×
13.02.2018
218.016.1fec

Результат интеллектуальной деятельности: СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации жидкого компонента ракетного топлива в баке ступени ракеты-носителя, основанный на подводе в экспериментальную модельную установку (ЭМУ) теплоты, проведении измерений температуры, давления в различных точках ЭМУ, сбросе парогазовой смеси (ПГС) через дренажную магистраль (ДМ), при этом осуществляют подвод газа наддува и кондуктивный подвод теплоты в ЭМУ, количество которых определяют из условия равенства парциальных давлений газа наддува и паров жидкости в ЭМУ и топливном баке, а суммарное давление соответствует началу сброса ПГС в ДМ, диаметр ДМ определяют из условия сброса заданного избытка давления за такое же время, как и в реальном баке, при этом давление срабатывания дренажного клапана выбирают предварительно из заданного интервала, нижняя граница которого - минимальное давление наддува в баке, а верхняя - максимальное давление, при котором сохраняется прочность конструкции ЭМУ, осуществляют определение области параметров процесса газификации, при которых появляется конденсат на внутренней поверхности ДМ и кристаллизация, осуществляют дополнительный подвод тепла к ДМ для предотвращения ее замерзания. Рассмотрено устройство для реализации способа, включающее в свой состав ЭМУ в виде модельного бака, содержащего поддон для жидкости, датчики температуры, давления, входной патрубок, ДМ, дренажный клапан, газоанализатор, при этом дополнительно в ЭМУ введены нагревательные элементы для жидкости и ДМ, в ДМ установлена аппаратура регистрации конденсата и его кристаллизации, а ЭМУ и ДМ выполнены из материала, аналогичного материалу исследуемого топливного бака ракеты-носителя. Изобретение обеспечивает выявление условий появления конденсата в дренажной магистрали с последующей кристаллизацией при заправке ракеты-носителя криогенными компонентами топлива или стоянки в заправленном состоянии на старте при тепловом нагружении топливного бака от окружающей среды. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике и может быть использовано при проведении физического моделирования процессов газификации ракетного топлива, в частности процесса образования конденсата и его кристаллизации в дренажной магистрали при дренаже парогазовых смесей (ПГС) из топливного бака во время заправки ракеты-носителя (РН) криогенными компонентами топлива на стартовом комплексе или стоянке РН в заправленном состоянии.

В состав ПГС входят газ наддува, например гелий, и испарившийся компонент жидкого ракетного топлива, например кислород, водород, сжиженный природный газ.

Известен способ моделирования процесса газификации и устройство, его реализующее, которые описаны на стр. 163-174 в кн. 1 «Снижение техногенного воздействия ракетных средств выведения на жидких токсичных компонентах ракетного топлива на окружающую среду» (монография под ред. В.И. Трушлякова, Омск: Изд-во ОмГТУ, 2004. 220 с.).

Однако этот способ преимущественно ориентирован на работу с высококипящими и токсичными компонентами топлива типа несимметричный диметилгидразин, азотная кислота, азотный тетраксид.

Наиболее близким по технической сущности к предлагаемому решению является «Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в условиях пониженного давления и устройство для его реализации» (патент РФ №2493414, МПК F02K 9/96, опубл. 27.05.2013), основанный на введении в экспериментальную установку теплоносителя (ТН), обеспечении условий взаимодействия в зоне контакта ТН с поверхностью жидкого компонента ракетного топлива, проведении измерений температуры, давления в различных точках ЭМУ, перед подачей ТН осуществляют понижение давления в ЭМУ до 0,01 МПа через электропневмоклапан (ЭПК), а в качестве газа наддува используют гелий с параметрами избыточного давления до 0,3 МПа со сбросом до 0,01 МПа абсолютного, в качестве ТН используют азот, массовый секундный расход которого равен производительности вакуумного насоса, а процентное содержание газифицированных продуктов определяют исключением из показаний газоанализатора состава ТН и газа наддува.

К недостаткам способа-прототипа относятся трудности адаптации при проведении исследований процесса конденсации паров компонента топлива в дренажной магистрали при сбросе ПГС. На этапе заправки топливного бака РН криогенным компонентом топлива или стоянки в заправленном состоянии за счет кондуктивного подвода тепла к топливному баку происходит появление ПГС в баке и, соответственно, наличие конденсата в дренажной магистрали, что, как правило, приводит к кристаллизации конденсата и, как следствие этого, к аварийной ситуации.

Техническим результатом предлагаемого технического решения является обеспечение возможности моделирования процесса газификации (где конденсация паров компонента топлива является элементом процесса газификации) и выявление условий появления конденсата в дренажной магистрали с последующей кристаллизацией при заправке РН криогенными компонентами топлива или стоянки РН в заправленном состоянии на старте при тепловом нагружении топливного бака от окружающей среды.

Указанный технический результат достигается за счет того, что в способе моделирования процесса газификации жидкого компонента ракетного топлива в баке ступени РН, основанном на подводе теплоты в ЭМУ, проведении измерений температуры, давления в различных точках ЭМУ, сбросе парогазовой смеси (ПГС) через дренажную магистраль, измерении влажности, дополнительно вводят следующие действия:

а) осуществляют подвод газа наддува и кондуктивный подвод теплоты в ЭМУ, количество которых определяют из условия равенства парциальных давлений газа наддува и паров жидкости в ЭМУ и топливном баке РН, а суммарное давление соответствует началу сброса ПГС в дренажную магистраль;

б) настройку дренажного ЭПК (давление срабатывания) выбирают предварительно из заданного интервала, нижняя граница которого - минимальное давление наддува в баке, а верхняя - максимальное давление, при котором сохраняется прочность конструкции ЭМУ;

в) осуществляют определение области параметров (количества подведенной теплоты, диаметра дренажной магистрали, давления открытия ЭПК), при которых появляется конденсация паров жидкости на внутренней поверхности дренажной магистрали и их кристаллизация;

г) осуществляют дополнительный подвод тепла к дренажной магистрали, например, от дополнительного источника тепла, для предотвращения замерзания дренажной магистрали.

В качестве источника подвода тепла в ЭМУ к жидкости, дренажному трубопроводу используются электрические нагреватели.

В качестве прототипа устройства для реализации способа моделирования процесса газификации при заправке РН криогенными компонентами и ее стоянке на стартовом комплексе предлагается устройство по патенту РФ №2493414 МПК F02K 9/96, включающее в свой состав экспериментальную установку в виде модельного бака, содержащего поддон для жидкого компонента ракетного топлива, датчики температуры, давления, входной и выходной патрубки, вакуумную камеру для создания пониженного абсолютного давления до 0,01 МПа с управляемым ЭПК и газоанализатор для определения процентного содержания газифицированных компонентов ракетного топлива.

Недостатками этого устройства для реализации предлагаемого способа являются:

- избыточность устройства - наличие вакуумной камеры;

- отсутствие системы подвода тепла к жидкости, к дренажной магистрали;

- отсутствие регистрирующей аппаратуры появления конденсата, его замерзания.

Техническим результатом предлагаемого устройства является обеспечение реализации способа моделирования процесса газификации (появление конденсата и его кристаллизации) для случая заправки РН криогенными компонентами топлива или стоянки на старте.

Технический результат устройства достигается тем, что в устройство для моделирования процесса газификации жидкого компонента топлива в баках ступени РН, включающее в свой состав ЭМУ, содержащего поддон для жидкости, датчики температуры, давления, входной патрубок, дренажную магистраль, дренажный ЭПК, газоанализатор для определения процентного содержания ПГС, дополнительно введены:

а) нагревательные элементы для жидкости и дренажной магистрали;

б) в дренажной магистрали установлена аппаратура регистрации обнаружения конденсата и его кристаллизации;

в) конструкция ЭМУ и дренажной магистрали выполнены из материала, аналогичного материалу исследуемого топливного бака РН;

г) диаметр дренажной магистрали в ЭМУ определяют из условия сброса избытка давления за такое же время, как и в реальном баке.

В качестве системы регистрации появления конденсата и факта его кристаллизации (замерзания) может использоваться система на основе расчета характеристики фазового состояния ПГС (см., например, стр. 67-69 в кн. 2 «Термодинамические расчеты парогазовых смесей», Г.А. Михайловский, М.-Л.: Машгиз, 1962. 184 с.) на основе измеренных величин: влажности, температуры и парциального давления паров жидкости в составе ПГС, определения процентного содержания паров жидкости, а также подтверждения видеосъемкой.

Сущность технического решения поясняется чертежом, где изображена пневматическая схема ЭМУ для исследования процесса газификации (сброса парогазовой смеси и образования конденсата, его кристаллизации).

ЭМУ 1 с залитой модельной жидкостью 2 и электрическим нагревателем 3, моделирующим подвод кондуктивного тепла, соединена через гермоввод 4 с системой подачи газа наддува гелия 5 и через дренажную магистраль 6, дренажный ЭПК 7 с системой сброса и утилизации. Параметры газа наддува контролируются датчиками давления и температуры 8.

С помощью давления газа наддува 5 создают давление наддува газа гелия в ЭМУ 1 и нагревают жидкость 2 с помощью нагревателя 3 до образования заданного значения парциального давления жидкости. Нагрев жидкости 2 контролируется датчиком температуры 9.

Сброс ПГС (пары жидкости, газ наддува гелий) осуществляется через дренажную магистраль 6, ЭПК 7. Параметры ПГС в ЭМУ 1 контролируются датчиками давления и температуры 10, в дренажной магистрали 6 - датчиками давления и температуры 11. Регистрация появления конденсата 12 в дренажной магистрали 6 регистрируется устройством 13 (видео- и фотокамерой). Массовый секундный расход при сбросе ПГС регистрируется расходомером 14. Процентный состав паров жидкости в ПГС контролируется с помощью газоанализатора 15.

Для предотвращения замерзания конденсата 12 осуществляется подвод тепла к дренажной магистрали 6 от дополнительного источника тепла 16.

Определяют области параметров:

- жидкости (температура);

- ПГС (температура, парциальное давление смеси, состав);

- температуры стенок ЭМУ, дренажной магистрали и дренажного клапана;

- массовый секундный расход сброса ПГС, в том числе паров жидкости,

при котором начинается конденсация паров жидкости на внутренней поверхности дренажной магистрали, их кристаллизация (замерзание) в процессе сброса ПГС из ЭМУ.

После определения области параметров, при которых осуществляется появление конденсата и его кристаллизация (замерзания), определяют количество теплоты, которое нужно подать к дренажной магистрали для предотвращения ее замерзания, проводят эксперименты для подтверждения возможности предотвращения замерзания дренажной магистрали.

Как правило, исследуется процесс замерзания дренажной магистрали бака с кислородом, водородом. Использование этих компонентов топлива при моделировании в условиях вуза затруднено, поэтому в качестве модельных жидкости используется вода.

Эффект предлагаемого способа и устройства для его осуществления заключается в возможности получения значительного объема новых экспериментальных данных для исследования механизмов конденсации и кристаллизации, которые в дальнейшем будут использованы при разработке методики проектирования элементов пневмогидросистем топливных отсеков перспективных РН и при модернизации существующих.


СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ЖИДКОГО РАКЕТНОГО ТОПЛИВА В БАКЕ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Showing 81-90 of 132 items.
10.05.2018
№218.016.4309

Датчик угарного газа

Изобретение относится к области газового анализа и может быть использовано для экологического мониторинга. Техническим результатом изобретения является повышение чувствительности и технологичности изготовления датчика. Датчик содержит полупроводниковое основание и подложку. Полупроводниковое...
Тип: Изобретение
Номер охранного документа: 0002649654
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4b5b

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ и устройство моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени (ОС) ракеты-носителя, основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН),...
Тип: Изобретение
Номер охранного документа: 0002651645
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4df2

Способ работы поршневой гибридной машины объемного действия и устройство для его осуществления (варианты)

Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности давлений без их взаимного загрязнения. Способ работы машины заключается в том, что при одновременном сжатии...
Тип: Изобретение
Номер охранного документа: 0002652470
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4ecd

Датчик микропримесей аммиака

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака. Изобретение может быть использовано для экологического мониторинга. Заявляемый датчик при существенном упрощении технологии его...
Тип: Изобретение
Номер охранного документа: 0002652646
Дата охранного документа: 28.04.2018
29.05.2018
№218.016.5334

Полимерная композиция

Изобретение относится к полимерной композиции, предназначенной для изготовления резинотехнических изделий, эксплуатируемых при экстремальных температурах и высоком давлении. Композиция содержит смесь каучуков, представляющих собой этилен-пропиленовый каучук и бутилкаучук, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002653850
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.55b6

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя после выключения маршевого жидкостного ракетного двигателя основан на подаче теплоты в баки с остатками компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002654235
Дата охранного документа: 17.05.2018
12.07.2018
№218.016.6fbf

Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного...
Тип: Изобретение
Номер охранного документа: 0002661047
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.7004

Магнитоэлектрическая машина

Изобретение относится к области электротехники, а именно к электрическим машинам, в частности электрогенераторам постоянного тока, и может быть использовано в любой области науки и техники, где требуются автономные источники питания. Технический результат - повышение рабочего магнитного потока...
Тип: Изобретение
Номер охранного документа: 0002660945
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.705d

Поршневая гибридная энергетическая машина со ступенчатым уплотнением

Изобретение относится к области энергетики, гидравлических и пневматических устройств, в частности для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором δ в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней...
Тип: Изобретение
Номер охранного документа: 0002660982
Дата охранного документа: 11.07.2018
13.07.2018
№218.016.70ba

Порошковая проволока

Изобретение может быть использовано для восстановления и упрочнения уплотнительных поверхностей запорной и дросселирующей арматуры, торцевых уплотнений контактных пар. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты и содержит компоненты в следующем соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002661159
Дата охранного документа: 12.07.2018
Showing 81-90 of 94 items.
10.04.2019
№219.017.0744

Способ управления ракетами космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано при расчете энергетически оптимальных программ управления выведением первых ступеней ракет космического назначения (РКН) исходя из снижения влияния ограничений, обусловленных обеспечением падения отделяющихся частей...
Тип: Изобретение
Номер охранного документа: 0002456217
Дата охранного документа: 20.07.2012
29.05.2019
№219.017.69f7

Способ увода космического мусора с орбит полезных нагрузок на основе использования отделившейся части ракеты-носителя, разгонного блока и устройство для его реализации

Изобретение относится к области космической техники и может быть использовано для очистки околоземного космического пространства от прекративших активное существование космических аппаратов, их обломков, отделившихся частей (ОЧ) последних ступеней ракет-носителей (РН) и разгонных блоков (РБ)....
Тип: Изобретение
Номер охранного документа: 0002462399
Дата охранного документа: 27.09.2012
04.06.2019
№219.017.72e2

Способ проведения лётно-конструкторских испытаний бортовой системы испарения остатков жидкого топлива в баке отработавшей ступени ракеты-носителя

Изобретение относится к автономной бортовой системе спуска (АБСС) отработавшей ступени (ОС) ракеты-носителя (РН) с маршевыми ЖРД. Способ включает испытания входящей в состав АБСС системы испарения остатков жидкого топлива в баке ОС в процессе пуска РН, исключая другие элементы АБСС. Перед...
Тип: Изобретение
Номер охранного документа: 0002690304
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.8a54

Способ увода отделившейся части ракеты-носителя с орбиты полезной нагрузки и двигательная установка для его осуществления

Изобретение относится к ракетно-космической технике. Способ увода на орбиту утилизации отделяющейся части ракеты-носителя (ОЧРН). ОЧРН придают вращение вокруг продольной оси до достижения стабилизации ее углового положения в пространстве, затем газифицируют остатки жидких невыработанных...
Тип: Изобретение
Номер охранного документа: 0002406856
Дата охранного документа: 20.12.2010
22.06.2019
№219.017.8e9c

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей

Изобретение относится к конструкции и эксплуатации ракет-носителей (РН) и их отделяемых частей (ОЧ): отработавших ступеней, переходных отсеков, створок головных обтекателей и т.п. Способ включает этап предполетной подготовки РН, на котором рассчитывают параметры движения ОЧ, определяя участки...
Тип: Изобретение
Номер охранного документа: 0002692207
Дата охранного документа: 21.06.2019
29.06.2019
№219.017.9f36

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Изобретения относятся к ракетно-космической технике, в частности к ракетам-носителям на жидком топливе, а именно к отделяющейся части ракеты космического назначения на жидких компонентах топлива и к способу спуска ее в заданный район. Способ спуска отделяющейся части ракеты космического...
Тип: Изобретение
Номер охранного документа: 0002414391
Дата охранного документа: 20.03.2011
02.10.2019
№219.017.cded

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат – снижение районов падения отделяемых частей путем их сжигания на атмосферном участке траектории спуска....
Тип: Изобретение
Номер охранного документа: 0002700150
Дата охранного документа: 12.09.2019
08.11.2019
№219.017.df4d

Головной обтекатель ракеты-носителя

Изобретение относится к головному обтекателю (ГО) ракеты-носителя (РН), сжигаемому после отделения от РН на атмосферном участке траектории спуска ГО. ГО представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны,...
Тип: Изобретение
Номер охранного документа: 0002705258
Дата охранного документа: 06.11.2019
19.12.2019
№219.017.ef44

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина предусматривает подачу источника тепловой энергии из отдельной ёмкости (8) в баки (2, 3) с остатками компонентов топлива в жидкой (4, 5) и газообразной фазах, газа...
Тип: Изобретение
Номер охранного документа: 0002709291
Дата охранного документа: 17.12.2019
11.07.2020
№220.018.3194

Способ спуска отделяющейся части ступени ракеты-носителя и устройство для его осуществления

Группа изобретений относится к ракетам-носителям (РН) с жидкостными ракетными двигателями (ЖРД). Способ спуска отделяющейся части (ОЧ) ступени РН основан на ориентации и стабилизации положения ОЧ двигательной установкой вперед, приложении управляющих моментов путём сброса продуктов газификации...
Тип: Изобретение
Номер охранного документа: 0002726214
Дата охранного документа: 09.07.2020
+ добавить свой РИД