титанового подслоя.

Известен также способ нанесения покрытий [патент RU на изобретение №2081203 / Ю.С. Коробов, В.Н. Бороненков, Б.Э. Барановский // Способ нанесения покрытий. - 1995], позволяющий повысить прочность сцепления покрытия с основой. Согласно способу изделие после механической обработки подвергают эпиламированию. Перед формированием газотермического покрытия основу нагревают до 60-450°C.

Основным недостатком способа является невозможность использования для формирования титановых биоинертных покрытий на имплантируемых конструкциях в силу использования эпилама.

Наиболее близким к предлагаемому способу является способ нанесения покрытий [патент RU на изобретение №2430192 / А.А. Фомин, А.Б. Штейнгауэр // Способ нанесения покрытий. - 2011], позволяющий формировать на поверхности различных изделий плазменные керамические покрытия с высокими показателями микротвердости. Согласно способу изделие, на которое предполагается нанесение покрытия, предварительно нагревают до заданной температуры индукционным током с частотой, выбираемой из диапазона от 100 до 400 кГц, затем производиться нанесение покрытия в виде порошка электроплазменным методом. После формирования покрытия изделие охлаждают путем снижения потребляемой мощности с обеспечением снижения температуры изделия не более 10°C/с.

Основным недостатком способа является невозможность использования указанных режимов нагрева для формирования металлических покрытий.

Техническая проблема заключается в технологической сложности формирования на имплантируемых титановых конструкциях металлических высокопористых покрытий, обладающих высокими показателями адгезионно-когезионной прочности.

Поставленная проблема решается тем, что используя оборудование для индукционно-термической обработки токами высокой частоты, имплантационные титановые конструкции, предварительно подвергнутые воздушно-абразивной обработке абразивным порошком дисперсностью 100-250 мкм при давлении воздушной среды 0,2-0,5 МПа и очистке от технологических загрязнений путем ультразвуковой очистки в водном 4-6% растворе поверхностно-активных веществ, последующей промывке в дистилированной воде или водном растворе этилового спирта, а также сушке на воздухе, нагревают до температуры 200-400°C при частоте тока на индукторе 90±10 кГц и потребляемой удельной электрической мощности 0,2-0,4 Вт/кг, затем производят электроплазменное напыление титанового порошка дисперсностью 60-160 мкм с дистанции 100-120 мм при токе дуги 400-450 А и поддержании температуры имплантата в интервале 200-400°C.

Заявляется изобретение, в котором наряду с вышеописанными признаками имплантаты после нанесения покрытия охлаждают на воздухе до комнатной температуры.

Техническим результатом является повышение адгезионно-когезионной прочности пористых металлических покрытий с заданными структурными параметрами, сформированных на внутрикостных частях имплантатов методом электроплазменного напыления.

Изобретение поясняется фигурами, на которых представлен процесс нанесения покрытия (Фиг. 1) и схема проведения испытаний по определению адгезионно-когезионной прочности покрытий (Фиг. 2).

На Фиг. 1 позициями 1-6 обозначены:

1 - титановое изделие;

2 - кварцевая камера - маска;

3 - индуктор;

4 - генератор;

5 - источник питания;

6 - плазмотрон;

7 - порошковый материал;

8 - пористое покрытие.

Предлагаемый способ осуществляют следующим образом.

Титановый имплантат 1, подвергнутый воздушно-абразивной обработке и очистке от технологических загрязнений, помещают в керамическую камеру 2 (повторяющую форму изделия), на внешней поверхности которой размещен водоохлаждаемый индуктор 3, подключенный к генератору 4 и источнику питания 5 (Фиг. 1). После чего имплантат 1 подвергают индукционному нагреву при частоте тока на индукторе 90±10 кГц и удельной потребляемой электрической мощности 0,2-0,4 Вт/кг до температуры 200-400°C. При достижении заданной температуры посредством плазмотрона 6 при токе дуги 400-450 А с дистанции напыления 100-120 мм производят напыление порошкового материала 7, дисперсностью 60-160 мкм, и формирование металлического пористого покрытия 8. В процессе электроплазменного напыления температура имплантационной конструкции поддерживают в интервале 200-400°C.

После формирования металлического покрытия титановые изделия охлаждают на воздухе до комнатной температуры.

Приведенные пределы значений технологических режимов воздушно-абразивной обработки обеспечивают очистку поверхности титановой основы от химических соединений, а также формирование развитого микрорельефа поверхности имплантата.

Указанная последовательность очистки имплантатов обеспечивает эффективное удаление с поверхности титана технологических загрязнений.

Технологические режимы нагрева были определены методами численного моделирования и подтверждены путем проведения исследований.

Приведенные пределы значений технологических режимов индукционного нагрева и электроплазменного напыления обеспечивают формирование на титановой основе прочного титанового покрытия с высокими показателями адгезионно-когезионной прочности (до 71,6 МПа), а также высокими показателями поверхностной пористости (до 48%) за счет контролируемых условий фазового превращения частиц титана, формирующих биоинертное покрытие.

При подаче на индуктор тока частотой менее 80 кГц снижается электрический коэффициент полезного действия устройства индукционного нагрева и самого процесса обработки. При подаче на индуктор тока частотой более 100 кГц не происходит улучшение эффективности процесса обработки и наблюдается снижение коэффициента мощности.

Предельные значения потребляемой удельной электрической мощности (0,2-0,4 Вт/кг) обусловлены тем, что при величине удельной электрической мощности менее 0,2 Вт/кг будет затруднен нагрев малогабаритных титановых изделий до заданной температуры из-за потерь на излучение. При величине удельной электрической мощности более 0,4 Вт/кг увеличивается скорость нагрева титановой основы, и как следствие, увеличивается сложность управления процессом нагрева.

При значениях температуры титановой основы менее 200°С образуется аморфное покрытие, не обладающее высокими значениями адгезионно-когезионной прочности. При значениях температуры нагрева более 400°С на поверхности титана образуются трещины и оксидные включения, снижающие адгезионную прочность формируемого покрытия.

Выбранные режимы электроплазменного напыления позволяют наносить равномерное пористое покрытие заданной толщины (до 300 мкм). При уменьшении дисперсности напыляемого порошка (менее 60 мкм) увеличивается разброс напыленных частиц по поверхности основы, толщина покрытия уменьшается. При увеличении дисперсности (более 160 мкм) в структуре наблюдаются непроплавленные зерна, имеющие низкую адгезию к основе; при токе дуги менее 400 А и дистанции напыления менее 100 мм уменьшается степень проплавления частиц напыляемого титанового порошка. При увеличении тока дуги (более 450 А) и дистанции напыления (более 120 мм) увеличивается степень проплавления и разброс по поверхности основы напыляемых частиц, уменьшается равномерность покрытия по толщине.

Примеры выполнения способа.

Пример 1.

Стержневой фиксатор для наружного чрезкостного остеосинтеза диаметром 4 мм и длиной 50 мм, изготовленный из титана марки ВТ6, подвергают воздушно-абразивной обработке порошком электрокорунда дисперсностью 100-250 мкм при давлении воздушной среды 0,3 МПа в течение 2 минут. Поверхность фиксатора очищают от технологических загрязнений путем ультразвуковой очистки в водном 4-6% растворе поверхностно-активных веществ (например, Сульфонол-П) и промывают дистиллированной водой с последующей сушкой на воздухе. После чего имплантат размещают в кварцевой камере оксидирования с внутренним диаметром 6 мм и длиной 60 мм. Имплантат подвергают индукционному нагреву при частоте тока на индукторе 90±10 кГц до температуры 300°C и производят электроплазменное напыление титанового порошка дисперсностью 60-160 мкм с дистанции 100-120 мм при токе дуги 400±10 А. После проведения процесса электроплазменного напыления имплантат охлаждают на воздухе до комнатной температуры.

Пример 2. Стоматологический имплантат цилиндрический резьбовой, изготовленный из технического титана ВТ1-00, подвергают воздушно-абразивной обработке и очистке от технологических загрязнений путем ультразвуковой очистки в водном 4-6% растворе поверхностно-активных веществ (например, Сульфонол-П) и промывают 90% водным раствором этилового спирта с последующей сушкой на воздухе. Имплантат размещают в керамической основе и закрепляют на центрирующей оснастке, которую в дальнейшем вращают. После фиксации титановый имплантат нагревают при частоте тока на индукторе 90±10 кГц до температуры 400°C, передают ему вращательное движение вокруг оси и производят электроплазменное напыление титанового порошка дисперсностью 60-160 мкм с дистанции 110±5 мм при токе дуги 430±10 А. После проведения процесса электроплазменного напыления имплантат охлаждают на воздухе до комнатной температуры.

Для подтверждения формирования на поверхности титановых имплантатов биоинертных покрытий с высокими показателями адгезионно-когезионной прочности и открытой поверхностной пористости были проведены исследования образцов из титанового сплава ВТ1-00, на поверхности которых согласно предлагаемому способу были сформированы покрытия. В ходе экспериментальных работ определялись величины открытой пористости путем анализа изображений с использованием специализированного программного комплекса для анализа микрогеометрических параметров элементов морфологии поверхности, а также адгезионно-когезионной прочности при испытании на срез. Процесс исследования адгезионно-когезионной прочности поясняется фигурой, на которой представлена схема проведения испытания (Фиг. 2).

На Фиг. 2 позициями 9-11 обозначены:

9 - резец;

10 - рабочий участок резца;

11 - след от резца.

Метод измерения адгезионно-когезионной прочности покрытий, сформированных на имплантируемых конструкциях, согласно схеме, изображенной на Фиг. 2, имитирует установку имплантационной конструкции в костное ложе с натягом под действием нагрузки Р, вызывающей в покрытии возникновение усилия среза РСР, и осуществляют следующим образом. Резец 9 шириной b внедряют в покрытие 8 на глубину h с помощью микрометрического приспособления. Затем к образцу 1 прикладывают нагрузку Р, характеризующую усилия при процессе установки имплантата. В результате движения образца в покрытии остается след 11 от рабочего участка резца 10. Регистрируется усилие при срезе РСР. Величина прочности при срезе σСР рассчитывалась по формуле

,

где РСР - усилие среза, действующее на площадь S рабочего участка резца (Фиг. 2).

Технологические режимы нагрева, электроплазменного напыления и результаты исследований адгезионно-когезионной прочности, а также поверхностной пористости представлены в Таблице.

Из полученных результатов следует, что предложенный способ позволяет формировать на титановых имплантатах высокопористые биоинертные покрытия, обладающие высокой адгезионно-когезионной прочностью, а также более гетерогенной морфологией поверхности по сравнению с покрытиями, сформированными без предварительного нагрева титановой основы.


Способ формирования титановых пористых покрытий на титановых имплантатах
Способ формирования титановых пористых покрытий на титановых имплантатах
Источник поступления информации: Роспатент

Showing 11-20 of 164 items.
20.04.2016
№216.015.3621

Фотокаталитическое покрытие

Изобретение относится к химической промышленности, а именно к пленкам и покрытиям, фотокаталитически активным в видимой области спектра солнечного излучения. Описано Фотокаталитическое покрытие в виде композиционного материала. Композиционный материал состоит из двух слоев, нанесенных на...
Тип: Изобретение
Номер охранного документа: 0002581359
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.364e

Антисептическое средство

Изобретение относится к медицине и представляет собой антисептическое средство, включающее полиазолидинаммоний, модифицированный гидрат-ионами йода в количестве 15-25 мас.%, перекись водорода в количестве 1-10 мас.% и дистиллированную воду - остальное. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002581826
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.374c

Способ упрочнения изделий из титана и его сплавов

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом...
Тип: Изобретение
Номер охранного документа: 0002581688
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.375c

Способ поверхностного упрочнения и стабилизации маложестких изделий

Изобретение относится к машиностроению и может быть использовано для поверхностного упрочнения и стабилизации торсионных валов при обработке источниками с высокой концентрацией энергии. Способ поверхностного упрочнения торсионных валов включает изменение уровня лазерного теплового воздействия...
Тип: Изобретение
Номер охранного документа: 0002581691
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ced

Способ обработки кольцевой детали непрерывной обкаткой тремя валками

Изобретение относится к обработке кольцевой детали обкаткой. Устанавливают деталь между тремя валками, с помощью которых обеспечивают деформацию детали и ее непрерывную обкатку между ними. Максимальную величину деформации детали определяют из равенства: где D - диаметр наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002583520
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dbf

Способ стабилизации параметров колец шарикоподшипников

Изобретение относится к обработке дорожек качения колец шарикоподшипников. Осуществляют вращение кольца шарикоподшипника и прижатие к дорожке его качения шарикового раскатного инструмента. Ось шарикового раскатного инструмента совмещают с осью вращения кольца шарикоподшипника. Используют...
Тип: Изобретение
Номер охранного документа: 0002583510
Дата охранного документа: 10.05.2016
27.08.2016
№216.015.50f1

Состав для получения стоматологической лечебно-профилактической пленки

Изобретение относится к технологии получения пленок на основе гидроксилсодержащих полимеров для медицины, в частности к составам для получения пленок, и может быть использовано в стоматологии для лечения заболеваний пародонта. Предлагаемый состав для получения стоматологической...
Тип: Изобретение
Номер охранного документа: 0002595804
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.670e

Смесь для изготовления пенобетона

Изобретение относится к промышленности строительных материалов, а именно для изготовления пенобетона, также может использоваться для производства теплоизоляционных материалов непосредственно на строительной площадке. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент...
Тип: Изобретение
Номер охранного документа: 0002591996
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68cc

Способ и устройство для охлаждения стекловаренной печи

Изобретение относится к области производства листового стекла в регенеративных стекловаренных печах непрерывного действия, а именно к технике принудительного охлаждения огнеупорной кладки варочного бассейна стекловаренных печей. Техническим результатом настоящего изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002591995
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7390

Способ изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Изобретение относится к способу изготовления внутрикостного стоматологического имплантата. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002597750
Дата охранного документа: 20.09.2016
Showing 11-20 of 27 items.
20.04.2016
№216.015.34bc

Способ обработки поверхности изделий на основе пиролитического углерода

Изобретение относится к области изготовления изделий медицинского назначения на основе пиролитического углерода и может быть использовано для протезов клапана сердца. Технический результат изобретения - повышение качества изделий путем снижения шероховатости и поверхностной пористости....
Тип: Изобретение
Номер охранного документа: 0002581177
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35c5

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении...
Тип: Изобретение
Номер охранного документа: 0002581824
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.374c

Способ упрочнения изделий из титана и его сплавов

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом...
Тип: Изобретение
Номер охранного документа: 0002581688
Дата охранного документа: 20.04.2016
27.08.2016
№216.015.50f1

Состав для получения стоматологической лечебно-профилактической пленки

Изобретение относится к технологии получения пленок на основе гидроксилсодержащих полимеров для медицины, в частности к составам для получения пленок, и может быть использовано в стоматологии для лечения заболеваний пародонта. Предлагаемый состав для получения стоматологической...
Тип: Изобретение
Номер охранного документа: 0002595804
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.841c

Способ получения износостойких покрытий на изделиях из алюминия и его сплавов

Изобретение относится к области получения износостойких и коррозионно-стойких покрытий на изделиях из алюминия и его сплавов. Способ характеризуется тем, что изделие подвергают микродуговому оксидированию в анодно-катодном режиме при плотности тока 7-7,5 А/дм и соотношении анодного и катодного...
Тип: Изобретение
Номер охранного документа: 0002602903
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8b15

Способ формирования наноструктурированного биоинертного покрытия на титановых имплантатах

Изобретение относится к области медицинской техники, а именно к технологии формирования биоинертных наноструктурированных оксидных покрытий на внутрикостных частях титановых имплантатов. Способ включает воздушно-абразивную обработку, травление в растворе кислот и газотермическое оксидирование....
Тип: Изобретение
Номер охранного документа: 0002604085
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a42d

Способ формирования керамического покрытия на основе диоксида циркония на изделии из титанового сплава

Изобретение относится к области получения керамических покрытий методами электроплазменного напыления на изделиях из титановых сплавов и может быть использовано в приборостроении и машиностроении, в частности в деталях компрессоров и турбин газотурбинных двигателей, в имплантируемых медицинских...
Тип: Изобретение
Номер охранного документа: 0002607390
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa48

Способ формирования оксидных покрытий на изделиях из титановых сплавов

Изобретение относится к технологии формирования оксидных покрытий на титановых изделиях технического и медицинского назначения, например элементах пар трения и метизных изделиях. Титановое изделие подвергают индукционному нагреву в воздушной атмосфере до температуры 700-800°С при частоте тока...
Тип: Изобретение
Номер охранного документа: 0002611617
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.da72

Способ химико-термической индукционной обработки малогабаритных изделий из альфа-титановых сплавов

Изобретение относится к металлургии, а именно к химико-термической обработке и упрочнению малогабаритных изделий конструкционного и медицинского назначения, например метизных изделий и стоматологических имплантатов, изготовленных из альфа-сплавов титана. Способ химико-термической индукционной...
Тип: Изобретение
Номер охранного документа: 0002623979
Дата охранного документа: 29.06.2017
10.05.2018
№218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях....
Тип: Изобретение
Номер охранного документа: 0002647048
Дата охранного документа: 13.03.2018
+ добавить свой РИД