×
20.06.2019
219.017.8d36

Результат интеллектуальной деятельности: Способ лазерного отжига неметаллических материалов

Вид РИД

Изобретение

№ охранного документа
0002692004
Дата охранного документа
19.06.2019
Аннотация: Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов. Облучают поверхность лазерным импульсом прямоугольной временной формы с требуемой плотностью энергии. Диэлектрическим зеркалом с коэффициентом отражения 40% исходный лазерный импульс делят на два импульса и осуществляют временную задержку второго импульса на время действия первого импульса. Плотность мощности в первом импульсе составляет 60% от плотности мощности в первоначальном лазерном пучке. Техническим результатом изобретения является повышение выхода годной продукции в процессе лазерного отжига неметаллических материалов за счет уменьшения термоупругих напряжений и области возможного откольного разрушения материала. 3 ил.

Изобретение относится к технологическим процессам и может быть использовано для лазерного отжига полупроводниковых, керамических и стеклообразных материалов.

Известен способ обработки неметаллических материалов, применяемый для аморфизации кремния и заключающийся в облучении их импульсом лазерного излучения Боязитов P.M. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 24.

Известен также способ лазерной обработки Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 29.

Недостатком указанных способов является то, что возникающие в материалах термоупругие напряжения могут привести к откольному разрушению материала со стороны облучаемой поверхности.

Известен также способ лазерной обработки неметаллических материалов, заключающийся в облучении их поверхности импульсом лазерного излучения, временная форма которого описывается соотношением

где q(t) - плотность потока энергии лазерного излучения, Вт/м2;

τ - длительность импульса лазерного излучения, с;

b1 и b2 - константы, характеризующие фронт и спад лазерного импульса;

t - текущее время от начала воздействия, с.

Лазерный импульс, описываемый уравнением (1), создает минимальные термоупругие напряжения в поглощающем слое материала. Патент Российской Федерации на изобретение №2211753, МПК B23K 26/00, 10.09.2003. Недостатком способа является то, что указанный лазерный импульс формируется при реализации схемы задающий генератор - многокаскадный усилитель. Задающий генератор должен работать в режиме модулированной добротности. Причем последний каскад усилителя должен работать в режиме, близком к насыщению. Такой режим работы неблагоприятно сказывается на долговечности активной среды твердотельных лазеров. Как правило, ресурс активных стержней последнего каскада усилителя ограничивается несколькими сотнями выстрелов. Кроме того, подобные установки не выпускаются промышленностью, требуется их специальное проектирование и штучное изготовление. Промышленно выпускаемые твердотельные лазеры, работающие в режиме модулированной добротности, имеют колоколообразную форму импульса, близкую к полуволне синусоиды, когда для модуляции добротности лазера применяют электрооптические или пассивные модуляторы добротности, или близкую к прямоугольной, когда для модуляции добротности применяют акустооптические затворы [Макогон М.М. и др. Лазеры на гранате с модуляцией добротности кристаллами . Оптика атмосферы и океана. 1996. Том 9, №2 - С. 239-242]. Длительность импульса лазерного излучения при пассивной модуляции добротности или при применении электрооптических затворов составляет 10-50 нс, при применении акустооптических затворов - 100-150 нс и даже до 300 нс [Мюллер С. Лазеры с модуляцией добротности для обработки поверхностей. Фотоника. 2011. - №2. - С. 26-28]. Применение лазеров с акустооптическими затворами для отжига неметаллических материалов является предпочтительнее, так как эти лазеры имеют большую длительность импульса, что способствует уменьшению термоупругих напряжений.

Известен также способ обработки неметаллических материалов, заключающийся в облучении их поверхности лазерным импульсом с плотностью энергии, определяемой по уравнению

где Tƒ - температура отжига;

Т0 - начальная температура;

с и ρ - удельная теплоемкость и плотность материала соответственно;

R - коэффициент отражения материала;

χ - показатель поглощения материала на длине волны лазерного излучения. [Бакеев А.А., Соболев А.П., Яковлев В.И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ. 1982. - №6. - С. 92-98]. Недостатком способа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Известен также способ лазерного отжига неметаллических материалов, заключающийся в облучении их поверхности лазерным импульсом прямоугольной временной формы с плотностью энергии, определяемой по уравнению (2), при этом диэлектрическим зеркалом с коэффициентом отражения 50% исходный лазерный импульс делят на два импульса равной мощности и осуществляют временную задержку второго импульса на время действия первого импульса. При этом временная форма лазерного импульса, воздействующего на поверхность обрабатываемого материала, будет описываться уравнением

где q - плотность мощности в исходном лазерном импульсе.

Патент Российской Федерации №2633860, МПК B23K 26/402, 18.10.2017. Данное техническое решение принято в качестве - прототипа.

Недостатком прототипа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Техническим результатом изобретения является повышение выхода годной продукции в процессе лазерного отжига неметаллических материалов за счет уменьшения термоупругих напряжений и области возможного откольного разрушения материала.

Технический результат достигается тем, что в способе лазерного отжига неметаллических материалов, заключающемся в облучении их поверхности лазерным импульсом прямоугольной временной формы с плотностью энергии, определяемой по уравнению

где Тƒ - температура отжига;

Т0 - начальная температура;

с и ρ - удельная теплоемкость и плотность материала соответственно;

R - коэффициент отражения материала;

χ - показатель поглощения материала на длине волны лазерного излучения,

при этом диэлектрическим зеркалом исходный лазерный импульс делят на два импульса и осуществляют временную задержку второго импульса на время действия первого импульса, разделяют исходный лазерный импульс посредством диэлектрического зеркала с коэффициентом отражения 40%, и при этом плотность мощности первого импульса устанавливают равной 60% от плотности мощности исходного лазерного импульса.

Сущность способа поясняется чертежами.

На фиг. 1 представлена установка для лазерной обработки, позволяющая реализовать заявленный способ, где: 1 - лазер с модулятором добротности на основе акустооптического затвора, 2 - диэлектрическое зеркало с коэффициентом отражения 40%, 3 - диэлектрическое зеркало с коэффициентом отражения 99,9%, 4 - обрабатываемый материал, 5 и 6 - фокусирующие линзы, создающие на поверхности обрабатываемого материала 4 требуемую плотность энергии.

Диэлектрическим зеркалом 2 лазерный импульс делится на два импульса с плотностью мощности 0,6q и 0,4q (q - плотность мощности в лазерного излучения в первоначальном импульсе). Прошедший через зеркало 2 первый импульс с плотностью мощности 0,6q линзой 5 фокусируется на поверхность обрабатываемого материала 4 в пятно требуемого диаметра. Отраженный зеркалом 2 второй импульс с плотностью мощности 0,4q направляют на диэлектрическое зеркало 3 с коэффициентом отражения 99,9%, которое совмещает отраженный импульс на поверхности обрабатываемого материала 4 с импульсом, прошедшим через зеркало 2. Линзой 6 второй импульс фокусируется в пятно требуемого диаметра. Разница длин путей первого и второго лазерных импульсов обеспечивает задержку второго импульса на время воздействия первого импульса на поверхность обрабатываемого материала. В результате на поверхность обрабатываемого материала воздействует лазерный импульс, временная форма которого описывается уравнением:

Сравним воздействие на поверхность обрабатываемого материала двух лазерных импульсов равной плотности энергии, временная форма которых описывается уравнениями (3) и (4).

В соответствии с [Бакеев А.А. и др. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ. 1982. - №6. - С. 92-98.], максимальные растягивающие напряжения в поглощающем слое материала рассчитывают по уравнению:

где σm - максимальные растягивающие напряжения в поглощающем слое материала;

K - модуль всестороннего сжатия;

α - коэффициент линейного расширения материала;

e - основание натурального логарифма;

sh(χx) - функция «гиперболический синус»;

χ - показатель поглощения материала на длине волны лазерного излучения;

х - координата, отсчитываемая от поверхности материала вглубь;

с0 - скорость звука в материале;

τi - длительность лазерного импульса.

Подставив уравнения (3) и (4) в (5) и выполнив интегрирования получим уравнения для расчета максимальных растягивающих напряжений в поглощающем слое обрабатываемого материала:

где σm1 - максимальные растягивающие напряжения в поглощающем слое материала при воздействии лазерного импульса с временной формой, описываемой уравнением (3);

σm2 - максимальные растягивающие напряжения в поглощающем слое материала при воздействии лазерного импульса с временной формой, описываемой уравнением (4);

Разделив (7) на (6) и проведя математические преобразования, получим

На фиг. 2 показан график зависимости , построенный по соотношению (8). Видно, что отношение . Причем по мере возрастания параметра χс0τ отношение уменьшается и стремится к 0,8. Это доказывает, что лазерный импульс, описываемый уравнением (4), создает в материале максимальные растягивающие напряжения меньше, чем лазерный импульс, описываемый уравнением (3).

Из уравнений (6) и (7) определим плотность энергии лазерного излучения, вызывающую откольное разрушение материала со стороны облучаемой поверхности для воздействия лазерных импульсов, описываемых уравнениями (3) и (4) соответственно:

где σР - предел прочности материала на разрыв.

Уравнения (9) и (10) получены для минимальных значений плотностей энергии, когда .

Плотность энергии лазерного излучения, необходимую для достижения поверхностью материала температуры отжига, определяют по уравнению (2). Разделив (6) и (7) соответственно на (2), получим:

Поставив условие и , после математических преобразований получим:

Проведем анализ неравенств (13) и (14). Левая часть неравенств является характеристикой материала, показывающей отношение предела прочности материала на разрыв к максимальным растягивающим напряжениям, возникающим при импульсном нагреве материала до температуры отжига. Правые части неравенств (13) и (14) являются функциями безразмерного параметра χс0τ. Если неравенства (13) и (14) выполняются, то возможен лазерный отжиг материала. В противном случае произойдет откольное разрушение материала. Анализ неравенств (13) и (14) необходимо проводить для конкретных материалов. Например, для стекла СЗС-21, у которого К=4⋅1010 Па, α=8,6⋅10-6 К-1, σР=6⋅107 Па, Tf=700 К, Т0=300 К, левая часть неравенств (13) и (14) равна 0,29. Показатель поглощения стекла СЗС-21 на длине волны 1,06 мкм составляет 22,4 см-1, скорость звука в материале - 5,7⋅103 м/с.

На фиг. 3 показано графическое решение неравенств (13) и (14) для цветного оптического стекла СЗС-21. Видно, что при воздействии лазерного импульса, временная форма которого описывается уравнением (3), неравенство (13) выполняется при χс0τ≥1,7, что соответствует длительности лазерного импульса τ≥1,33⋅10-7 с. Неравенство (14) для лазерного импульса, временная форма которого описывается уравнением (4), выполняется при χс0τ≥1,4, что соответствует длительности лазерного импульса τ≥1,1⋅10-7 с.

Таким образом, предложенное техническое решение позволяет уменьшить максимальные растягивающие напряжения в поглощающем слое материала и область изменения безразмерного параметра χс0τ, в которой возможно откольное разрушение материала, примерно на 20%, что позволит увеличить выход годной продукции при лазерном отжиге неметаллических материалов.

Пример реализации способа

Необходимо произвести лазерный отжиг поверхности оптического цветного стекла СЗС-21 импульсным лазером с длиной волны 1,06 мкм и длительностью импульса 120 нс. Требуемая плотность энергии на поверхности материала составляет 36,9 Дж/см2. Расчет проведен при с=0,76⋅103 Дж/(кг⋅К) и ρ=2,5⋅103 кг/м3 по уравнению (2). При этом плотность энергии, вызывающая откольное разрушение материала со стороны облучаемой поверхности лазерным импульсом, описываемым уравнением (3) составит 33 Дж/см2. Следовательно, лазерный отжиг не возможен, так как произойдет разрушение материала. Расчеты проведены по уравнению (9). Для осуществления лазерного отжига при помощи диэлектрического зеркала 2 (см. фиг. 1) с коэффициентом отражения 40% осуществляют разделение лазерного импульса на два импульса. Первый импульс воздействует на поверхность материала. Зеркалом 3 отраженный импульс направляется на поверхность обрабатываемого материала и совмещается с площадью первого импульса. Второй импульс должен пройти путь на 36 м больше, чем первый импульс для задержки на 120 нс. После прохождения дополнительного пути второй импульс воздействует на поверхность материала.

Таким образом, осуществляется воздействие лазерным импульсом, временная форма которого описывается уравнением (4). При этом плотность энергии, вызывающая откольное разрушение материала со стороны облучаемой поверхности составляет 38 Дж/см2. Следовательно, можно осуществлять лазерный отжиг материала. Расчеты проведены по уравнению (10). Как правило, лазеры с модуляцией добротности акустооптическими затворами работают в частотном режиме. Частота повторения импульсов составляет 1-8 кГц. Это позволяет производить лазерный отжиг поверхностей большой площади за счет перемещения заготовки после каждого импульса на требуемое расстояние.


Способ лазерного отжига неметаллических материалов
Способ лазерного отжига неметаллических материалов
Способ лазерного отжига неметаллических материалов
Источник поступления информации: Роспатент

Showing 1-10 of 31 items.
29.03.2019
№219.016.ecfa

Способ и стенд для моделирования двухосевой ударной нагрузки на объект испытаний

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок в двух направлениях одновременно. Техническим результатом является обеспечение двухосевого режима нагружения объекта с заданным уровнем параметров...
Тип: Изобретение
Номер охранного документа: 0002682979
Дата охранного документа: 25.03.2019
20.04.2019
№219.017.3519

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в облучении их поверхности непрерывным...
Тип: Изобретение
Номер охранного документа: 0002685427
Дата охранного документа: 18.04.2019
25.04.2019
№219.017.3b0e

Способ импульсного нейтрон-нейтронного каротажа

Использование: для импульсного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что облучают породу импульсным потоком быстрых нейтронов, регистрируют временные распределения потоков тепловых и эпитепловых нейтронов, регистрируют заряд, образованный по крайней мере в одном...
Тип: Изобретение
Номер охранного документа: 0002685762
Дата охранного документа: 23.04.2019
20.05.2019
№219.017.5d15

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два. Воздействуют на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по...
Тип: Изобретение
Номер охранного документа: 0002688036
Дата охранного документа: 17.05.2019
01.06.2019
№219.017.7248

Устройство для измерения нейтронной пористости

Использование: для измерения нейтронной пористости пластов горных пород в скважинах. Сущность изобретения заключается в том, что устройство определения нейтронной пористости включает в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном...
Тип: Изобретение
Номер охранного документа: 0002690095
Дата охранного документа: 30.05.2019
19.06.2019
№219.017.83c4

Способ увеличения динамического диапазона чувствительности многоканального измерителя скорости на базе гетеродин-интерферометров

Использование: для увеличения динамического диапазона чувствительности многоканального измерителя скорости. Сущность изобретения заключается в том, что мощность подаваемого на схему регистрации света в разных измерительных каналах регулируют электрооптическими элементами, данное изменение...
Тип: Изобретение
Номер охранного документа: 0002691669
Дата охранного документа: 17.06.2019
20.06.2019
№219.017.8d79

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного...
Тип: Изобретение
Номер охранного документа: 0002691923
Дата охранного документа: 18.06.2019
26.06.2019
№219.017.9218

Способ обнаружения пуассоновского сигнала в пуассоновском шуме

Изобретение относится к области обнаружения источников ионизирующих излучений и может быть использовано для радиационного контроля делящихся материалов при их несанкционированном перемещении. Сущность изобретения заключается в том, что способ обнаружения пуассоновского сигнала в пуассоновском...
Тип: Изобретение
Номер охранного документа: 0002692410
Дата охранного документа: 24.06.2019
05.07.2019
№219.017.a5c5

Сверхширокополосный преобразователь напряжённости магнитного поля

Изобретение относится к радиоприёмной технике и может быть использовано в области радиоизмерений, радиопеленгации, радионавигации в диапазонах частот КНЧ – УВЧ (ЕLF – UНF). Преобразователь содержит прямолинейный ферритовый сердечник с обмоткой, соосные с окружающим их экранированным...
Тип: Изобретение
Номер охранного документа: 0002693517
Дата охранного документа: 03.07.2019
25.07.2019
№219.017.b840

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в предварительном подогреве...
Тип: Изобретение
Номер охранного документа: 0002695440
Дата охранного документа: 23.07.2019
Showing 1-10 of 16 items.
20.01.2016
№216.013.a243

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В заявленном способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом...
Тип: Изобретение
Номер охранного документа: 0002573181
Дата охранного документа: 20.01.2016
27.04.2016
№216.015.3902

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине и может найти применение изготовления пластин из полупроводниковых, керамических и стеклообразных материалов с отверстиями. Осуществляют облучение поверхности пластин импульсным лазерным...
Тип: Изобретение
Номер охранного документа: 0002582849
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b1d

Способ лазерной обработки неметаллических пластин

Использование: для отжига и легирования пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что поверхность обрабатываемого материала облучают импульсом лазерного излучения, при этом материал предварительно нагревают до температуры,...
Тип: Изобретение
Номер охранного документа: 0002583870
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.89be

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения является исключение разрушения пластин термоупругими напряжениями в процессе...
Тип: Изобретение
Номер охранного документа: 0002602402
Дата охранного документа: 20.11.2016
26.08.2017
№217.015.ded9

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в измерении толщины пластины h и показателя...
Тип: Изобретение
Номер охранного документа: 0002624998
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedf

Способ лазерной обработки неметаллических пластин

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью...
Тип: Изобретение
Номер охранного документа: 0002624989
Дата охранного документа: 11.07.2017
19.01.2018
№218.016.02f4

Способ лазерного отжига неметаллических пластин

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью...
Тип: Изобретение
Номер охранного документа: 0002630197
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1077

Способ лазерного отжига неметаллических материалов

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для отжига полупроводниковых, керамических и стеклообразных материалов. Осуществляют облучение поверхности лазерным импульсом прямоугольной формы с требуемой плотностью энергии. Исходный...
Тип: Изобретение
Номер охранного документа: 0002633860
Дата охранного документа: 18.10.2017
04.04.2018
№218.016.363b

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в расчете условия...
Тип: Изобретение
Номер охранного документа: 0002646177
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.3b3b

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине, например, из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два и воздействие на обе стороны пластины пучками с равной плотностью энергии....
Тип: Изобретение
Номер охранного документа: 0002647387
Дата охранного документа: 15.03.2018
+ добавить свой РИД