×
20.01.2018
218.016.13c8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ АМИДОВ

Вид РИД

Изобретение

№ охранного документа
0002634619
Дата охранного документа
02.11.2017
Аннотация: Изобретение относится к способу получения амида карбоновой кислоты посредством взаимодействия амина формулы (I), который выбирают из метиламина, диметиламина, этиламина, диэтиламина, н-пропиламина, изопропиламина, диизопропиламина, н-бутиламина, изобутиламина, трет-бутиламина, метил-н-пропиламина, н-метил-н-этиламина и метил-изопропиламина, с карбоновой кислотой, которую выбирают из карбоновых кислот, содержащих от 3 до 18 атомов углерода, которые являются разветвленными и незамещенными, из карбоновых кислот, содержащих от 3 до 18 атомов углерода, которые являются предпочтительно с прямой цепью и незамещенными, и из α-гидроксилкарбоновых кислот, содержащих от 3 до 12 атомов углерода, которые предпочтительно имеют прямую цепь. Молярное соотношение амина согласно формуле (I) к карбоновой кислоте выбирают в интервале от 1,5:1 до 1:1. При этом способ включает в себя следующие стадии (а): взаимодействие амина согласно формуле (I) с указанной карбоновой кислотой в условиях температуры и давления, при которых вода и амин согласно формуле (I) являются газообразными, в котором взаимодействие (а) осуществляют в единичном реакторе, (b) отгонку образованной воды вместе с непрореагировавшим амином согласно формуле (I), (c) отделение непрореагировавшего амина согласно формуле (I) от воды и (d) повторное введение указанного амина согласно формуле (I) в реакционную смесь на стадии (а), причем стадии (а) и (b) осуществляют без применения какого-либо органического растворителя. Взаимодействие на стадии (а) осуществляют при температуре в интервале от 130 до 230°С. Кроме того, стадию (а) осуществляют в одном реакторе, который присоединен к ректификационной колонне и конденсатору или в одном реакторе, который присоединен к комбинации двух ректификационных колонн и двух конденсаторов. Повторное введение амина (I) на стадии (d) осуществляют посредством жидкоструйных форсунок. Технический результат – получение амидов карбоновых кислот с большим выходом и удовлетворительной чистотой, не требующее большого избытка амина. 5 з.п. ф-лы, 3 пр.

Настоящее изобретение направлено на способ получения амида карбоновой кислоты посредством взаимодействия амина формулы (I)

причем целые числа могут быть равными или различными,

R1 выбирают из алкила, содержащего от 1 до 4 атома углерода,

R2 выбирают из водорода и алкила, содержащего от 1 до 4 атома углерода,

причем R1 и R2 комбинируют таким образом, чтобы амин по формуле (I) обладал более низкой точкой кипения, чем вода,

с карбоновой кислотой по меньшей мере с 3 атомами кислорода на молекулу, причем указанная карбоновая кислота необязательно несет по меньшей мере одну спиртовую гидроксильную группу на молекулу,

выбирая молярное соотношение амина согласно формуле (I) к карбоновой кислоте в интервале от 1,5:1 до 1:1,

включающий в себя следующие стадии:

(a) взаимодействие амина согласно формуле (I) с указанной карбоновой кислотой в условиях температуры и давления, при которых вода и амин согласно формуле (I) являются газообразными, в котором взаимодействие (а) осуществляют в единичном реакторе,

(b) отгонку образованной воды вместе с не прореагировавшим амином согласно формуле (I),

(c) отделение не прореагировавшего амина согласно формуле (I) от воды и

(d) повторное введение указанного амина согласно формуле (I) в реакционную смесь на стадии (а).

Алкиламиды и диалкиламиды жирных кислот применяются в различных использованиях, таких как не оказывающие негативного воздействия на окружающую среду растворители и в качестве технологических добавок для полимеров. Способы изготовления подобных амидов известны в технике. Многие из них исходят из карбоновой кислоты или производного, такого как соответствующий галогенид или сложный эфир и алкил- или диалкиламид. Однако можно наблюдать некоторые недостатки. Галогениды карбоновых кислот, однако, являются дорогостоящими, и они имеют тенденцию гидролизовать галогениды водорода в ходе различных случаев, таких как хранение, транспортировка и взаимодействия. Подобные галогениды являются в большой степени коррозийными, и в ходе образования амида их необходимо нейтрализовать или одним эквивалентом амина, или добавлением основания, которое может также вместо этого взаимодействовать с галогенидом карбоновой кислоты.

В ходе образования амидов из сложных эфиров (или лактонов) и аминов будут образовываться спирты, понижая проблему коррозии, описанную выше, см., например, WO 2010/037776. Однако сложные эфиры и лактоны обычно вполне дорогостоящие по сравнению с карбоновыми кислотами.

В US 2009/0062565 раскрывается способ, в котором амиды жирных кислот получают из соответствующей карбоновой кислоты и амина. Раскрытый способ использует систему из двух реакторов. Образованную воду отгоняют вместе с амином и после разделения амин можно повторно использовать посредством введения в кислоту для того, чтобы начать реакцию образования амида. Однако для этого способа обычно необходим избыток амина. Это особенно невыгодно для получения в небольшом масштабе и для периодических процессов.

Следовательно, цель настоящего изобретения заключалась в предоставлении способа получения амидов карбоновых кислот из карбоновых кислот, который не требует большого избытка амина, а дает возможность получать амиды с большим выходом и удовлетворительной чистотой.

Соответственно обнаружен способ, определенный в начале, также далее в данном документе упоминаемый как способ согласно изобретению.

В ходе выполнения способа согласно изобретению карбоновая кислота, также упоминаемая как карбоновая кислота (II), будет взаимодействовать с амином формулы (I)

кратко также упоминаемым как амин (I), причем целые числа могут быть различными или предпочтительно идентичными,

причем R1 выбирают из алкилов, содержащих от 1 до 4 атомов углерода, таких как метил, этил, н-пропил, изопропил, н-бутил, изобутил, втор-бутил или трет-бутил, предпочтительно n-алкил, содержащий от 1 до 4 атомов углерода, и особенно метил или этил,

причем R2 выбирают из водорода и алкилов, содержащих от 1 до 4 атомов углерода, таких как метил, этил, н-пропил, изопропил, н-бутил, изобутил, втор-бутил или трет-бутил, предпочтительно n-алкил, содержащий от 1 до 4 атомов углерода, и особенно метил или этил,

где R1 и R2 комбинируют таким образом, чтобы амин по формуле (I) обладал более низкой точкой кипения, чем вода.

В одном варианте выполнения настоящего изобретения амин согласно формуле (I) выбирают из метиламина, диметиламина, этиламина, диэтиламина, н-пропиламина, изопропиламина, диизопропиламина, н-бутиламина, изобутиламина, трет-бутиламина, метил-н-пропиламина, н-метил-этиламина и метилизопропиламина. Особенно предпочтительные амины формулы (I) выбирают из диметиламина и диэтиламина.

Карбоновые кислоты, которые будут взаимодействовать согласно способу изобретения, выбирают из карбоновых кислот по меньшей мере с 3 атомами углерода на молекулу, причем указанная кислота необязательно несет по меньшей мере одну спиртовую гидроксильную группу на молекулу.

В одном варианте выполнения настоящего изобретения карбоновую кислоту (II) выбирают из карбоновых кислот, содержащих от 3 до 18 атомов углерода, которые являются разветвленными и не замещенными, таких как изомасляная кислота и изовалериановая кислота.

В одном варианте выполнения настоящего изобретения карбоновую кислоту (II) выбирают из карбоновых кислот, содержащих от 3 до 18 атомов углерода, которые являются предпочтительно с прямой цепью и не замещенными. Примерами являются пропионовая кислота, масляная кислота, валериановая кислота, капроновая кислота (н-C5H11-COOH), каприловая кислота, каприновая кислота, лауриновая кислота, миристиновая кислота, пальмитиновая кислота и стеариновая кислота. Карбоновая кислота (II) может иметь одну или более углерод-углеродных двойных связей, которые не соединены с группой карбоновой кислоты. Предпочтительными являются карбоновые кислоты, которые не имеют углерод-углеродной двойной связи.

В одном частном предпочтительном варианте выполнения настоящего изобретения карбоновую кислоту (II) выбирают из каприловой кислоты, каприновой кислоты и лауриновой кислоты, и амин (I) выбирают из диметиламина и диэтиламина.

В одном варианте выполнения настоящего изобретения карбоновую кислоту (II) выбирают из α-гидроксилкарбоновых кислот, содержащих от 3 до 12 атомов углерода, которые предпочтительно имеют прямую цепь. Особенно предпочтительны α-гидроксилкарбоновые кислоты, содержащие от 3 до 12 атомов углерода, которые не несут дополнительных функциональных групп.

В случае, хиральной карбоновой кислоты (II), например, в качестве карбоновой кислоты (II) выбирают α-гидроксилкарбоновые кислоты, содержащие от 3 до 12 атомов углерода, обнаружено, что стехиометрия не влияет на взаимодействие. Таким образом, в качестве исходного материала можно применять любой энантиомер, а также рацемат.

В одном варианте выполнения настоящего изобретения карбоновую кислоту (II) выбирают из молочной кислоты.

В одном частном предпочтительном варианте выполнения настоящего изобретения карбоновую кислоту (II) выбирают из молочной кислоты, и амин (I) выбирают из диметиламина и диэтиламина.

В процессе согласно изобретению выбирается молярное отношение амина (I) к карбоновой кислоте (II) в интервале от 1,5:1 до 1:1, ссылаясь на общее соотношение исходных материалов, равное предпочтительно от 1,2:1 до 1:1.

Процесс согласно изобретению включает в себя следующие стадии:

(a) взаимодействие амина согласно формуле (I) с карбоновой кислотой (II) в условиях температуры и давления, при которых вода и амин (I) являются газообразными, в котором взаимодействие (а) осуществляют в единичном реакторе,

(b) отгонку образованной воды вместе с непрореагировавшим амином (I),

(c) отделение непрореагировавшего амина согласно формуле (I) от воды и

(d) повторное введение указанного амина (I) в реакционную смесь на стадии (а).

Стадии от (а) до (d) будут обсуждаться ниже более подробно.

Нет необходимости, чтобы термин "стадии" в контексте настоящего изобретения предполагал, что различные этапы осуществляются последовательно. Например, повторно введенный амин (I) согласно стадии (d) будет снова взаимодействовать с карбоновой кислотой (II), и в то же время большее количество воды будет отгоняться.

Стадия (а) процесса согласно изобретению включает взаимодействие амина (I) с карбоновой кислотой (II). Указанное взаимодействие может быть одностадийным или двухстадийным взаимодействием. Указанное взаимодействие может включать промежуточное образование или соли (карбоксилата аммония), который впоследствии конденсируется с образованием амида, или оно может развиваться в прямом направлении.

Стадию (а) проводят в условиях температуры и давления, при которых вода и амин согласно формуле (I) являются газообразными, что означает, что условия давления и температуры являются до некоторой степени такими, чтобы вода и амин (I) были газообразными. Таким образом, например, если амин (I) выбирают из диэтиламина и давление выбирают, что оно является обычным давлением (атмосферным давлением, 1 бар), температура взаимодействия составляет по меньшей мере 105°C и предпочтительно в интервале от 130 до 230°C.

В одном варианте выполнения настоящего изобретения взаимодействие на стадии (а) осуществляют при температуре в интервале от 130 до 230°C, причем соответственно регулируют давление, предпочтительно в интервале от 150 до 210°C.

В одном варианте выполнения настоящего изобретения взаимодействие на стадии (а) осуществляют при давлении в интервале от 0,5 до 40 бар, предпочтительно от атмосферного давления до 10 бар, причем соответственно регулируют температуру.

На взаимодействие амина (I) с карбоновой кислотой (II) на стадии (а) влияет контактирование амина (I) и карбоновой кислоты (II). Предпочтительно сначала загружать реактор, в котором собираются осуществлять стадию (а), карбоновой кислотой (II). Указанный реактор можно загрузить карбоновой кислотой (II), находящейся предпочтительно в жидкой форме. Однако в зависимости от конкретного случая также возможно загрузить карбоновую кислоту в твердой форме, что может включать стадию расплавления до осуществления стадии (а), и затем вводить амин (I), или расплавлять карбоновую кислоту (II) в присутствии амина (I). В одном варианте выполнения карбоновую кислоту загружают как водный раствор, и прежде всего, будет отгоняться вода из растворителя.

В одном варианте выполнения настоящего изобретения, особенно в вариантах выполнения, где карбоновую кислоту выбирают из α-гидроксилкарбоновых кислот, содержащих от 3 до 12 атомов углерода, карбоновая кислота может содержать в качестве примесей некоторые сложные эфиры. Это могли быть, например, лактид и в случае молочной кислоты олигомеры молочной кислоты.

Предпочтительно взаимодействие на стадии (а) осуществляют при смешении, например, посредством перемешивания или посредством рециркуляции жидкости. Возможно вводить амин (I) в жидкой форме и выполнять выпаривание в сосуде, в котором осуществляется взаимодействие, но предпочтительно вводить амин (I) в газообразном состоянии (в газообразной форме).

Предпочтительно взаимодействие на стадии (а) осуществляют периодически или полупериодически.

Стадию (а) можно проводить в каскадном реакторе, но предпочтительно проводить стадию (а) в одном сосуде, например, в корпусном реакторе. Указанный сосуд и предпочтительно указанный корпусной реактор оснащены - кроме всего прочего - средством для удаления воды в газовом состоянии, средством для введения карбоновой кислоты (II) и для введения амина (I), и средством для повторного введения амина (I) согласно стадии (d), см. ниже.

Предпочтительно указанный сосуд оснащен средством для удаления воды в газовом состоянии, которая обычно содержит некоторое количество амина (I), и средством для разделения воды и амина (I), например, перегонной колонной, ректификационной колонной и/или по меньшей мере одним конденсатором или комбинацией двух или более ректификационных колонн, преимущественно с одним или двумя конденсаторами.

В одном варианте выполнения настоящего изобретения указанный сосуд оснащают двумя ректификационными колоннами и двумя конденсаторами, регулируемыми при двух различных температурах.

Взаимодействие карбоновой кислоты (II) с амином (I) можно проводить в присутствии органического растворителя, такого как толуол или ксилол, но предпочтительно проводить стадию (а) без применения какого-либо органического растворителя. В этом случае стадия (b) не будет требовать никакого органического растворителя.

В одном варианте выполнения настоящего изобретения стадию (а) проводят с применением катализатора. В другом варианте выполнения стадия (а) будет проводиться без катализатора.

В одном варианте выполнения настоящего изобретения стадию (а) проводят с применением добавки, например, пеногасителя или противовспенивающего агента или антиоксиданта, такого как, но не ограничивающегося ими, гипофосфита щелочных металлов. В альтернативном варианте выполнения стадия (а) будет проводиться без добавок.

На стадии (b), воду, образованную посредством образования амида, будут отгонять. В ходе стадии (b), воду будут отгонять вместе с непрореагировавшим амином (I). Воду можно отгонять с большим количеством непрореагировавшего амина (I) или со всем избытком амина (I), или ее можно отгонять вместе только с очень небольшим процентным содержанием амина (I). На отгонку будут влиять удаляемые части газовой фазы в сосуде и в частности в корпусном реакторе, в котором проводится стадия (а). Указанное удаление можно проводить, например, посредством открытия входного отверстия или клапана из сосуда в средство для отделения амина (I) от воды. Также возможно иметь постоянно открытое входное отверстие и давать возможность газообразному амину (I) и пару улетучиваться из сосуда, в котором проводят стадию (а), и принуждать его перемещаться в средство для отделения амина (I) от воды.

Течение газообразных материалов (воды, амина (I) можно усилить по меньшей мере одним насосом (например, воздуходувкой).

На стадии (с) разделяют непрореагировавший амин (I) и воду, отогнанную в стадии (b). Указанного разделения можно выгодно достичь с применением одной дистилляционной колонны, двух дистилляционных колонн, одной ректификационной колонны, двух ректификационных колонн, трех или более дистилляционных колонн, трех или более ректификационных колонн или одной или более мембран. Предпочтительно применение одной или более дистилляционных или ректификационных колонн. В частности, предпочтительно применять одну или более дистилляционных колонн в комбинации с одним или более конденсаторов или с одним или более дефлегматоров.

В случае применения одного или более конденсаторов в комбинации с ректификационными или дистилляционными колоннами предпочтительно, чтобы указанный конденсатор (конденсаторы) функционировал таким образом, чтобы по меньшей мере 90 масс. % воды, которая отгоняется, была удалена из газообразного пара, предпочтительно по меньшей мере 95 масс. %. В одном варианте выполнения вода, которую следует отгонять, будет удалена полностью или вплоть до 99,9 масс.% воды.

Предпочтительно удалять воду из смеси на стадии (с) в форме жидкости.

В случае применения одной или более ректификационных колонн предпочтительно применять подобные колонны, выбираемые из тарельчатых колонн и насадочных колонн. Примеры для тарелок в тарельчатых колоннах представляют собой колпачковые тарелки, ситчатые тарелки и клапанные тарелки. Примеры насадок, подходящие для насадочных колонн, представляют собой неупорядоченные насыпные насадки и структурные насадки.

В случае, когда на стадии (с) применяют комбинацию по меньшей мере одной ректификационной колонны или по меньшей мере одной ректификационной колонны по меньшей мере с одним конденсатором или по меньшей мере одним дефлегматором, коэффициент дефлегмации регулируют таким образом, чтобы отток воды в реакционную смесь стадии (а) был настолько небольшим, насколько возможно.

В одном варианте выполнения настоящего изобретения, стадию (с) проектируют таким образом, чтобы ректификационная колонна имела в интервале от 2 до 40 равновесных шагов.

В предпочтительном варианте выполнения настоящего изобретения коэффициент дефлегмации и равновесные ступени колонны (колонн), комбинированных с конденсатором (конденсаторами) или дефлегматором, регулируют таким образом, чтобы воду можно было применять без дополнительной очистки, и амин (I) чистотой 90 масс. % или выше можно было повторно вводить во взаимодействие.

В одном варианте выполнения настоящего изобретения для разделения воды и амина применяют мембрану.

Посредством отделения амина (I) от воды амин (I) восстанавливается.

На стадии (d) амин (I), восстановленный согласно стадии (с), будет повторно введен в реакционную смесь на стадии (а). Амин (I) можно повторно вводить в жидкой или газообразной форме. Предпочтительно повторно вводить амин (I) во взаимодействие согласно стадии (а) в газообразной форме.

В одном варианте выполнения настоящего изобретения в качестве средства для повторного введения амина (I) выбирают один или более нагнетателей (компрессоров) особенно вместе с направляющим аппаратом, таким как, например, оросительное кольцо.

В одном варианте выполнения настоящего изобретения, в качестве средства для повторного введения амина (I) выбирают активаторы газификации, предпочтительно активаторы газификации с всасывающей способностью без нагнетателя или в комбинации с нагнетателем.

В одном варианте выполнения настоящего изобретения в качестве средства для повторного введения амина (I) выбирают жидкоструйные форсунки. В этом варианте выполнения реакционный сосуд, обсужденный на стадии (а), может содержать, но не обязательно, мешалку.

В одном варианте выполнения настоящего изобретения для функционирования жидкоструйной форсунки будет применяться жидкая реакционная смесь стадии (а), например, в качестве рабочей жидкости (эжектора).

Процессом согласно изобретению можно оперировать как периодическим процессом, полупериодическим процессом или непрерывным процессом. Предпочтительно оперировать им как периодическим или полупериодическим процессом.

В случае, когда процессом согласно изобретению оперируют как периодическим или полупериодическим процессом, взаимодействие будет обрываться после превращения всего или почти всего количества, такого как от 90 до 99,9 мол. %, карбоновой кислоты (II), предпочтительно 93 мол. % или более.

После прекращения взаимодействия амид карбоновой кислоты (II) и амин (I) можно выделить с превосходным выходом и удовлетворительной чистотой. Для многих использований подобный амид можно применять без дополнительной очистки, но возможно в альтернативе его очищать. Пригодными способами очистки являются перегонка, дезодорирование (отгонка), обесцвечивание, например, с помощью древесного угля, или фильтрация через кремнезем.

В случае, когда карбоновая кислота (II) имеет одну или более спиртовых гидроксильных групп, можно обнаружить только очень небольшое количество побочного продукта, генерированного нуклеофильным замещением спиртовой гидроксильной группы амином (I), если это произойдет, такое как от нуля до 3,0 мол. %, в частности от 0,1 до 1,5 мол. %, от нуля до 1,0 мол. %, в частности от 0,001 до 0,5 мол. %, ссылаясь на общее желательное количество амида. Указанные побочные продукты нуклеофильного замещения обычно обладают очень неприятным запахом и присутствие следов как таковых можно легко обнаружить.

Далее изобретение иллюстрируется примерами.

Части означают массовые части.

Пример 1: Изготовление N,N-диметиллактамида

Применяли следующую схему аппаратуры: корпусной реактор с мешалкой, нагревательная система, на верху выходное отверстие к низу ректификационной колонны ("первой колонны") с упаковкой Зульцера (40 элементов, 40-200 Sulzer M752Y), без дефлегмации с последующей другой ректификационной колонной ("второй колонной") (упаковка Зульцера, 22-250 Sulzer M752Y Elements), питающей на верху и присоединенной к конденсатору (20°C) на верху колонны. Во втором конденсаторе воду конденсировали, но диметиламин оставался в газообразном состоянии. Схема также содержала жидкоструйную форсунку (эжекторный насос) для повторного ввода газообразного диметиламина в корпусной реактор.

Корпусной реактор загружали 60,0 частями рацемической молочной кислотой (водный раствор 88 мас. %) и 0,51 частями гипофосфита натрия. Из корпусного реактора был выкачан воздух. Диметиламин вводили в корпусной ректор в виде газа (стадия (а.1)). В условиях нагревания в реактор вводили 104 мол. % теоретического количества диметиламина (27,39 частей) за 8,9 ч после начала добавления диметиламина достигались температура, равная 170°C, и давление, равное 2,14 бар (абсолютное). Одновременно из реакционной смеси удаляли воду - вместе с диметиламином (стадия (b.1)) - отгонкой и пропускали через первую колонну. Во второй колонне разделяли воду и диметиламин (стадия (с.1)). Газообразный диметиламин повторно вводили через контур в реактор с помощью жидкоструйной форсунки (стадия (d1)). На протяжении реакции контролировали величину кислотности (DIN 53402).

Взаимодействие продолжалось в течение 37,5 часов, во время которых температуру поддерживали от 166°C до 172°C. Давление в реакторе составляло 1,34 бар (абсолютное) в конце стадии (b.1). Величина кислотности неочищенного продукта взаимодействия составляла в то время 7,8 мг KОН/г.

Неочищенный продукт упаривали в другом сосуде для удаления побочных продуктов с низкой точкой кипения, например, избыток диметиламина. Упаренный неочищенный продукт содержал 95,7% N,N-диметиллактамида (GC-анализ посредством оценки площади газовой хроматограммы).

Пример 2: Изготовление N,N-диметиллактамида

Применяли следующую схему аппаратуры: корпусной реактор с мешалкой, нагревательная система, на верху выходное отверстие к низу ректификационной колонны ("первой колонны") с упаковкой Зульцера (20 элементов, 20-200 Sulzer M752Y), дефлегматор с последующей другой ректификационной колонной ("второй колонной") (упаковка Зульцера, Элементы 22-250 Sulzer M752Y), питающей на верху и присоединенной к конденсатору на верху колонны. Во втором конденсаторе воду конденсировали, но диметиламин оставался в газообразном состоянии. Схема также содержала жидкоструйную форсунку (эжекторный насос) для повторного ввода газообразного диметиламина в корпусной реактор.

Корпусной реактор загружали 120 частями молочной кислоты (водный раствор 88 мас. %) и 0,11 частями гипофосфита натрия. Из корпусного реактора был выкачан воздух. Диметиламин вводили в корпусной ректор в виде газа (стадия (а.1)). Первоначально диметиламин добавляли без нагревания. После того, как было добавлено 66% стехиометрического количества DMA (в течение 7,5 ч), реакционную смесь нагревали до 170°C. При температуре взаимодействия, равном 168-176°C, и давлении, равном 0,5-2,3 бар, добавляли оставшееся количество DMA. В общем в реактор вводили 102 мол. % теоретического количества диметиламина (53,75 частей) за время (окончательно 51 ч после начала загрузки DMA). Одновременно из реакционной смеси удаляли воду - вместе с диметиламином (стадия (b.1)) - отгонкой и пропускали через первую колонну. Во второй колонне разделяли воду и диметиламин (стадия (с.1)). Газообразный диметиламин повторно вводили через контур в реактор с помощью жидкоструйной форсунки (стадия (d.1)). На протяжении реакции контролировали величину кислотности (DIN 53402).

Взаимодействие продолжалось до тех пор, пока величина кислотности неочищенного продукта взаимодействия не достигнет 10 мг KОН/г. Общее время от начала течения DMA до конца составляло 68 ч. Неочищенный продукт содержал 97,3% N,N-диметиллактамида (GC-анализ посредством оценки площади газовой хроматограммы).

Неочищенный продукт очищали посредством продувки азотом для удаления побочных продуктов с низкой точкой кипения, например, избытка диметиламина. Выход очищенного продукта составлял 135,8 частей.

Пример 3: Изготовление N,N-диметил С8/С10 амида

Применяли такое же оборудование, как в примере 2.

Корпусной реактор загружали 91,6 частями С8/С10 жирной кислоты (Edenor V85) и 0,11 частями гипофосфита натрия. Из корпусного реактора был выкачан воздух. Диметиламин (DMA) вводили в корпусной ректор в виде газа (стадия (а.1)) и смесь нагревали до 179°C. Диметиламин добавляли с такой скоростью, чтобы давление оставалось ниже 2,0 бар и т.д. Прикладывали нагревание, чтобы удерживать температуру взаимодействия при 196-198°C. В общем в реактор вводили 101 мол. % теоретического количества диметиламина (28,43 частей) за 9,2 ч. Одновременно из реакционной смеси удаляли воду - вместе с диметиламином (стадия (b.1)) - отгонкой и пропускали через первую колонну. Во второй колонне разделяли воду и диметиламин (стадия (с.1)). Газообразный диметиламин повторно вводили через контур в реактор с помощью жидкоструйной форсунки (стадия (d.1)). На протяжении реакции контролировали величину кислотности (DIN 53402).

Взаимодействие продолжалось до тех пор, пока величина кислотности неочищенного продукта взаимодействия не достигнет 6 мг KОН/г. Общее время взаимодействия от начала течения DMA до конца составляло 12,7 ч.

Неочищенный продукт очищали посредством продувки азотом для удаления побочных продуктов с низкой точкой кипения, например, избытка диметиламина. Выход очищенного продукта N,N-диметил С8/С10 амида составлял 102,4 части.

Источник поступления информации: Роспатент

Showing 351-360 of 657 items.
20.01.2018
№218.016.102e

Растворимые жидкие составы аммониевых солей хинклорака

Изобретение относится к сельскому хозяйству. Гербицидно активный растворимый жидкий (РЖ) состав содержит: A) аммониевую соль хинклорака формулы I где R, R, R и R независимо означают водород, C-С-алкил, -(CHR-CHR-Z)-H или -(CHR-CHR-CHR-CHR-Z)-H (где R, R, R и R независимо означают водород или...
Тип: Изобретение
Номер охранного документа: 0002633618
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.160a

Инкапсулированная частица

Изобретение относится к инкапсулированной частице, включающей в себя ядро, содержащее удобрение, полиуретановый слой и воск. Полиуретановый слой расположен вокруг ядра и воск расположен вокруг полиуретанового слоя. Полиуретановый слой включает в себя продукт реакции изоцианата и полиольного...
Тип: Изобретение
Номер охранного документа: 0002635116
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1952

Способ производства цеолитного материала с использованием элементарных прекурсоров

Изобретение относится к производству цеолитов. Способ получения цеолитного материала, имеющего каркасную структуру, содержащую YO, включает следующие стадии. 1 - приготовление смеси, содержащей четырехвалентные элементы Y в элементарной форме, гидроксосоль четвертичного аммония, и воду....
Тип: Изобретение
Номер охранного документа: 0002636085
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1a1e

Композиция для химико-механической полировки (смр), содержащая неионное поверхностно-активное вещество и ароматическое соединение, содержащее по меньшей мере одну кислотную группу

Изобретение по существу относится к композиции для химико-механической полировки (СМР). Композиция содержит: (А) неорганические частицы, органические частицы, или их смесь, или их композит, где частицы находятся в форме кокона, (В) амфифильное неионное поверхностно-активное вещество...
Тип: Изобретение
Номер охранного документа: 0002636511
Дата охранного документа: 23.11.2017
20.01.2018
№218.016.1b04

Способ и установка для разогрева природного газа

Изобретение относится к газовой промышленности. Настоящее изобретение представляет способ и установку для нагрева природного газа, причем способ включает в себя следующие стадии: a) подачу природного газа, который имеет температуру от -10°C до 50°C и находится под давлением по меньшей мере в 30...
Тип: Изобретение
Номер охранного документа: 0002635960
Дата охранного документа: 17.11.2017
20.01.2018
№218.016.1b71

Последующая обработка деборированного цеолита бета

Изобретение относится к цеолитным материалам. Предложен способ последующей обработки цеолитного материала, обладающего каркасной структурой ВЕА. Способ включает: (i) предоставление цеолитного материала, обладающего каркасной структурой ВЕА, в котором каркасная структура включает ХО и YO, где Y...
Тип: Изобретение
Номер охранного документа: 0002636724
Дата охранного документа: 27.11.2017
20.01.2018
№218.016.1bac

Использование алкоксилированных неионогенных поверхностно-активных веществ в качестве добавки в водных составах для чистки мембран

Целью настоящего изобретения является использование разветвленного алкоксилированного неионогенного поверхностно-активного вещества в качестве добавки к водному составу для чистки мембран. Описан водный состав для чистки мембран, содержащий алкоксилированное неионогенное поверхностно-активное...
Тип: Изобретение
Номер охранного документа: 0002636661
Дата охранного документа: 27.11.2017
20.01.2018
№218.016.1bba

Способ получения сложных эфиров карбоновых кислот и их применение в качестве пластификаторов

Настоящее изобретение касается способа получения сложных эфиров карбоновых кислот, при котором в реакционной системе, состоящей из одного или нескольких реакторов, подвергают взаимодействию реакционную смесь, которая содержит по меньшей мере одну карбоновую кислоту и/или по меньшей мере один...
Тип: Изобретение
Номер охранного документа: 0002636586
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1bfe

Способ непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого углеводорода

Изобретение относится к способу непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого C-C-углеводорода в газовой фазе, включающему порядок работы, при котором к реакционному пространству, окруженному оболочкой, соприкасающейся с реакционным...
Тип: Изобретение
Номер охранного документа: 0002436757
Дата охранного документа: 20.12.2011
20.01.2018
№218.016.1c7f

Способ получения акриловой кислоты при помощи термолиза поли-3-гидроксипропионата, катализируемого по меньшей мере одним молекулярным активным соединением

Изобретение относится к улучшенному способу получения акриловой кислоты, включающему в себя термолиз поли-3-гидроксипропионата, катализируемый по меньшей мере одним молекулярным органическим активным соединением, содержащим по меньшей мере один третичный атом азота, который имеет ковалентную...
Тип: Изобретение
Номер охранного документа: 0002640591
Дата охранного документа: 10.01.2018
Showing 351-360 of 383 items.
19.01.2018
№218.016.0955

Кватернизованные полиэтиленимины с высокой степенью кватернизации

Изобретение относится к этоксилированному полиэтиленимину общей структурной формулы (I), в которой n имеет значение, которое находится в диапазоне от 1 до 40, R выбран из группы, включающей водород, С-С-алкил и их смеси, Е означает С-С-алкильную группу, X означает подходящий растворимый в воде...
Тип: Изобретение
Номер охранного документа: 0002631860
Дата охранного документа: 27.09.2017
19.01.2018
№218.016.0974

Композиция для очистки после химико-механического полирования (после - смр), содержащая конкретное содержащее серу соединение и сахарный спирт или поликарбоновую кислоту

Очищающая композиция после химико-механического полирования (после-СМР), содержащая: (А) соединение, представляющее собой цистеин, N-ацетилцистеин, тиомочевину или их производное, (В) эритрит, (С) водную среду и (Е) по меньшей мере одно поверхностно-активное вещество, и ее применение для...
Тип: Изобретение
Номер охранного документа: 0002631870
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.09c7

Огнестойкие полиамиды со светлой окраской

Изобретение относится к термопластичным формовочным массам, к применению их для изготовления волокон, пленок, формованных изделий, таких как волокна, пленки, формованные изделия, а также к применениям соли или оксида меди (I) или серебра (I) или их смесей для изготовления формовочных масс или...
Тип: Изобретение
Номер охранного документа: 0002632010
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0a9c

Жесткие пенополиуретаны

Настоящее изобретение относится к жестким пенополиуретанам, способу их получения, а также к полиольной смеси для их получения. Жесткий пенополиуретан получают путем превращения А) органических или модифицированных органических полиизоцианатов или их смесей, В) одного или нескольких простых...
Тип: Изобретение
Номер охранного документа: 0002632198
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0aae

Способ получения катализатора для риформинга и риформинг метана

Изобретение относится к катализатору для гетерогенного катализа, который содержит по меньшей мере смешанный оксид никеля и магния и магниевую шпинель, где смешанный оксид никеля и магния обладает средним размером кристаллитов ≤100 нм, фаза магниевой шпинели обладает средним размером...
Тип: Изобретение
Номер охранного документа: 0002632197
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0bfc

Каучуковый материал с барьерным материалом из сополимеров циклоолефинов

Изобретение относится к применению сополимера для снижения газопроницаемости каучукового материала. Также описан каучуковый материал, снабженный барьерным материалом в виде сополимера, и шина, включающая каучуковый материал. Сополимер получен путем метатезисной полимеризации с раскрытием цикла...
Тип: Изобретение
Номер охранного документа: 0002632584
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0c9d

Загуститель, содержащий по меньшей мере один катионный полимер

Изобретение относится к сгущающему средству, способу его получения, к содержащей поверхностно-активные вещества кислотной композиции, включающей по меньшей мере одно сгущающее средство, применяемой в качестве кондиционера для стирки белья или жидких моющих средств, а также применение сгущающего...
Тип: Изобретение
Номер охранного документа: 0002632660
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0ca9

Реактор для окисления аммиака с внутренним фильтровальным элементом

Изобретение относится к окислению аммиака до монооксида азота и может быть использовано в химической промышленности. Реактор 10 для окисления аммиака до монооксида азота в присутствии катализатора включает корпус 11, имеющий верхнюю 12, среднюю 16 и нижнюю 14 части, фильтровальную пластину 24,...
Тип: Изобретение
Номер охранного документа: 0002632685
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cce

Способ непрерывного получения пеноматериалов в трубах

Изобретение относится к технологии полимерных материалов и касается непрерывного изготовления изолированной трубы. Способ включает внутреннюю трубу, трубу-оболочку, слой по меньшей мере из одного полиуретана между по меньшей мере одной внутренней трубой и трубой-оболочкой и пленочный рукав...
Тип: Изобретение
Номер охранного документа: 0002632689
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0e21

Сополимеры на основе изопренола, моноэтиленненасыщенных монокарбоновых кислот и сульфокислот, способ их получения и их применение в качестве ингибиторов образования отложений в водопроводящих системах

Изобретение относится к сополимерам на основе изопренола. Сополимеры на основе изопренола включают: (a) от 5 до 40 мас.% изопренола, (b) от 5 до 93 мас.% по меньшей мере одной моноэтиленненасыщенной монокарбоновой кислоты с 3-8 атомами углерода, выбранной из акриловой кислоты и метакриловой...
Тип: Изобретение
Номер охранного документа: 0002632991
Дата охранного документа: 12.10.2017
+ добавить свой РИД