×
04.04.2018
218.016.30d0

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ЗАГОТОВОК ВАНАДИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов включает гомогенизацию, многократную термомеханическую обработку путем пластической деформации и последующего отжига, стабилизирующий отжиг в вакууме, диффузионное легирование кислородом путем термообработки на воздухе и вакуумных отжигов и окончательную стабилизирующую термообработку. Гомогенизацию осуществляют при температуре 1000-1500°С в течение 1 часа, термомеханическую обработку осуществляют в три цикла путем деформации с обжатием ε=30-50% и отжига при температуре 450-700°С в течение 1 часа, стабилизирующий отжиг в вакууме проводят при температуре 1000°С в течение 1 часа. При диффузионном легировании кислородом термообработку на воздухе проводят при температуре не более 700°С, а вакуумные отжиги - при температуре 450-1000°С, затем осуществляют вакуумный отжиг при температуре 1000-1500°С, деформационную обработку при комнатной температуре до величины истинной логарифмической деформации е ≥ 1, а окончательную стабилизирующую термообработку проводят при температуре 700-1200°С в течение 1 часа. Повышается термическая стабильность микроструктуры и механических свойств ванадиевых сплавов. 2 ил., 1 табл., 2 пр.

Изобретение относится к области радиационного материаловедения и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами IV (Zr, Ti), и VI (Cr, W) групп Периодической системы элементов и содержащих элементы внедрения (С, О, N) в количестве не менее 0.04 вес.%, используемых в качестве конструкционных материалов в ядерных реакторах деления и синтеза с разными типами теплоносителей (Li, Na, Pb, Pb-Li, Pb-Bi, FLiBe, FLiNaK, He), работающих в условиях облучения, повышенных температур и коррозионных сред, в частности, в качестве оболочек тепловыделяющих элементов реакторов на быстрых нейтронах, элементов бланкета термоядерных реакторов.

Известен способ термомеханической обработки сплавов V-4Ti-4Cr и V-5Ti-5Cr, включающий гомогенизирующий отжиг при температуре 1300°С в течение 8 часов, последующий нагрев слитков до температуры 850-1000°С с выдержкой при этой температуре в течение 1.5-2 часов и выдавливанием на прессе с коэффициентом вытяжки 2-5. Далее производится отжиг в диапазоне температур 950-1100°С в течение 1 часа и осадка прутков на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур 950-1100°С. В финале обработанная по указанной выше схеме заготовка подвергается нескольким циклам «прокатка ε = 50% + рекристаллизационный отжиг при 950-1100°С» (М.М. Потапенко, А.В. Ватулин, Г.П. Ведерников, И.Н. Губкин, В.А. Дробышев, B.C. Зурабов, М.И. Солонин, В.М. Чернов, А.К. Шиков. И.П. Поздников, А.Н. Рылов. Малоактивируемые конструкционные сплавы системы V-(4-5)Ti-(4-5)Cr // Вопросы атомной науки и техники. Серия «Материаловедение и новые материалы». - 2004. - Вып. 1(62). - С. 152-162).

Недостатками представленного аналога являются наблюдаемая в объеме обработанного материала высокая неоднородность гетерофазной структуры с формированием грубодисперсных пластинчатых (толщиной доли микрона и размерами в двух других измерениях до нескольких десятков микрон) выделений оксикарбонитридных фаз. Такое превращение происходит в процессе термического воздействия на стадии, предшествующей горячему выдавливанию, или в процессе последующей термомеханической обработки. Указанные выделения являются источниками высоких локальных внутренних напряжений и являются потенциальными местами зарождения локализованной деформации, разрушения и развития явления низкотемпературного радиационного охрупчивания сплавов. Кроме того, образование грубодисперсной фазы значительно (в несколько раз) снижает объемное содержание вьщеляющихся из пересыщенных твердых растворов мелкодисперсных частиц этой фазы и, как результат, ограничивает эффективность дисперсного упрочнения и повышения термической стабильности.

Известен способ получения сверхмелкого зерна в чистом ванадии методом равноканального углового прессования (Z.Z. Jiang, S.H. Yu, Y.B. Chun, D.H. Shin, S.K. Hwang Grain refinement of pure vanadium by equal channel angular pressing // Materials Science and Engineering A 479 (2008) 285-292). Для реализации этого способа прутки чистого ванадия после электроннолучевой плавки подвергались нагреву до 1000°С в вакууме, после чего их деформировали равноканальным угловым прессованием при температуре 350°С. В результате такой обработки в материале формировалось нанокристаллическое структурное состояние с размером зерен около 200 нм. Отжиг обработанных образцов при температуре 700°С приводил к росту зерен до микронных размеров.

Недостатками представленного аналога являются низкая термическая стабильность формируемых структурных состояний и необходимость проведения деформационной обработки при высоких температурах.

Наиболее близким по технической сущности решением, выбранным в качестве прототипа, является способ химико-термической обработки ванадиевых сплавов легированных хромом и титаном. Заготовки сплава после гомогенизирующего отжига при температуре 1300°С в течение 8 часов, последующего нагрева слитков до температуры 850-1000°С с выдержкой при этой температуре в течение (1.5-2) часов и выдавливания на прессе с коэффициентом вытяжки 2-5 подвергаются отжигу в диапазоне температур 950-1100°С в течение 1 часа и осадке прутков из заготовок на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур (950-1100)°С. Образцы сплава отжигают в вакууме 2×10-5 Торр при Т=1400°С в течение 1 часа, затем проводят термообработки на воздухе при Т=620°С, приводящие к образованию поверхностных окисных пленок V2O5. После этого проводится вакуумный (2×10-5 Торр) отжиг при 650°С в течение 10 часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава, термообработка в вакууме при 1400°С в течение 1 часа, обеспечивающая однородное распределение кислорода по толщине образца. После указанных выше операций проводятся 3 цикла термомеханической обработки, состоящие из деформации прокаткой с обжатием ε ≈ 30% при комнатной температуре и отжига при Т=450÷700°С в течение 1 часа. На заключительном этапе производится ступенчатая термообработка при последовательном повышении температуры с 800°С до 900°С и далее до 1000°С. На каждом шаге время отжига составляет один час. (Патент RU 2463377, МПК C22F 1/18, C21D 8/10, опубл. 10.10.2012).

Недостатком прототипа является значительная неоднородность распределения упрочняющих частиц и невозможность получения наноструктурированной зеренной структуры материала.

Задачей настоящего изобретения является разработка способа обработки заготовок ванадиевых сплавов, обеспечивающего повышение термической стабильности микроструктуры и механических свойств.

Поставленная задача решается тем, что применяется многоэтапный способ обработки заготовок ванадиевых сплавов, легированных элементами IV и VI групп Периодической системы, включающий гомогенизацию, многократную термомеханическую обработку «пластическая деформация + отжиг», диффузионное легирование сплавов кислородом и отжиг в интервале температур 1000÷1500°С, после которого проводятся деформационная обработка до величины истинной логарифмической деформации е ≥ 1 и стабилизирующая термообработка.

Сущность изобретения поясняется рисунками и данными, приведенными в таблице 1:

Фиг. 1 - Микроструктура сплава V-Zr-Cr после деформации кручением (N=1) (а) и последующих отжигов при Т=800°С (б), Т=900°С (в), Т=950°С (г). Просвечивающая электронная микроскопия.

Фиг. 2 - Карта угловой разориентации структуры сплава системы V-Cr-Zr-W после обработки и отжига при температуре 1200°С. Растровая электронная микроскопия (EBSD).

В частности, заготовки сплава после гомогенизирующего отжига в интервале температур 1000÷1500°С в течение 1 часа подвергают трем (и более) циклам термомеханической обработки, состоящим из деформации прокаткой с обжатием ε ≈ 30-50% при комнатной температуре и отжига при Т=450÷700°С в течение 1 часа. Стабилизация сформированного структурного состояния проводится отжигом в вакууме при 1000°С в течении часа. Затем проводят термообработки на воздухе при температуре не более 700°С, приводящие к образованию поверхностных окисных пленок V2O5. После этого проводится серия вакуумных (2×10-5 Торр) отжигов в интервале 450÷1000°С в течение нескольких часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава. Далее следует отжиг в интервале температур 1000÷1500°С, длительностью один час и более, деформационная обработка до величины истинной логарифмической деформации е ≥ 1 и стабилизирующая термообработка в интервале температур 700÷1200°С.

В результате термомеханической обработки в сплавах ванадия формируется гетерофазное структурное состояние, характеризуемое высокой плотностью дефектов кристаллического строения и формированием мелкодисперсных частиц на основе фаз внедрения. Легирование кислородом в процессе химико-термической обработки позволяет сформировать в материале однородное распределение мелкодисперсных частиц оксидной фазы и реализовать эффективное совместное дисперсное и субструктурное упрочнение. Большая пластическая деформация, реализуемая в условиях высокопрочного состояния, обусловленного значительными эффектами дисперсного упрочнения, позволяет сформировать нанокристаллическое структурное состояние в обрабатываемом материале.

Примеры конкретного осуществления изобретения приведены ниже:

Пример 1

Заготовку сплава V-Zr-Cr (V-1.17Zr-8.75Cr-0.14W-0.01C-0.02O-0.01N вес. %) после гомогенизирующего отжига при температуре 1400°С и трех циклов термомеханической обработки, состоящих из деформации прокаткой с обжатием ε ≈ 40% при комнатной температуре и отжига при Т=550°С в течение 1 часа, отжигают в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=550°С 210 минут. После этого проводится серия вакуумных (2×10-5 Торр) отжигов: 600°С в течение 10 часов, 750°С в течение 5 часов, 900°С в течение 2 часов, 1000°С в течение 1 часа. Далее образцы подвергаются одночасовому вакуумному отжигу при температуре 1400°С. Из заготовки вырезали образцы-диски толщиной 0.2 мм и диаметром 8 мм, которые деформировали кручением на один оборот (е > 3) под высоким (7 ГПа) квазигидростатическим давлением при комнатной температуре и стабилизировали при температуре 800°С в течение 1 часа.

Пример 2

Заготовку сплава системы V-Cr-Zr-W после гомогенизирующего отжига при температуре 1500°С подвергают трем циклам термомеханической обработки, состоящим из деформации прокаткой с обжатием ε ≈ 35% при комнатной температуре и отжига при Т=550°С в течение 1 часа. Далее образцы отжигают в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=500°С 840 минут. После этого проводится серия вакуумных отжигов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава: 600°С в течение 8 часов, 900°С в течение 6 часов, 1000°С в течение 1 часа. Далее образцы подвергаются одночасовому вакуумному отжигу при температуре 1400°С. После этого из заготовки вырезали образцы-диски толщиной 0.2 мм и диаметром 8 мм, которые деформировали кручением на один оборот под давлением 7 ГПа при комнатной температуре и стабилизировали при температуре 1200°С в течение 1 часа.

Структура ванадиевых сплавов после кручения под давлением (фиг. 1а) на один оборот характеризуется ярко выраженной анизотропией: формируются зерна вытянутой формы с размерами в направлениях, параллельных плоскости наковален, от 50 до 800 нм, а в направлении оси кручения от 20 до 200 нм. Внутри представленных субмикронных зерен происходит формирование двухуровневого состояния: нанофрагментов (5-20 нм), разделенных малоугловыми (0.5-2°) границами с упругой кривизной кристаллической решетки, достигающей нескольких сотен град/микрон. Формирование такого состояния приводит к более чем двукратному росту значений микротвердости (таблица 1).

После стабилизирующего отжига сплава V-Zr-Cr при 800°С (фиг. 1б) на фоне исходного структурного состояния появляются кристаллиты размерами от 50 до 250 нм с почти равноосной формой. Иногда исходные анизотропные зерна фрагментированы на субзерна указанных выше размеров. При этом значения микротвердости остаются на том же уровне, что и после деформационной обработки (таблица 1).

Дополнительные исследования показали, что прочностные характеристики материала после предлагаемой обработки сохраняются и при повышении температуры отжига до 900°С (таблица 1), несмотря на существенное изменение зеренной структуры материала (фиг. 1в): основной объем материала представлен почти равноосными зернами, размеры которых составляют 0.3-1.7 мкм, на их фоне встречаются зерна более мелкой фракции с характерными размерами 0.4-0.6 мкм. Увеличение температуры отжига до 950°С приводит к уменьшению прочностных характеристик (таблица 1).

Отжиг обработанных образцов сплава системы V-Cr-Zr-W при температуре 1200°С приводит к увеличению размеров зерен до нескольких микрон (фиг. 2), тем не менее, микротвердость материала после такой обработки остается на уровне 2.2 ГПа, что заметно превышает исходные значения.

Таким образом, сформированная в процессе химико-термической обработки высокая плотность распределенных однородным образом наноразмерных (3-20 нм) частиц оксикарбонитридов на основе Zr (O-N-C) способствует стабилизации структурных состояний, формирующихся в результате дальнейшей деформационной обработки.

Деформационная обработка при комнатной температуре до величины истинной логарифмической деформации е ≥ 1 может быть реализована различными методами, в том числе кручением под давлением, прокаткой, равноканальным угловым прессованием, многократной всесторонней ковкой или их комбинацией.

Способ обработки заготовок ванадиевых сплавов, включающий гомогенизацию, многократную термомеханическую обработку путем пластической деформации и последующего отжига, стабилизирующий отжиг в вакууме, диффузионное легирование кислородом путем термообработки на воздухе и вакуумных отжигов и окончательную стабилизирующую термообработку, отличающийся тем, что гомогенизацию осуществляют при температуре 1000-1500°С в течение 1 часа, термомеханическую обработку осуществляют в три цикла путем деформации с обжатием ε=30-50% и отжига при температуре 450-700°С в течение 1 часа, стабилизирующий отжиг в вакууме проводят при температуре 1000°С в течение 1 часа, при диффузионном легировании кислородом термообработку на воздухе проводят при температуре не более 700°С, а вакуумные отжиги - при температуре 450-1000°С, затем осуществляют вакуумный отжиг при температуре 1000-1500°С, деформационную обработку при комнатной температуре до величины истинной логарифмической деформации е ≥ 1, а окончательную стабилизирующую термообработку проводят при температуре 700-1200°С в течение 1 часа.
СПОСОБ ОБРАБОТКИ ЗАГОТОВОК ВАНАДИЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Showing 151-160 of 183 items.
15.06.2019
№219.017.837f

Способ получения сплава на основе ванадия с добавлением ti и cr в вакуумной дуговой печи

Изобретение относится к области специальной металлургии и может быть использовано для получения высококачественных сплавов на основе ванадия, содержащих не более 10 мас.% титана и хрома в соотношении 0,8-1,2. В качестве исходных шихтовых материалов используют порошки ванадия, титана и хрома...
Тип: Изобретение
Номер охранного документа: 0002691445
Дата охранного документа: 13.06.2019
19.06.2019
№219.017.8418

Способ биоиндикации экологического состояния акватории посредством мониторинга планктона

Изобретение относится к области экологии и охране окружающей среды и может быть использовано для наблюдения за экологическим состоянием акваторий с помощью биоиндикаторов, например планктона. В водной среде с взвешенными частицами передают в выбранном направлении коллимированный поток...
Тип: Изобретение
Номер охранного документа: 0002691553
Дата охранного документа: 17.06.2019
20.06.2019
№219.017.8d65

Комплексное лекарственное средство в таблетированной форме для коррекции синдрома повышенной вязкости крови

Изобретение относится к фармацевтической промышленности, а именно к таблетированному лекарственному средству для лечения синдрома повышенной вязкости крови. Таблетированное лекарственное средство для лечения синдрома повышенной вязкости крови, включающее густой экстракт надземной части манжетки...
Тип: Изобретение
Номер охранного документа: 0002691936
Дата охранного документа: 19.06.2019
20.06.2019
№219.017.8d6a

Способ лечения цирроза печени в эксперименте

Изобретение относится к экспериментальной медицине и может быть применимо для лечения цирроза печени в эксперименте стимуляцией репаративной регенерации. Осуществляют дистрофирующее защемление на время репарации маргинального участка печени клипсой, выполненной в виде двух сомкнутых,...
Тип: Изобретение
Номер охранного документа: 0002691913
Дата охранного документа: 18.06.2019
16.08.2019
№219.017.c062

Фотовозбуждаемый лазерный интегрально-оптический сенсор

Изобретение относится к области измерительной техники и касается фотовозбуждаемого лазерного интегрально-оптического сенсора. Сенсор состоит из источника возбуждения, прозрачной подложки, тонкопленочной лазерно-активной среды, чувствительного слоя, оптических элементов вывода излучения. При...
Тип: Изобретение
Номер охранного документа: 0002697435
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c0c1

Устройство оптической накачки твердотельного лазерно-активного элемента для усиления оптического излучения

Изобретение относится к лазерной технике. Устройство оптической накачки твердотельного лазерно-активного элемента для усиления оптического излучения осуществляет введение энергии накачки в лазерно-активную среду с боковых сторон активного элемента. Последовательное поперечно-продольное введение...
Тип: Изобретение
Номер охранного документа: 0002697434
Дата охранного документа: 14.08.2019
03.09.2019
№219.017.c6c1

Катализатор для жидкофазной конверсии биовозобновляемого сырья и способ его получения

Изобретение относится к области создания новых каталитически активных материалов, в частности материалов, содержащих в своем составе каталитически активные центры различной природы. Изобретение касается катализатора для жидкофазной конверсии биовозобновляемого сырья, содержащего пористый...
Тип: Изобретение
Номер охранного документа: 0002698912
Дата охранного документа: 02.09.2019
07.09.2019
№219.017.c844

Способ термической обработки монокристаллов сплава fe-ni-co-al-ti-nb, ориентированных вдоль направления [001], с двойным эффектом памяти формы

Изобретение относится к области металлургии, а именно к обработке монокристаллов сплава Fe-Ni-Co-Al-Ti-Nb, и может быть использован в машиностроении, авиационной, космической промышленности, механотронике и микросистемной технике для создания исполнительных механизмов, датчиков, актюаторов,...
Тип: Изобретение
Номер охранного документа: 0002699470
Дата охранного документа: 05.09.2019
12.09.2019
№219.017.c9e9

Способ очистки лактида

Изобретение относится к химической промышленности, а именно к способу очистки лактида, содержащего примеси мезо-лактида, молочной кислоты и низкомолекулярных олигомеров молочной кислоты, методом перекристаллизации из серии органических растворителей, отличающемуся тем, что перекристаллизация...
Тип: Изобретение
Номер охранного документа: 0002699801
Дата охранного документа: 11.09.2019
02.11.2019
№219.017.dd9a

Способ получения трехслойного материала сталь х17н2 - v-4,9ti-4,8cr - сталь х17н2

Изобретение относится к области металлургии, а именно к способам получения сплавов на основе ванадия, и может быть использовано для получения высококачественных композиций на его основе с титаном и хромом, предназначенных для атомной энергетики. Способ получения трехслойного материала сталь...
Тип: Изобретение
Номер охранного документа: 0002704945
Дата охранного документа: 31.10.2019
Showing 101-108 of 108 items.
13.02.2018
№218.016.1fe4

Способ получения квазисферических частиц титана

Изобретение относится к получению порошка титана. Способ включает механическую обработку порошка титана в водоохлаждаемой планетарной шаровой мельнице в инертной атмосфере аргона. Используют порошок чистого титана марки ПТОМ-2. Обработку порошка ведут с активацией поверхности частиц порошка при...
Тип: Изобретение
Номер охранного документа: 0002641428
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.1ffd

Способ повышения прочности стабильной аустенитной стали

Изобретение относится к области металлургии. Для повышения прочностных свойств стали при сохранении пластичности за счет получения структуры с высокой плотностью пакетов микродвойников деформации и субмикро- и наноразмерными фрагментами стабильную аустенитную сталь 02Х17Н14М3 подвергают закалке...
Тип: Изобретение
Номер охранного документа: 0002641429
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.205d

Способ получения вольфрамового изделия послойным нанесением вольфрама и устройство для его осуществления

Изобретение относится к металлургии, а именно к фторидной технологии получения сложных по пространственной конфигурации вольфрамовых изделий. Способ получения вольфрамового изделия послойным нанесением вольфрама характеризуется тем, что проводят сканирование изотермически нагретой...
Тип: Изобретение
Номер охранного документа: 0002641596
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20fa

Способ обработки монокристаллов ферромагнитного сплава conial с содержанием ni 33-35 ат.% и al 29-30 ат.%

Изобретение относится к области металлургии, а именно к обработке монокристаллов ферромагнитного сплава CoNiAl с эффектом памяти формы, и может быть использовано для создания рабочего тела актуатора. Способ обработки монокристалла ферромагнитного сплава CoNiAl с содержанием Ni 33-35 ат. % и Al...
Тип: Изобретение
Номер охранного документа: 0002641598
Дата охранного документа: 18.01.2018
10.05.2018
№218.016.4329

Средство гемостимулирующего действия

Изобретение относится к фармакологии, а именно к средству гемостимулируещего действия. Средство гемостимулируещего действия, обладающее эффектом пролиферации и дифференцировки лейкоцитарного ростка крови in vivo, выделенное из гомогената трутневых личинок, взятых через 10-12 суток после засева...
Тип: Изобретение
Номер охранного документа: 0002649817
Дата охранного документа: 04.04.2018
16.06.2018
№218.016.620d

Средство, обладающее противовоспалительным и анальгезирующим действием

Изобретение относится к фармацевтической промышленности и представляет собой средство, обладающее противовоспалительным и анальгезирующим действием, представляющее собой метиловый эфир 4-(бета-д-глюкопиранозилокси) бензойной кислоты. Изобретение обеспечивает расширение арсенала средств,...
Тип: Изобретение
Номер охранного документа: 0002657803
Дата охранного документа: 15.06.2018
04.06.2019
№219.017.7367

Способ получения многокомпонентных покрытий из цветных металлов

Изобретение относится к металлургии, а именно к получению покрытий из сплавов цветных металлов плавлением. Способ получения многокомпонентных покрытий из цветных металлов включает переплав исходных металлических материалов на подложке электрической дугой с нерасходуемым вольфрамовым электродом...
Тип: Изобретение
Номер охранного документа: 0002690265
Дата охранного документа: 31.05.2019
06.07.2019
№219.017.a8f6

Способ обработки сплавов на основе ванадия системы v-4тi-4cr

Изобретение относится к области металлургии и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия. Заявлен способ обработки сплавов на основе ванадия системы V-4Ti-4Cr. Способ включает гомогенизацию, термомеханическую обработку и заключительный...
Тип: Изобретение
Номер охранного документа: 0002445400
Дата охранного документа: 20.03.2012
+ добавить свой РИД