×
10.05.2018
218.016.4df2

СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности давлений без их взаимного загрязнения. Способ работы машины заключается в том, что при одновременном сжатии жидкости и газа зазор между поршнем и цилиндром увеличивают или уменьшают в зависимости от того, какое рабочее тело имеет большее давление. Машина состоит из цилиндра 1, выполненного в виде усеченного конуса и размещенного в нем с зазором поршня 4, имеющего аналогичный по углу образующей конус. Поршень 4 делит цилиндр 1 на газовую 2 и жидкостную 3 смежные полости, которые снабжены всасывающими 6 и 8 и нагнетательными 7 и 9 клапанами. При возвратно-поступательном движении поршня 4 объем полостей 2 и 3 изменяется, в результате чего происходит всасывание газа и жидкости через клапаны 6 и 8 и их нагнетание через клапаны 7 и 9. При сжатии одной среды до более высокого по сравнению с другой средой давления зазор между поршнем 4 и цилиндром 1 уменьшается, не давая сжимаемой до более высокого давления среде проникать через зазор между поршнем 4 и цилиндром 1 в смежную полость в большом количестве. В другом варианте машины используются активные уплотнения на поршне 4, которые уменьшают зазор между поршнем 4 и цилиндром 1 при сжатии среды с большим давлением. Улучшается эффективность работы. 4 н. и 2 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности их давлений без их взаимного загрязнения.

Известен способ работы поршневой гибридной машины объемного действия, заключающийся в попеременном всасывании, сжатии и нагнетании газа и жидкости (см., например, патент РФ №125635 «Поршневой насос-компрессор», МПК F04B 19/06, опубл. 10.03.2013, бюл. №7).

Известен также способ работы поршневой гибридной машины объемного действия, заключающийся в попеременном всасывании, сжатии и нагнетании газа и жидкости, находящихся соответственно в надпоршневой и подпоршневой полостях цилиндра (см. патент РФ №2538371 «Способ работы насос-компрессора и устройство для его осуществления», МПК F04B 19/06, опубл. 10.01.2015, бюл. №1).

Недостатком известных способов является невозможность сжатия жидкости до давления, существенно (в 2 раза и более) превышающего давление нагнетания газа без загрязнения последнего жидкостью, а также сжатия газа до давления, существенно превышающего давление жидкости, т.к. в этом случае в жидкость попадает большое количество газа, что делает нестабильной работу питаемого ей гидравлического оборудования.

Первое обстоятельство связано с тем, что жидкость обладает на несколько порядков большей вязкостью, чем газ. При высоком давлении нагнетания жидкости она занимает не только весь объем уплотнения, но и проникает в газовую камеру над поршнем, а в процессе сжатия-нагнетания газа она не может быть вытеснена через бесконтактное уплотнение назад в подпоршневое пространство. Из-за этого жидкость постепенно скапливается над поршнем, и когда ее объем превышает объем мертвого пространства газовой полости, в конце хода нагнетания газа сначала жидкость начинает в значительном количестве выталкиваться в нагнетаемый газ, что затрудняет работу нагнетательной линии по очистке газа от примесей. И далее, по мере дальнейшего увеличения слоя жидкости над поршнем, происходит гидроудар, т.к. большой объем жидкости не может быть вытеснен через газовый нагнетательный клапан (или клапаны) в связи с его относительно малым проходным сечением.

Второе обстоятельство связано с тем, что скорость течения газа в щелевом уплотнении гораздо выше скорости течения жидкости, в связи с чем давление газа на линии раздела газа и жидкости в уплотнении практически мгновенно достигает давления в газовой камере цилиндра, и при высоком (по сравнению с жидкостью) давлении сжатия-нагнетания газа он в процессе сжатия-нагнетания вытесняет полностью жидкость из зазора и беспрепятственно попадает в жидкостную камеру подпоршневого пространства.

Уменьшение радиального зазора между поршнем и цилиндром и увеличение длины поршня с целью снижения расхода жидкости или газа через бесконтактное поршневое уплотнение приводит к увеличению массы поршня и в связи с этим - снижению частоты его возвратно-поступательного движения из-за увеличения массы неуравновешенных частей, что, в свою очередь, приводит к росту габаритов и уменьшению общей эффективности машины.

Кроме того, уменьшение радиального зазора помимо известных технологических проблем приводит к снижению массы жидкости, омывающей стенки поршня, что приводит к уменьшению отвода от него теплоты и ухудшению термодинамики цикла за счет увеличения показателя политропы процесса сжатия.

Технической задачей изобретения является расширение диапазона рабочих параметров поршневой гибридной машины объемного действия и улучшение эффективности ее работы.

Указанная задача достигается тем, что при осуществлении способа работы поршневой гибридной машины объемного действия, заключающегося в попеременном всасывании, сжатии и нагнетании газа и жидкости, находящихся соответственно в надпоршневой и подпоршневой полостях цилиндра, согласно изобретению в процессе сжатия и нагнетания зазор между поршнем и цилиндром изменяют в большую или меньшую сторону. При этом если имеется существенное превышение нагнетания газа над давлением нагнетания жидкости, зазор между поршнем и цилиндром уменьшают на ходе сжатия- нагнетания газа, а при существенном превышении давления нагнетания жидкости над давлением нагнетания газа зазор между поршнем и цилиндром уменьшают на ходе сжатия-нагнетания жидкости.

Поршневая гибридная машина объемного действия, реализующая вышеописанный способ, содержащая цилиндр, разделенный на газовую и жидкостную полости находящимся в нем с зазором поршнем, соединенным с механизмом привода, всасывающие и нагнетательные газовые и жидкостные клапаны, соединенные с линиями всасывания и нагнетания газа и жидкости, согласно изобретению цилиндр и поршень выполнены в виде усеченных конусов с одинаковыми углами между образующей конусов и осью цилиндра.

Цилиндр также может быть выполнен с прямолинейной образующей, а поршень согласно изобретению может быть снабжен кольцевой выточкой с установленным в ней наружным кольцом, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты, расположенные по окружности в упомянутой выточке, причем эти сегменты с их внутренней стороны контактируют с телами качения, распертыми конусом, соединенным с упругой мембраной, установленной на днище поршня. Или поршень может быть снабжен кольцевой выточкой с установленным в ней наружным кольцом, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты, расположенные по окружности в упомянутой выточке, причем с внутренней стороны упомянутых сегментов эта выточка соединена с подпоршневой жидкостной полостью.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображены схемы двух вариантов машины с конусными поршнем и цилиндром, при этом слева от оси симметрии показан вариант машины для случая, когда давление нагнетания газа существенно ниже давления нагнетания жидкости (РНГ<<РНЖ), а справа от оси симметрии - обратный случай (РНГ>>РНЖ).

На фиг. 2 и фиг. 3 показана эта же конструкция при ходе поршня вверх (фиг. 2) и вниз (фиг. 3).

На фиг. 4 и фиг. 5 показан вариант машины, в которой зазор между поршнем и цилиндром уменьшается при сжатии газа, а на фиг. 6 - вариант машины, у которой зазор между поршнем и цилиндром уменьшается при сжатии жидкости.

Поршневая гибридная машина объемного действия (фиг. 1) содержит цилиндр 1, разделенный на газовую 2 и жидкостную 3 полости находящимся в нем с зазором поршнем 4, соединенным с механизмом привода штоком 5 (сам механизм привода условно не показан), всасывающие 6 и нагнетательные 7 газовые и всасывающие 8 и нагнетательные 9 жидкостные клапаны, соединенные с линиями всасывания 10 и нагнетания 11 газа и с линиями всасывания 12 и нагнетания 13 жидкости.

Цилиндр 1 и поршень 4 выполнены в виде усеченных конусов с одинаковыми углами α (левый от оси цилиндра 1 вариант машины) и β (правый от оси цилиндра 1 вариант машины) между образующей конусов и осью цилиндра 1.

На фиг. 1 и последующих введены следующие обозначения: РНГ - давление нагнетания газа, РНЖ - давление нагнетания жидкости, РВГ - давление всасывания газа, РВЖ - давление всасывания жидкости.

На фиг. 4 и фиг. 5 схематично показана машина с активным воздействием на зазор между поршнем 4 и цилиндром 1, которое производится за счет изменения давления в полости 2.

В этом варианте поршень 4 снабжен кольцевой выточкой 14 с установленным в ней наружным кольцом 15, выполненным из упругого материала и опирающимся внутренней поверхностью на сегменты 16, расположенные по окружности в упомянутой выточке 14, причем эти сегменты с их внутренней стороны через штыри 17 контактируют с телами качения 18, распертыми конусом 19, соединенным с упругой мембраной 20, закрепленной на днище поршня 4. Тела качения 18 распределены по окружности сепаратором, представляющим собой выступы 21 (фиг. 5) на площадке 22 опоры тел качения 18, которая расположена в полости 23(фиг. 4) поршня 4.

На фиг. 6 схематично показана машина с активным воздействием на зазор между поршнем 4 и цилиндром 1, которое производится за счет изменения давления в полости 3. Здесь так же, как и в конструкции, изображенной на фиг. 4 и фиг. 5, поршень 4 снабжен кольцевой выточкой 14 с установленным в ней наружным кольцом 15, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты 16, расположенные по окружности в выточке 14, но с внутренней стороны сегментов 16 эта выточка 14 соединена каналами 24 с подпоршневой жидкостной полостью 3.

Способ работы машины осуществляется следующим образом (фиг. 1 и фиг. 2).

1. Давление нагнетания жидкости существенно больше давления нагнетания газа (левая часть чертежей).

А. При ходе поршня 4 вверх (фиг. 2) в полости 2 осуществляется сжатие и нагнетание газа, клапан 6 закрыт, клапан 7 открывается при достижении давления газа выше давления в линии нагнетания 11.

В полости 3 в это время происходит процесс всасывания жидкости, клапан 9 закрыт, клапан 8 открывается при достижении давления жидкости в полости 3 ниже, чем давление всасывания в линии всасывания 12.

При ходе поршня 4 вверх (фиг. 2) из-за того, что образующие цилиндра 1 и поршня 4 наклонены под одинаковым углом α, зазор между поршнем 4 и цилиндром 1 увеличивается. В связи с этим газ из полости 2 под давлением сжатия-нагнетания вытесняет часть жидкости из зазора в полость 3, где жидкость находится под давлением всасывания, несмотря на то, что жидкость обладает высокой (по сравнению с газом) вязкостью, а давление сжатого газа относительно невелико.

Б. При ходе поршня 4 вниз (фиг. 3) в полости 2 происходит всасывание газа, клапан 7 закрыт, а клапан 6 открывается после того, как давление в полости 2 становится ниже давления в линии всасывания 10.

В полости 3 в это время происходит процесс сжатия-нагнетания жидкости, клапан 8 закрыт, а клапан 9 открывается при достижении давления в полости 3 выше, чем давление в линии нагнетания 13.

При ходе поршня 4 вниз зазор между ним и цилиндром 1 уменьшается, и в связи с этим жидкость из полости 3 протекает в зазор между поршнем 4 и цилиндром 1 в небольшом количестве, которого достаточно лишь для заполнения зазора.

2. Давление нагнетания газа намного выше, чем давление нагнетания жидкости (правая часть чертежей).

А. При ходе поршня 4 вверх (фиг. 2) в полости 2 происходит процесс сжатия-нагнетания газа. При этом клапан 6 закрыт, клапан 7 открывается, когда давление в полости 2 превышает давление в линии нагнетания 11.

В полости 3 происходит процесс всасывания жидкости, клапан 9 закрыт, клапан 8 открывается, когда давление в полости 3 станет ниже давления в линии всасывания жидкости 12.

Сжатый газ из полости 2 проникает в зазор между поршнем 4 и цилиндром 1. В связи с тем, что образующие поршня 4 и цилиндра 1 наклонены под одинаковым углом β, зазор между поршнем 4 и цилиндром 1 постоянно уменьшается, и сопротивление его растет, и газ, несмотря на его относительно высокое давление, не может полностью вытеснить жидкость из зазора в течение процесса его сжатия-нагнетания.

Б. При ходе поршня 4 вниз (фиг. 3) в полости 2 происходит процесс всасывания, клапан 7 закрыт, клапан 6 открывается, когда давление в полости 2 становится ниже, чем давление в линии всасывания 10.

В полости 3 происходит процесс нагнетания, клапан 8 закрыт, клапан 9 открывается, когда давление в полости 3 становится выше давления в линии нагнетания жидкости 13.

Жидкость из полости 3 под действием перепада давления проникает в зазор между поршнем 4 и цилиндром 1, и несмотря на сравнительно низкое давление жидкость в течение хода поршня 4 вверх успевает заполнить зазор между поршнем 4 и цилиндром 1, т.к. этот зазор постоянно увеличивается по ходу движения поршня 4 вниз.

Таким образом, описанный способ работы машины и ее конструкция, предусматривающая выполнение поршня и цилиндра в виде усеченных конусов с одинаковыми углами наклона между образующей конусов и осью цилиндра, позволяют организовать работу машины при постоянно присутствующей жидкости в зазоре между поршнем и цилиндром, которая выполняет функции охлаждения и гидрозатвора. При этом давления нагнетания газа и жидкости могут существенно отличаться друг от друга.

Работа машины, изображенной на фиг. 4 и фиг. 5, и также реализующей способ, позволяющий организовать гидрозатвор в зазоре между поршнем 4 и цилиндром 1 и охлаждение поршня 4 циркулирующей в зазоре жидкостью при давлении нагнетания газа, существенно большем, чем давление нагнетания жидкости, протекает следующим образом.

При возвратно-поступательном движении поршня 4 газ всасывается в полость 2 через линию всасывания 10 и клапан 6, сжимается в ней и нагнетается потребителю через клапан 7 и линию нагнетания 11.

Одновременно жидкость всасывается в полость 3 из линии всасывания 12 через клапан 8, сжимается в этой полости и через клапан 9 и линию нагнетания 13 поступает к потребителю.

В процессе сжатия-нагнетания жидкости в полости 3 (поршень 4 идет вниз) она поступает под действием перепада давления между полостью 3 и полостью 2, в которой идет процесс всасывания, также и в зазор между поршнем 4 и цилиндром 1, и в связи с тем, что ее давление невелико, а зазор достаточно мал (10-30 мкм), заполняет часть этого зазора по длине.

В процессе сжатия-нагнетания газа в полости 2 (в полости 3 в это время идет процесс всасывания при низком давлении) давление газа воздействует на мембрану 20, которая прогибается (вниз по чертежу) тем больше, чем больше давление в полости 2. Прогибаясь, мембрана 20 воздействует на установленный на ней конус 19, который через тела качения 18 и штыри 17 давит на сегменты 16. Под действием этого давления сегменты 16 растягивают упругое кольцо 15, которое увеличивается в диаметре, что приводит к уменьшению зазора между поршнем 4 и цилиндром 1 в зоне кольца 15. При этом общее гидравлическое сопротивление зазора между поршнем 4 и цилиндром 1 увеличивается, что приводит к существенному снижению расхода газа в зазор между поршнем 4 и цилиндром 1, газ не может выдавить всю жидкость, находящуюся в этом зазоре, и оставшуюся в нем после предыдущего хода поршня 4 вниз.

После окончания хода поршня 4 вверх и в начале его хода вниз давление в полости 2 падает до давления всасывания и мембрана 20 приходит в исходное состояние, т.е. снова становится практически плоской. При этом конус 19 поднимается вместе с мембраной 20 и перестает воздействовать (разжимать) на кольцо 15, которое под действием упругих сил возвращает себе прежний диаметральный размер, и зазор между поршнем 4 и цилиндром 1 снова становится равным разности между их радиусами.

Затем цикл работы повторяется.

Работа машины, изображенной на фиг. 6, и также реализующей способ, позволяющий организовать гидрозатвор в зазоре между поршнем 4 и цилиндром 1 и охлаждение поршня 4 циркулирующей в зазоре жидкостью при давлении нагнетания жидкости существенно большем, чем давление нагнетания газа, протекает следующим образом.

При возвратно-поступательном движении поршня 4 газ всасывается в полость 2, сжимается в ней и нагнетается потребителю газа, и в то же время жидкость всасывается в полость 3, сжимается в ней и нагнетается потребителю жидкости.

При ходе поршня 4 вниз в полости 3 происходит сжатие жидкости до относительно высокого давления, и она помимо того, что через клапан 9 поступает потребителю жидкости, проникает в зазор между поршнем 4 и цилиндром 1 под действием перепада давления между полостями 3 и 2, т.к. в это время в полости 2 давление низкое - идет процесс всасывания газа в эту полость.

В это же время давление жидкости в полости 3 через каналы 24 поступает в выточку 14, давит на сегменты 16, которые разжимают упругое кольцо 15, из-за чего наружная поверхность кольца 15 приближается к внутренней поверхности цилиндра 1, и зазор между поршнем 4 и цилиндром 1 уменьшается в зоне кольца 15. Это приводит к увеличению общего гидравлического сопротивления зазора между поршнем 4 и цилиндром 1, что не позволяет жидкости в значительном количестве, которое существенно загрязняет сжимаемый в полости 2 газ, попасть в эту полость.

При ходе поршня 4 вверх, давление жидкости в полости 3 и, соответственно, в соединенной с ней каналами 24 выточке 14, падает до давления всасывания, упругое кольцо 15 силами упругости отжимает сегменты 16 к оси поршня 4, и зазор между поршнем 4 и цилиндром 1 увеличивается до величины разности между радиусами поршня 4 и цилиндра 2. В связи с возникшим перепадом давления между полостью 2 (в ней происходит сжатие-нагнетание газа) и полостью 3, газ выдавливает часть жидкости из зазора между поршнем 4 и цилиндром 1 назад в полость 3.

Затем цикл работы повторяется.

Предложенные способ работы поршневой гибридной машины объемного действия и устройства для его осуществления дают возможность использовать в конструкциях этой машины сравнительно большие радиальные зазоры (например, для поршня диаметром 40 мм - 30-50 мкм) и небольшую длину (например, для того же поршня - около 60-80 мм), что снижает технологические сложности изготовления машины и позволяет организовать интенсивное омывание тела поршня сжимаемой жидкостью. При этом температура поршня существенно снижается, увеличивается количество теплоты, отводимой его днищем от сжимаемого газа, что повышает эффективность работы машины по сжатию газа.

Описанные выше конструкции также позволяют работать с газом и жидкостью, имеющими большую разность давлений нагнетания. При этом попадание сжимаемой жидкости в газ и наоборот минимальны или исключены полностью, что расширяет диапазон рабочих параметров машины.

Таким образом, следует считать, что техническая задача, поставленная перед изобретением, полностью выполнена.


СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 1-10 of 109 items.
25.08.2017
№217.015.b522

Устройство дифференциальной защиты на герконах и магниторезисторе для преобразовательной установки с трансформатором и выпрямителем

Изобретение относится к электроэнергетике, а именно к устройствам для защиты вентильных преобразовательных установок, и может быть использовано на преобразовательных установках, силовые трансформаторы которых имеют значительный бросок тока намагничивания. Устройство содержит исполнительный...
Тип: Изобретение
Номер охранного документа: 0002614243
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b6b7

Устройство защиты линии электропередачи из двух параллельно соединенных кабелей в электрической сети с изолированной нейтралью от однофазного замыкания на землю

Использование: в области электротехники и электроэнергетики. Технический результат - обеспечение селективности защиты. Устройство защиты содержит трансформаторы тока нулевой последовательности на каждом кабеле и реле тока. При этом обмотки трансформаторов тока нулевой последовательности...
Тип: Изобретение
Номер охранного документа: 0002614528
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.be41

Спортивно-охотничий лук

Изобретение относится к метательному оружию и может быть использовано при создании недорогих и достаточно мощных луков и арбалетов для спортивных тренировок, состязаний и спортивной охоты. Лук содержит рукоять (1) с полочкой (2) для укладки стрелы (3) и натяженое устройство тетивы (4) в виде...
Тип: Изобретение
Номер охранного документа: 0002616772
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bfb2

Способ средневолновой многоканальной зоновой сети двусторонней мобильной автоматической радиосвязи с временным разделением режимов приема и передачи сообщений

Изобретение относится к технике связи и может использоваться в системах мобильной связи. Технический результат состоит в повышении надежности связи. Для этого способ средневолновой зоновой сети двусторонней радиосвязи с временным разделением режимов приема и передачи сообщений заключается в...
Тип: Изобретение
Номер охранного документа: 0002617211
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c269

Способ получения металлизированного изображения

Изобретение относится к электронике, полиграфии и может быть использовано при изготовлении печатных плат для формирования металлизированного изображения. Технический результат – упрощение способа за счет отсутствия необходимости воздействия лазерным импульсом на обработанную поверхность, а...
Тип: Изобретение
Номер охранного документа: 0002617705
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c499

Устройство защиты печного трансформатора

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано в качестве устройства защиты печного трансформатора от коротких замыканий. Устройство защиты печного трансформатора, содержащее блок измерения тока и напряжения, первый и второй блоки логики,...
Тип: Изобретение
Номер охранного документа: 0002618216
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c5a5

Устройство контроля веществ

Предложено устройство контроля веществ, содержащее источник физического поля 1 в составе соединенных последовательно генератора сигналов 14, модулятора 15, светодиода 16, к которым подключены последовательно элемент с объектом контроля 2, преобразователь физического поля 3, и, кроме того,...
Тип: Изобретение
Номер охранного документа: 0002618488
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c9b8

Поршневой двигатель

Изобретение относится к области машиностроения и может быть использовано преимущественно в качестве силовой установки для транспортных средств с экологически чистым выхлопом. Двигатель состоит из блока цилиндров, шатунно-поршневых групп, работающих на общий коленчатый вал, системы...
Тип: Изобретение
Номер охранного документа: 0002619516
Дата охранного документа: 16.05.2017
25.08.2017
№217.015.d074

Стабилизированный электропривод

Изобретение относится к области электротехники и может быть использовано в высокоточных электроприводах. Технический результат - улучшение динамических характеристик электропривода. Для этого предложен стабилизированный электропривод, который содержит электродвигатель, импульсный датчик...
Тип: Изобретение
Номер охранного документа: 0002621288
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d1d2

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Группа изобретений относится к ракетно-космической технике. Способ спуска отработанной части (ОЧ) ступени РКН на жидких компонентах ракетного топлива в заданный район падения основан на стабилизации и ориентации ОЧ за счет энергетики невыработанных остатков жидких компонентов ракетного топлива...
Тип: Изобретение
Номер охранного документа: 0002621771
Дата охранного документа: 07.06.2017
Showing 1-10 of 90 items.
20.02.2013
№216.012.2668

Ударный гайковерт

Изобретение относится к общему машиностроению и может быть использовано при сборке и разборке резьбовых соединений с большим моментом затяжки. Ударный гайковерт содержит корпус, двигатель с валом, который соединен с первой полумуфтой, и установленную соосно с ней вторую полумуфту, соединенную с...
Тип: Изобретение
Номер охранного документа: 0002475352
Дата охранного документа: 20.02.2013
10.06.2013
№216.012.493d

Гидравлический амортизатор

Изобретение относится к машиностроению. Амортизатор содержит цилиндр с гидравлической полостью и установленный в нем поршень. Перепускные отверстия перекрыты обратными клапанами, имеющими подвижный запорный орган. Обратные клапаны снабжены ограничителями подъема, выполненными в виде...
Тип: Изобретение
Номер охранного документа: 0002484329
Дата охранного документа: 10.06.2013
27.12.2013
№216.012.9185

Снаряд с газовым подвесом

Изобретение относится к боеприпасам, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть. В цилиндрической части выполнена полость питания. Полость питания соединена с наружной цилиндрической поверхностью через питающие устройства. Полость...
Тип: Изобретение
Номер охранного документа: 0002502946
Дата охранного документа: 27.12.2013
10.04.2014
№216.012.b46a

Компрессор с комбинированным механизмом привода

Изобретение относится к области компрессоров объемного действия и может быть использовано при создании, преимущественно, поршневых компрессоров. Компрессор состоит из основного 1 и дополнительного 2 цилиндров с обратными клапанами 3, 4, 5 и 6. В цилиндре 1 с зазором размещен основной поршень...
Тип: Изобретение
Номер охранного документа: 0002511906
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c7f6

Способ газостатического центрирования снаряда и устройство для его осуществления

Изобретение относится к оружию и может быть использовано в высокоточном огнестрельном гладкоствольном оружии. Устройство газостатического центрирования снаряда содержит ствол с казенной частью, запертой корпусом двойного ударного механизма, внутреннюю втулку с продольным каналом. Боевой выстрел...
Тип: Изобретение
Номер охранного документа: 0002516949
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cf21

Машина объемного действия

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов. Машина состоит из цилиндра 1 с дифференциальным П-образным в...
Тип: Изобретение
Номер охранного документа: 0002518796
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d6d4

Роторный насос объемного действия

Изобретение относится к гидравлической технике и может использоваться для подачи жидкостей под давлением, преимущественно при питании гидроприводов различного назначения. Роторный насос объемного действия содержит всасывающее окно и нагнетательный клапан, рабочий цилиндр 2 с размещенным в нем...
Тип: Изобретение
Номер охранного документа: 0002520774
Дата охранного документа: 27.06.2014
20.08.2014
№216.012.ea42

Способ пуска двигателя внутреннего сгорания при низких температурах и устройство для его осуществления

Изобретение относится к области автомобилестроения и может быть использовано при пуске двигателей внутреннего сгорания при низкой температуре окружающей среды, характерной для районов Сибири и Крайнего Севера. Способ состоит в том, что перед пуском двигателя производят подогрев топлива в...
Тип: Изобретение
Номер охранного документа: 0002525778
Дата охранного документа: 20.08.2014
10.12.2014
№216.013.0ca6

Способ работы насос-компрессора и устройство для его осуществления

Изобретение относится к области насосо- и компрсссоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов. Способ состоит в том, что перед сменой жидкости осуществляют очистку гидравлической магистрали и рубашки, окружающей...
Тип: Изобретение
Номер охранного документа: 0002534655
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1a68

Универсальная прямозубая машина объемного действия

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин объемного действия, использующихся для подачи жидкости под напором и газа под давлением. Прямозубая машина объемного действия содержит корпус, всасывающее окно и нагнетательный клапан 17,...
Тип: Изобретение
Номер охранного документа: 0002538188
Дата охранного документа: 10.01.2015
+ добавить свой РИД