×
20.04.2019
219.017.3519

Результат интеллектуальной деятельности: Способ лазерной обработки неметаллических пластин

Вид РИД

Изобретение

№ охранного документа
0002685427
Дата охранного документа
18.04.2019
Аннотация: Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в облучении их поверхности непрерывным лазерным излучением с плотностью энергии, достаточной для достижения поверхностью пластины температуры отжига. Согласно заявленному способу осуществляют предварительный нагрев пластины до температуры, обеспечивающей выполнение критерия термопрочности. Технический результат - исключение разрушения пластин термоупругими напряжениями в процессе обработки и повышение выхода годных пластин.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов излучением лазеров, работающих в непрерывном режиме.

Известен способ обработки неметаллических материалов, применяемый для аморфизации кремния и заключающийся в облучении поверхности пластины импульсом лазерного излучения с плотностью энергии, достаточной для плавления поверхностного слоя. Боязитов Р.М. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11–18 марта 1988 г., с. 24.

Известен также способ обработки неметаллических материалов, применяемый для отжига ионно-легированного кремния. Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11–18 марта 1988 г., с. 29.

Недостатком указанных способов является то, что они не учитывают термоупругие напряжения, возникающие в пластинах в процессе обработки и могущие привести к разрушению пластин.

Также известен способ обработки неметаллических материалов, в котором обработка пластин осуществляется путем облучения поверхности импульсом лазерного излучения. Временная форма импульса описывается определенным соотношением в зависимости от плотности потока энергии лазерного излучения, констант b1 и b2, характеризующих фронт и спад лазерного импульса, от длительности лазерного импульса, текущего времени от начала воздействия, плотности энергии и максимального значения плотности потока лазерного излучения в импульсе. Эффект достигается тем, что формируют лазерный импульс, временная форма которого описывается соотношением

где q(t) – плотность мощности лазерного излучения, Вт/м2;

τ – длительность импульса лазерного излучения, с;

b1 и b2 – константы, характеризующие фронт и спад лазерного импульса;

е – основание натурального логарифма;

t – текущее время от начала воздействия, с.

Патент РФ № 2211753, МПК B23K 26/00, 10.09.2003.

Указанный способ позволяет минимизировать термоупругие напряжения в поглощающем слое материала пластины при воздействии лазерных импульсов длительностью менее 10-6 с, когда рассматривается динамическая задача термоупругости [Коваленко А.Ф. Экспериментальная установка для исследования влияния параметров лазерного импульса на разрушение неметаллических материалов // Приборы и техника эксперимента. – 2004, №4. – С. 119-124]. Но этот способ не работает, когда длительность лазерного импульса составляет ~ 10-2–10-6 с и необходимо рассматривать квазистатическую задачу термоупругости.

Известен способ лазерной обработки, в частности, используемый для лазерного отжига неметаллических пластин, в котором плотность энергии на поверхности пластины определяют по соотношению

,

где Wf – плотность энергии лазерного излучения, требуемая для нагрева поверхности пластины до температуры отжига;

Tf – температура отжига пластины;

T0 – начальная температура пластины;

с и ρ – удельная теплоемкость и плотность материала пластины соответственно;

R – коэффициент отражения материала пластины;

χ – показатель поглощения материала пластины на длине волны лазерного излучения,

и осуществляют предварительный нагрев пластины до температуры, определяемой по уравнению

,

где σР – предел прочности материала пластины на растяжение;

ν – коэффициент Пуассона материала пластины;

h – толщина пластины;

Е – модуль Юнга;

αТ – коэффициент линейного расширения материала пластины;

е – основание натурального логарифма.

Патент РФ № 2602402, МПК H01L 21/428, 20.11.2016.

Применение лазерного отжига приводит к релаксации остаточных напряжений в приповерхностном слое пластин, возникающих при их шлифовке и полировке абразивом, а также устраняет неоднородности структуры при напылении тонких пленок, что позволяет повысить лучевую стойкость пластин, используемых в лазерной технике.

Недостатком указанного способа является то, что он применим только при импульсном режиме воздействия, когда выполняется условие

(1)

где а – коэффициент температуропроводности материала пластины;

τи – длительность лазерного импульса.

Если для отжига, например, пластины из оптической керамики КО3 применяется непрерывный СО2-лазер, то поглощение излучения в обрабатываемой пластине будет объемным. Нагрев пластины будет осуществляться посредством прямого проникновения излучения в пластину и за счет механизма теплопроводности, то есть условие (1) выполняться не будет.

Известен также способ отжига неметаллических пластин, заключающийся в облучении их поверхности непрерывным лазерным излучением с плотностью энергии, определяемой по соотношению

где:

– функция безразмерных параметров и ;

t – время воздействия лазерного излучения.

Коваленко А. Ф. Метод обоснования неразрушающих режимов лазерной обработки пластины с объемным поглощением. – Физика и химия обработки материалов. 2004. № 6. – С. 25–29. Указанный способ выбран в качестве прототипа.

Недостатком прототипа является то, что возможны такие режимы обработки, при которых плотность энергии лазерного излучения, вызывающая разрушение пластины термоупругими напряжениями, окажется меньше плотности энергии, необходимой для достижения облучаемой поверхностью пластины температуры отжига, то есть в процессе обработки возможно разрушение пластин термоупругими напряжениями.

Техническим результатом изобретения является исключение разрушения пластин из полупроводниковых, керамических и стеклообразных материалов термоупругими напряжениями в процессе лазерного отжига и повышение выхода годных пластин.

Технический результат достигается тем, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности непрерывным лазерным излучением с плотностью энергии, определяемой по уравнению

,

где Tf – температура отжига пластины;

T0 – начальная температура пластины;

с и ρ – удельная теплоемкость и плотность материала пластины соответственно;

h – толщина пластины;

R – коэффициент отражения материала пластины на длине волны лазерного излучения;

;

χ – показатель поглощения материала пластины на длине волны лазерного излучения;

– критерий Фурье;

а – коэффициент температуропроводности материала пластины;

t – время воздействия лазерного излучения;

n = 1, 2, 3, … ∞ - натуральное число;

е – основание натурального логарифма;

π ≈ 3,14,

осуществляют предварительный нагрев пластины до температуры, определяемой по уравнению

,

где:

;

σР – предел прочности материала пластины на растяжение;

ν – коэффициент Пуассона материала пластины;

Е – модуль Юнга материала пластины;

αТ – коэффициент линейного расширения материала пластины.

Ниже приводится более подробное описание заявляемого способа лазерной обработки неметаллических пластин. Сущность способа состоит в следующем. Для предотвращения изгиба пластины при обработке ее, как правило, свободно защемляют по контуру [Коваленко А. Ф. Метод обоснования неразрушающих режимов лазерной обработки пластины с объемным поглощением. – Физика и химия обработки материалов. 2004. № 6. – С. 25–29]. Пластина полностью накрывается лазерным излучением. В этом случае температурное поле в пластине будет изменяться только по ее толщине. В свободно защемлённой по контуру пластине под действием температурного поля, изменяющегося только по толщине пластины, возникают термоупругие напряжения [Коваленко А. Д. Термоупругость. – Киев: «Вища школа», 1973. – 216 с.]:

, (2)

где: (3)

- термоупругие напряжения в пластине, зависящие от координаты z и времени t;

εТ – средняя по толщине пластины температура;

x, y, z – координаты, причем z – координата, отсчитываемая от облучаемой поверхности пластины вглубь;

T(z,t) – температура в точке с координатой z в момент времени t.

Анализ уравнения (2) показывает, что термоупругие напряжения в пластине являются сжимающими там, где текущая температура выше средней температуры по толщине пластины, и растягивающими – там, где текущая температура ниже средней по толщине пластины. Так как хрупкие материалы, к которым относятся полупроводниковые, керамические и стеклообразные материалы, имеют предел прочности на растяжение в 5–10 раз меньше, чем на сжатие [Феодосьев В.И. Сопротивление материалов. – М.: Наука. 1986. – 512 с. – С. 75], дальнейший анализ проведем для растягивающих напряжений.

В работе [Коваленко А. Ф. Метод обоснования неразрушающих режимов лазерной обработки пластины с объемным поглощением. – Физика и химия обработки материалов. 2004. № 6. – С. 25–29] с учетом уравнений (2), (3) и уравнения для температурного поля в пластине получены уравнения для расчёта плотности энергии, вызывающей разрушение пластины термоупругими напряжениями

(4)

где:

,

и уравнение для расчёта плотности энергии, требуемой для достижения облучаемой поверхностью пластины температуры отжига

. (5)

Разделив (4) на (5) и поставив условие WT/Wf≥1, получим критерий термопрочности пластины для случая объёмного поглощения лазерного излучения при непрерывном режиме воздействия:

(6)

где

. (7)

Левая часть неравенства (6) является константой, характеризующей отношение предела прочности на растяжение материала пластины, свободно защемлённой по контуру, к максимальным растягивающим напряжениям в ней при одностороннем нагреве. Правая часть неравенства является функцией двух безразмерных параметров χh и τ. Максимального значения, равного 0,35, функция f(χh,τ) достигает при χh≈5 и τ≈0,1. Если условие (6) выполняется, можно производить лазерный отжиг пластины. Если это условие не выполняется, то разрушение пластины термоупругими напряжениями произойдет при меньшей плотности энергии, чем требуется для достижения поверхностью пластины температуры отжига, и лазерный отжиг проводить в данном режиме нельзя.

Из неравенства (6) найдем значение начальной температуры, при которой критерий термопрочности будет выполнен

. (7)

Нагрев пластины осуществляют в муфельной печи до требуемой для выполнения критерия термопрочности температуры Т0 и выдерживают необходимое время для выравнивания температуры по толщине пластины. Время выдержки определяют из критерия Фурье , определяющего тепловую инерцию пластины

, (8)

где tB – время выдержки пластины при требуемой для выполнения критерия термопрочности температуре.

После выдержки пластины в муфельной печи осуществляют воздействие на нее лазерного излучения с плотностью энергии, определяемой по уравнению (5).

Пример осуществления способа обработки. Необходимо провести лазерный отжиг поверхности пластины из цветного оптического стекла ЖЗС12 толщиной 0,5 см излучением Nd:YAG-лазера, работающего в непрерывном режиме. Время воздействия излучения на пластину составляет 2 с. Показатель поглощения данной марки стекла для излучения с длиной волны 1,06 мкм составляет 10 см-1 [ГОСТ 9411 – 90. Стекло цветное оптическое. М.: Изд-во стандартов, 1992. 48 с.]. Безразмерный параметр χh = 5, безразмерный параметр τ=0,5. Начальную температуру пластины примем равной 300 К, температуру отжига – 1100 К. Расчет по уравнению (5) показывает, что для отжига пластины потребуется плотность энергии лазерного излучения 580 Дж/см2. Расчет по уравнению (4) показывает, что для разрушения термоупругими напряжениями пластины толщиной 0,5 см требуется плотность энергии 346 Дж/см2, то есть меньше, чем для отжига. Рассчитаем левую и правую части критерия термопрочности (6). Левая часть неравенства (6) составляет 0,115. Правая часть неравенства (6) при χh = 5 и τ=0,5 составляет 0,193. Видно, что критерий термопрочности не выполнен. Пластина будет разрушена термоупругими напряжениями. Чтобы этого не произошло, необходимо пластину предварительно нагреть в муфельной печи до температуры не менее 623 К и выдержать при этой температуре не менее 125 секунд для выравнивания температуры по толщине пластины. Расчеты выполнены по уравнениям (7) и (8) при следующих исходных данных [ГОСТ 9411 – 90. Стекло цветное оптическое. М.: Изд-во стандартов, 1992. 48 с., Стекло / Под ред. Н. М. Павлушина. М.: Стройиздат, 1973. 280 с.]: σР = 70 МПа, Е = 80 ГПа, ν = 0,2, αТ = 7,6·10-6 К-1, а = 6·10-3 см2/с. Примем новое значение начальной температуры Т0=630 К. Затем воздействуют на пластину лазерным излучением с плотностью энергии не более 341 Дж/см2 (плотность мощности 170,5 Вт/см2 при времени воздействия 2 с). Расчеты проведены по уравнению (4) для нового значения начальной температуры 625 К. Температура поверхности пластины при этом достигает температуры отжига, а термоупругие напряжения не превысят предела прочности материала.

Таким образом, реализация предложенного способа лазерной обработки неметаллических пластин приводит к исключению их разрушения термоупругими напряжениями в процессе лазерного отжига и повышению выхода годных пластин.


Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Способ лазерной обработки неметаллических пластин
Источник поступления информации: Роспатент

Showing 1-10 of 31 items.
29.03.2019
№219.016.ecfa

Способ и стенд для моделирования двухосевой ударной нагрузки на объект испытаний

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок в двух направлениях одновременно. Техническим результатом является обеспечение двухосевого режима нагружения объекта с заданным уровнем параметров...
Тип: Изобретение
Номер охранного документа: 0002682979
Дата охранного документа: 25.03.2019
25.04.2019
№219.017.3b0e

Способ импульсного нейтрон-нейтронного каротажа

Использование: для импульсного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что облучают породу импульсным потоком быстрых нейтронов, регистрируют временные распределения потоков тепловых и эпитепловых нейтронов, регистрируют заряд, образованный по крайней мере в одном...
Тип: Изобретение
Номер охранного документа: 0002685762
Дата охранного документа: 23.04.2019
20.05.2019
№219.017.5d15

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два. Воздействуют на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по...
Тип: Изобретение
Номер охранного документа: 0002688036
Дата охранного документа: 17.05.2019
01.06.2019
№219.017.7248

Устройство для измерения нейтронной пористости

Использование: для измерения нейтронной пористости пластов горных пород в скважинах. Сущность изобретения заключается в том, что устройство определения нейтронной пористости включает в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном...
Тип: Изобретение
Номер охранного документа: 0002690095
Дата охранного документа: 30.05.2019
19.06.2019
№219.017.83c4

Способ увеличения динамического диапазона чувствительности многоканального измерителя скорости на базе гетеродин-интерферометров

Использование: для увеличения динамического диапазона чувствительности многоканального измерителя скорости. Сущность изобретения заключается в том, что мощность подаваемого на схему регистрации света в разных измерительных каналах регулируют электрооптическими элементами, данное изменение...
Тип: Изобретение
Номер охранного документа: 0002691669
Дата охранного документа: 17.06.2019
20.06.2019
№219.017.8d36

Способ лазерного отжига неметаллических материалов

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов. Облучают поверхность лазерным импульсом прямоугольной временной формы с требуемой плотностью энергии. Диэлектрическим...
Тип: Изобретение
Номер охранного документа: 0002692004
Дата охранного документа: 19.06.2019
20.06.2019
№219.017.8d79

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного...
Тип: Изобретение
Номер охранного документа: 0002691923
Дата охранного документа: 18.06.2019
26.06.2019
№219.017.9218

Способ обнаружения пуассоновского сигнала в пуассоновском шуме

Изобретение относится к области обнаружения источников ионизирующих излучений и может быть использовано для радиационного контроля делящихся материалов при их несанкционированном перемещении. Сущность изобретения заключается в том, что способ обнаружения пуассоновского сигнала в пуассоновском...
Тип: Изобретение
Номер охранного документа: 0002692410
Дата охранного документа: 24.06.2019
05.07.2019
№219.017.a5c5

Сверхширокополосный преобразователь напряжённости магнитного поля

Изобретение относится к радиоприёмной технике и может быть использовано в области радиоизмерений, радиопеленгации, радионавигации в диапазонах частот КНЧ – УВЧ (ЕLF – UНF). Преобразователь содержит прямолинейный ферритовый сердечник с обмоткой, соосные с окружающим их экранированным...
Тип: Изобретение
Номер охранного документа: 0002693517
Дата охранного документа: 03.07.2019
25.07.2019
№219.017.b840

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в предварительном подогреве...
Тип: Изобретение
Номер охранного документа: 0002695440
Дата охранного документа: 23.07.2019
Showing 1-10 of 16 items.
20.01.2016
№216.013.a243

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В заявленном способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом...
Тип: Изобретение
Номер охранного документа: 0002573181
Дата охранного документа: 20.01.2016
27.04.2016
№216.015.3902

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине и может найти применение изготовления пластин из полупроводниковых, керамических и стеклообразных материалов с отверстиями. Осуществляют облучение поверхности пластин импульсным лазерным...
Тип: Изобретение
Номер охранного документа: 0002582849
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b1d

Способ лазерной обработки неметаллических пластин

Использование: для отжига и легирования пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что поверхность обрабатываемого материала облучают импульсом лазерного излучения, при этом материал предварительно нагревают до температуры,...
Тип: Изобретение
Номер охранного документа: 0002583870
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.89be

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения является исключение разрушения пластин термоупругими напряжениями в процессе...
Тип: Изобретение
Номер охранного документа: 0002602402
Дата охранного документа: 20.11.2016
26.08.2017
№217.015.ded9

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в измерении толщины пластины h и показателя...
Тип: Изобретение
Номер охранного документа: 0002624998
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedf

Способ лазерной обработки неметаллических пластин

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью...
Тип: Изобретение
Номер охранного документа: 0002624989
Дата охранного документа: 11.07.2017
19.01.2018
№218.016.02f4

Способ лазерного отжига неметаллических пластин

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью...
Тип: Изобретение
Номер охранного документа: 0002630197
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1077

Способ лазерного отжига неметаллических материалов

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для отжига полупроводниковых, керамических и стеклообразных материалов. Осуществляют облучение поверхности лазерным импульсом прямоугольной формы с требуемой плотностью энергии. Исходный...
Тип: Изобретение
Номер охранного документа: 0002633860
Дата охранного документа: 18.10.2017
04.04.2018
№218.016.363b

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в расчете условия...
Тип: Изобретение
Номер охранного документа: 0002646177
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.3b3b

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине, например, из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два и воздействие на обе стороны пластины пучками с равной плотностью энергии....
Тип: Изобретение
Номер охранного документа: 0002647387
Дата охранного документа: 15.03.2018
+ добавить свой РИД