×
10.05.2018
218.016.3b3b

Результат интеллектуальной деятельности: Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Вид РИД

Изобретение

№ охранного документа
0002647387
Дата охранного документа
15.03.2018
Аннотация: Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине, например, из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два и воздействие на обе стороны пластины пучками с равной плотностью энергии. Плотность энергии рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения. Сначала лазерным пучком воздействуют на одну поверхность пластины с плотностью энергии, определяемой по следующему соотношению а воздействие на обе стороны пластины осуществляют с плотностью энергии, отличной от величины плотности энергии предыдущего воздействия. Упомянутую плотность энергии определяют по следующему соотношению где е - основание натурального логарифма; h - толщина пластины, aχh>3,87. Техническим результатом изобретения является снижение энергетических затрат при лазерной пробивке сквозных отверстий в пластинах из неметаллических материалов. 2 ил.

Изобретение относится к области технологических процессов и может быть использовано для лазерной пробивки отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов.

Известен способ лазерной обработки [Лазерная техника и технология. В 7 кн. Кн. 4. Лазерная обработка неметаллических материалов: Учебное пособие для ВУЗов / А.Г. Григорьянц, А.А. Соколов. Под ред. А.Г. Григорьянца. - М.: Высшая школа 1998. - 191 с. ISBN 5-06-001453-3], в частности, используемый для создания отверстий в пластинах, в котором плотность энергии, необходимая для испарения слоя материала толщиной x, равна

где W - плотность энергии лазерного излучения;

x - координата, измеряемая от поверхности вглубь материала;

- плотность материала;

- скрытая теплота испарения единицы массы материала.

Уравнение (1) характеризует стационарный процесс испарения материала под действием лазерного излучения при его поглощении в очень тонком поверхностном слое материала (много меньше толщины испаренного слоя). Уравнение (1) нельзя использовать, когда поглощение лазерного излучения происходит в объеме материала, например в слое материала толщиной в несколько миллиметров. Недостатком данного способа является отсутствие возможности определения оптимального значения плотности энергии лазерного излучения при обработке материалов, обладающих объемным поглощением излучения с длиной волны, на которой происходит обработка материала.

Известен также способ лазерной обработки неметаллических материалов [Сахаров М.В., Коваленко А.Ф., Воробьев А.А., Конюхов М.В., Астраускас Й.И., Никитин И.В., Запонов А.Э., Удинцев Р.Д., Чупятов А.С. Способ обработки неметаллических материалов. Патент на изобретение RU 2486628, МПК H01L 21/42, 27.06.2013], заключающийся в облучении их поверхности лазерными импульсами с плотностью энергии в импульсе, определяемой по соотношению

где е - основание натурального логарифма (е≈2,7183);

Q - удельная энергия сублимации материала, Дж/м3;

χ - показатель поглощения материала пластины на длине волны лазерного излучения, м-1;

R - коэффициент отражения материала.

При такой плотности энергии воздействующего лазерного излучения происходит сублимация поглощающего слоя материала толщиной 1/χ, причем максимальный удельный (на единицу вложенной энергии) унос массы материала составит величину

Для сквозного пробития отверстия в пластине необходимо, чтобы толщина пластины составляла величину 1/χ. Эти условия обеспечивают оптимальный режим обработки при одностороннем воздействии лазерного излучения на неметаллические материалы, обладающие объемным поглощением лазерного излучения. Недостатком способа является то, что он не позволяет проводить пробитие сквозных отверстий в неметаллических пластинах произвольной толщины, обладающих объемным поглощением лазерного излучения, при минимальных энергетических затратах.

Известен также способ лазерной пробивки сквозного отверстия в неметаллической пластине [Коваленко А.Ф. Способ лазерной пробивки сквозного отверстия в неметаллической пластине. Патент РФ №2582849 С1, МПК B23K 26/364, 27.04.2016], включающий обработку поверхности пластины посредством лазерного импульса с длиной волны, обеспечивающей выполнение условия

1,2<χh<3,1,

где h - толщина пластины,

при этом исходный лазерный пучок лазерного излучения разделяют на два пучка и одновременно соосно воздействуют на обе поверхности пластины с равной плотностью энергии, определяемой по соотношению:

Указанный способ выбран в качестве прототипа. Недостатком указанного способа является существенное увеличение энергетических затрат при пробитии отверстий в пластинах большой толщины, когда χh>4. Так как длины волн технологических лазеров имеют определенные значения, а толщины пластин могут быть произвольными, трудно обеспечить режимы обработки, обеспечивающие минимальные затраты энергии.

Техническим результатом изобретения является снижение энергетических затрат при лазерной пробивке сквозных отверстий в пластинах из неметаллических материалов, обладающих объемным поглощением лазерного излучения, например из полупроводниковых, керамических и стеклообразных материалов.

Технический результат достигается тем, что в способе лазерной пробивки сквозного отверстия в неметаллической пластине, включающем разделение лазерного пучка на два, воздействие на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по соотношению, связывающему удельную энергию сублимации материала Q, коэффициент отражения материала пластины R и показатель поглощения материала χ на длине волны воздействующего лазерного излучения, сначала лазерным пучком воздействуют на одну поверхность пластины с плотностью энергии, определяемой по следующему соотношению

а воздействие на обе стороны пластины осуществляют с плотностью энергии, отличной от величины плотности энергии предыдущего воздействия, которую определяют по следующему соотношению

где е - основание натурального логарифма;

h - толщина пластины,

aχh>3,87.

На фиг. 1 представлена схема лазерной установки для реализации предложенного способа обработки. Установка содержит импульсный лазер (1), телескопический преобразователь диаметра пучка, состоящий из собирающей линзы (2) и рассеивающей линзы (3), диэлектрическое зеркало (4) с коэффициентом отражения 0,5 на длине волны лазера, осуществляющее разделение на два пучка равной плотности энергии исходного лазерного пучка, и двух диэлектрических зеркал (5, 6) с коэффициентом отражения ~0,99, направляющих лазерное излучение на обе поверхности обрабатываемой пластины (7). При помощи телескопического преобразователя исходный лазерный пучок преобразуется в пучок требуемого диаметра с минимально возможной расходимостью.

Если

где a - коэффициент температуропроводности материала пластины;

RП - радиус пучка лазерного излучения после рассеивающей линзы,

то можно рассматривать задачу об испарении материала в одномерной постановке и пренебречь переносом энергии в материале за счет теплопроводности за время действия лазерного импульса.

Рассмотрим пластину толщиной h, обладающую показателем поглощения на длине волны лазерного излучения χ. Толщина пластины в относительных единицах будет χh. Для реализации предлагаемого способа пробивки сквозных отверстий в пластине вначале из схемы установки для лазерной обработки удаляют диэлектрическое зеркало (4) и воздействуют на одну поверхность пластины с плотностью энергии, определяемой по уравнению (1). При этом толщина испаренного слоя материала составит 1/χ или в относительных единицах χh=1. Оставшаяся не испаренной толщина пластины в относительных единицах будет равна χh-1. Далее возвращают диэлектрическое зеркало (4) в оптическую схему установки и воздействуют на обе поверхности пластины соосно двумя лазерными пучками с плотностью энергии в каждом пучке, определяемой по формуле

Уравнение (6) получают из уравнения (4) заменой начальной толщины пластины в относительных единицах χh на толщину пластины, равную χh-1, после воздействия на одну поверхность пластины лазерного импульса с плотностью энергии, определяемой по уравнению (1). Суммарная плотность энергии, необходимая для пробития сквозного отверстия в пластине при рассматриваемом режиме воздействия, составит

Суммарная плотность энергии, необходимая для пробития сквозного отверстия в пластине по способу, описанному в прототипе, будет равна

Разделив (7) на (8), получим

На фиг. 2 показана зависимость . Видно, что при χh>3,87 отношение становится меньше единицы. Следовательно, энергетические затраты на пробитие сквозного отверстия в пластине по заявляемому способу при χh>3,87 меньше, чем в прототипе. По мере увеличения χh преимущества заявленного способа перед прототипом возрастают. Например, при χh=7 f(χh)=0,69.

Таким образом достигается технический результат, заключающийся в уменьшении энергетических затрат при лазерной пробивке сквозных отверстий в неметаллических пластинах, обладающих объемным поглощением на длине волны лазерного излучения.


Способ лазерной пробивки сквозного отверстия в неметаллической пластине
Способ лазерной пробивки сквозного отверстия в неметаллической пластине
Способ лазерной пробивки сквозного отверстия в неметаллической пластине
Способ лазерной пробивки сквозного отверстия в неметаллической пластине
Способ лазерной пробивки сквозного отверстия в неметаллической пластине
Способ лазерной пробивки сквозного отверстия в неметаллической пластине
Источник поступления информации: Роспатент

Showing 31-40 of 191 items.
27.08.2014
№216.012.ef84

Датчик разности давлений

Изобретение относится к измерительной технике, а именно к датчикам разности давления, и может быть использовано в различных измерительных системах для контроля давления. Заявленный датчик разности давлений имеет корпус, выполненный из составных частей, между которыми установлена силовая...
Тип: Изобретение
Номер охранного документа: 0002527135
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fc5f

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Сущность изобретения заключается в том, что монитор многофазной жидкости содержит трубопровод, резервуары для...
Тип: Изобретение
Номер охранного документа: 0002530453
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc65

Монитор многофазной жидкости

Изобретение относится к устройствам для измерения объемов и расходов текучих сред, а более конкретно к устройствам для измерения объемов и расходов (дебитов) многофазных текучих сред. Монитор многофазной жидкости содержит обходной трубопровод с возможностью его соединения с трубопроводом для...
Тип: Изобретение
Номер охранного документа: 0002530459
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fc66

Анализатор многофазной жидкости

Использование: для анализа многофазной жидкости. Сущность изобретения заключается в том, что анализатор многофазной жидкости содержит импульсный источник быстрых нейтронов и источник электромагнитного излучения, гамма спектрометр, детектор гамма лучей и сцинтиллятор, расположенный диаметрально...
Тип: Изобретение
Номер охранного документа: 0002530460
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcb6

Способ измерения давления газа в запаянных разрядных камерах плазменного фокуса

Изобретение относится к способам измерения низких давлений газа в газоразрядных камерах, в которых образуется плазменный фокус (ПФ) - нецилиндрический Z-пинч, токовая оболочка которого имеет форму типа воронки, и может быть использовано в таких областях, как мощная импульсная электрофизика,...
Тип: Изобретение
Номер охранного документа: 0002530540
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.048e

Камера для облучения текущих сред

Изобретение относится к конструкциям установок для облучения текущих сред и может быть применено в установках, предназначенных для стерилизации текущих жидкостей, активации химических реакций в текущих растворах, ядерного превращения текущих радиоактивных отходов, используемых, в частности, в...
Тип: Изобретение
Номер охранного документа: 0002532564
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0798

Способ измерения амплитуды двухполярного импульса магнитного поля

Изобретение относится к измерительной технике, представляет собой способ автономной регистрации амплитуды напряженности двухполярного импульса магнитного поля и может применяться к импульсам магнитного поля в динамическом диапазоне напряженностей в сотни килоампер на метр при длительностях...
Тип: Изобретение
Номер охранного документа: 0002533345
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.079a

Устройство автономной регистрации импульсного магнитного поля

Предлагаемое изобретение относится к измерительной технике и представляет собой устройство автономной регистрации амплитуды напряженности однократного импульсного магнитного поля. Устройство содержит индукционный первичный преобразователь, резистор, отрезок тонкого провода, магниторезистивный...
Тип: Изобретение
Номер охранного документа: 0002533347
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0ff2

Карабин

Изобретение относится к разряду соединительных устройств типа карабин с фиксатором, например, используемых для поднятия и перемещения грузов, возможно применение карабина в спасательной технике и при авиадесантировании людей и грузов. Техническим результатом изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002535499
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.179e

Волоконно-оптический преобразователь вибрации

Изобретение относится к измерительной технике, а именно к оптическим измерителям и датчикам вибрации, и служит для решения задачи виброконтроля в условиях вибрационных нагрузок больших электрических машин (турбогенераторы, гидроэлектрические насосы/генераторы, электродвигатели, силовые...
Тип: Изобретение
Номер охранного документа: 0002537474
Дата охранного документа: 10.01.2015
Showing 11-16 of 16 items.
10.05.2018
№218.016.41ab

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения является исключение разрушения пластин термоупругими напряжениями в процессе...
Тип: Изобретение
Номер охранного документа: 0002649238
Дата охранного документа: 30.03.2018
20.04.2019
№219.017.3519

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в облучении их поверхности непрерывным...
Тип: Изобретение
Номер охранного документа: 0002685427
Дата охранного документа: 18.04.2019
20.05.2019
№219.017.5d15

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два. Воздействуют на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по...
Тип: Изобретение
Номер охранного документа: 0002688036
Дата охранного документа: 17.05.2019
20.06.2019
№219.017.8d36

Способ лазерного отжига неметаллических материалов

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов. Облучают поверхность лазерным импульсом прямоугольной временной формы с требуемой плотностью энергии. Диэлектрическим...
Тип: Изобретение
Номер охранного документа: 0002692004
Дата охранного документа: 19.06.2019
20.06.2019
№219.017.8d79

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного...
Тип: Изобретение
Номер охранного документа: 0002691923
Дата охранного документа: 18.06.2019
25.07.2019
№219.017.b840

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в предварительном подогреве...
Тип: Изобретение
Номер охранного документа: 0002695440
Дата охранного документа: 23.07.2019
+ добавить свой РИД