×
20.01.2018
218.016.101c

Результат интеллектуальной деятельности: Способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине. Описан способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированной поверхностью. Способ включает лазерную вырезку заготовки стента, термомеханическую обработку, очистку и модификацию поверхностей стента ускоренными ионами кремния, при этом термомеханическую обработку проводят путём последовательных отжигов заготовки на цилиндрических оправках со ступенчатым увеличением диаметра оправок, при этом увеличение диаметра заготовки стента при перемещении его с одной оправки на другую составляет 20÷50 %. Стент предназначен для длительной эксплуатации в кровеносных сосудах организма и обладает коррозионной стойкостью, биосовместимостью и не токсичностью в биологических средах. 6 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к изготовлению внутрисосудистых имплантатов из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированной поверхностью, предназначенных для длительной эксплуатации в кровеносных сосудах организма и обладающих коррозионной стойкостью, биосовместимостью и нетоксичностью в биологических средах.

Известен способ формообразования изделия, в том числе медицинского назначения, из сплава с эффектом памяти формы с использованием термообработок изделия, заневоленного на формообразующем элементе при охлаждении до мартенситного состояния, а термообработку ведут путём последовательных выдержек заневоленного изделия при температуре начала обратного мартенситного превращения, температуре завершения обратного мартенситного превращения и температуре фиксации формы (RU 2372417, C22F 1/00, B21K 3/00, опубл. 10.11.2009) [1]. Техническим результатом является упрощение и расширение сферы применения способа формообразования изделия из сплава с эффектом памяти формы. Ограничением применения данного изобретения является невозможность использования при необходимости больших деформаций для задания требуемой формы без нарушения целостности конструкции, что особенно актуально для конструкций с малыми геометрическими размерами отдельных элементов. Кроме того, в изобретении не предусматриваются технологические операции по снижению токсичности изделий из никелида титана, что также ограничивает использование способа для изделий медицинского назначения.

Известен способ термомеханической обработки изделий из сплава на основе никелида титана для производства изделий из сплава на основе никелида титана (RU 2374356, C22F 1/10, опубл. 27.11.2009) [2] с использованием двух этапов: на первом этапе проводят предварительный нагрев изделия до 500÷600 °С, выдержку при этой температуре, последующую деформацию и охлаждение в деформированном состоянии, а на втором этапе проводят нагрев изделия до температуры 250÷350 °С, выдержку не более одной минуты, повторное деформирование растяжением со степенью не более 1 % и охлаждение изделия с одновременной разгрузкой. Техническим результатом является обеспечение высоких значений псевдоупругости и повышение механических свойств и долговечности изделий. Недостатком известного способа является невозможность его использования для изделий непрямолинейной формы. Кроме того, в изобретении не предусматриваются технологические операции по снижению токсичности изделий из никелида титана, что ограничивает использование способа для изделий медицинского назначения.

Известен способ обработки поверхности материалов из сплавов на основе никелида титана с использованием плазменно-иммерсионной ионной имплантации и осаждения, а также ионно-пучковой и плазменной техники для изменения поверхностных свойств при биомедицинском применении таких материалов (US 2006157159, A61L 27/06, A61L 27/50, C23C 14/48, С23С 8/36, опубл. 2006.07.20) [3]. Обработку поверхности ведут азотом, кислородом или углеродом. Техническим результатом является повышение биосовместимости материала за счёт повышения коррозионной стойкости и снижения концентрации токсичного никеля в поверхности изделия. Недостатком известного способа является то, что в результате таких обработок на поверхности формируются нитридные, оксидные или карбидные покрытия толщиной около 100 нм, которые имеют повышенную хрупкость, что может ограничить области применения имплантатов с такими покрытиями. В известном изобретении предположено, что использование кремния для совместной обработки с указанными элементами приводит к формированию биоинертной поверхности имплантата. Однако не приведены какие-либо данные о химическом составе в поверхностном слое, в том числе о содержании атомов никеля после ионно-пучковой или плазменно-иммерсионной ионной обработки сплава.

Наиболее близким по технической сущности является способ изготовления кардиоимплантата из сплава на основе никелида титана с легированным ионами кремния поверхностным слоем (RU 2508130, A61L 27/06, A61L 27/30, A61L 27/50, B82B 3/00, опубл. 27.02.2014) [4]. По данному способу вначале изготавливают кардиоимплантат, затем осуществляют химическую и электрохимическую очистку его поверхности, далее проводят обработку поверхности кардиоимплантата потоками ионов кремния в режиме высокодозовой ионной имплантации. Операция изготовления кардиоимплантата, не раскрытая в формуле изобретения, раскрыта в приведённом в описании патента примере и включает лазерную вырезку заготовки кардиоимплантата, задание необходимой формы кардиоимпланта путём размещения заготовки на формующем шаблоне и выдержку в течение 15 минут в расплаве смеси неорганических солей при температуре 450-475 °C с последующей закалкой в воду.

Недостатками известного способа является невозможность использования при необходимости больших деформаций для задания требуемой формы без нарушения целостности изделия, что особенно актуально для конструкций с малыми геометрическими размерами отдельных элементов, а также то, что обработку проводят в режиме высокодозовой ионной имплантации, которая позволяет обрабатывать изделия пучком ускоренных ионов, распространяющихся в одном направлении. Это не позволяет обрабатывать изделия сложной формы одновременно по всей поверхности, в том числе и внутренних полостей и отверстий, что необходимо для модификации поверхности саморасширяющихся периферических стентов.

Технической проблемой предлагаемого изобретения является создание способа изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью с повышенным выходом годных изделий.

Заявляемый способ изготовления саморасширяющегося периферического стента позволит обеспечить повышение выхода годных изделий за счёт сохранения целостности стента при термомеханической обработке в процессе его изготовления, при обеспечении у него низкой токсичности, повышенной коррозионной стойкости, степени формовосстановления при температуре человеческого тела (37±2) °С не менее 97 %.

Указанный технический результат достигается тем, что способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью включает лазерную вырезку заготовки стента, термомеханическую обработку, очистку и модификацию поверхностей стента ускоренными ионами кремния, при этом термомеханическую обработку проводят путём последовательных отжигов заготовки на цилиндрических оправках со ступенчатым увеличением диаметра оправок, при этом увеличение диаметра заготовки стента при перемещении его с одной оправки на другую составляет 20÷50 %.

Для изготовления стента используют никелида титана с содержанием основных элементов в следующем соотношении, ат. %: титан 49,00÷49,50; никель 50,50÷51,00.

Очистку поверхности стента осуществляют пескоструйной обработкой с последующей электрохимической полировкой. Отжиги проводят при температуре 500±20 °С в соляной ванне. Модификацию поверхностей стента проводят методом плазменно-иммерсионной ионной обработки ионами кремния при отрицательном импульсном напряжении смещения на изделии 800÷1000 В. Стент с модифицированной поверхностью имеет температуру завершения обратного мартенситного превращения в интервале 15÷25 °С. Стент имеет цилиндрическую сетчатую форму, конечный диаметр стента в расширенном состоянии может быть в интервале 3÷10 мм, толщина стенки стента 0,10÷0,20 мм.

Выбор химического состава исходной трубки из никелида титана определяется тем, что для полного восстановления формы (не меньше 97 %) при освобождении стента из катетера во время эндоваскулярной операции по имплантации стента в человека сплав на основе никелида титана должен находиться полностью в аустенитном состоянии, что происходит только выше температуры завершения обратного мартенситного превращения. При этом желательно, чтобы температура, при которой происходит процесс восстановления формы была, по меньшей мере, на 10 °С выше температуры завершения перехода в аустенит. Это обусловлено тем, что при близких значениях указанных температур при приложении даже невысоких напряжений (например, при сжатии просвета кровеносного сосуда при снижении артериального давления) происходит фазовый переход в мартенситную фазу, в результате чего резко снижается сопротивление стента деформированию, и он не сможет поддерживать просвет сосуда. Поэтому выбран интервал температур завершения обратного мартенситного превращения 15÷25 °С. При более низком значении этой температуры стент будет иметь высокие упругие характеристики даже при температуре около 0 °С, при которой осуществляют заправку стента в проводящий катетер, что может вызвать разрушение стента при этой операции. Указанные условия могут быть реализованы в сплавах на основе никелида титана с содержанием основных элементов в следующем соотношении (ат. %): титан 49,00÷49,50; никель 50,50÷51,00 [4]. Температуры фазовых превращений в сплавах такого состава могут значительно меняться при термомеханических воздействиях. Стенты в процессе изготовления на различных этапах подвергаются термомеханическим обработкам (лазерная резка, задание формы, плазменно-иммерсионная имплантация). Поэтому технологические режимы таких обработок определяют эксплуатационные характеристики стентов.

Конструкция и геометрические размеры стента, его элементов определяются несколькими факторами. Диаметр стента в расширенном состоянии зависит от диаметра кровеносного сосуда, куда предполагается имплантировать стент. В человеческом организме более 90 % кровеносных сосудов имеют диаметр, для которого требуются стенты с диаметром в интервале 3÷10 мм. Конструкция и толщина стенок стента должны, с одной стороны, обеспечивать необходимый уровень механических свойств для поддержания просвета кровеносного сосуда, а с другой стороны, должны допускать радиальное сжатие стента как можно до меньшего диаметра для заправки в катетер как можно меньшего диаметра для снижения инвазивности эндоваскулярной операции. В настоящее время большинство стентов импортного производства имеют сетчатую конструкцию и толщину стенок стента 0,10÷0,20 мм (Matthias Frotscher, Klaus Neuking, Roland August Böckmann, Klaus-Dietrich Wolff and Gunther Eggeler, In situ scanning electron microscopic study of structural fatigue of struts, the characteristic elementary building units of medical stents, Materials Science and Engineering: A 481-482 (2008) 160-165) doi:10.1016/j.msea.2007.04.129 [5]; Amanda Runciman, David Xu, Alan R. Pelton, Robert O. Ritchie, An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices, Biomaterials 32 (2011) 4987-4993, doi:10.1016/j.biomaterials.2011.03.057 [6]).

Температура термообработки при задании формы определяется, во-первых, необходимостью формирования однофазного аустенитного состояния во всём объёме изделия, которое может не достигаться даже при температуре выше конца обратного мартенситного превращения, во-вторых, требуется обеспечить перестройку дислокационной субструктуры, которая определяет полноту формовосстановления изделия после деформации. В работе Aleksandr I. Lotkov, Oleg A. Kashin, Andrey N. Kudryashov, Viktor N. Grishkov, Ludmila L. Meisner. Effect of Heat Treatment on Superelasticity of NiTi-based Intravascular Implants // AIP Conf. Proc. 1623, 363-366 (2014); doi: 10.1063/1.4898957 [7] показано, что такое структурно-фазовое состояние формируется в результате отжигов изделий в течение 10-20 минут при температурах в интервале 500±20 °С. Кроме того, при таком отжиге снимаются остаточные внутренние дальнодействующие напряжения.

При задании требуемого диаметра стента заготовку стента после лазерной вырезки размещают на формообразующей оправке в виде цилиндра сетчатой формы заданного диаметра. При этом при размещении заготовки стента сразу на оправке с конечным заданным диаметром в ней могут в локальных областях возникнуть высокие деформации вплоть до разрушения отдельных элементов стента (фиг. 1). Но даже если разрушения и не произойдёт, то в сильнодеформированных областях могут при нагреве возникнуть высокие реактивные напряжения, которые приведут к нарушению целостности стента. Относительное увеличение диаметра стента при размещении исходной заготовки с внутренним диаметром 1,4 мм на оправку диаметром 3,7 мм для получения стента с конечным диаметром 4 мм составляет более 150 %. Использование для задания требуемого диаметра стента поэтапного увеличения диаметра оправок с шагом относительного увеличения диаметра при перемещении заготовки с одной оправки на другую в пределах 20÷50 % позволяет избежать нарушения целостности стента. Использование оправок с относительным увеличением диаметра менее 20 % приводит к неоправданному увеличению количества термообработок.

Для улучшения биосовместимости стента проводят модификацию поверхностей стента методом плазменно-иммерсионной ионной обработки ионами кремния при отрицательном импульсном напряжении смещения на изделии 800÷1000 В. В результате обработки на поверхности изделия формируется легированный кремнием слой толщиной 10÷100 нм. Распределение основных химических элементов в поверхности стента по глубине приведено на фиг. 2. Видно, что для данного стента атомы кремния имеются в слое толщиной около 86 нм, причём их концентрация составляет 6÷8 ат. %. Содержание атомов никеля непосредственно на поверхности находится на уровне 8÷10 ат. %, что в 4-5 раз ниже его содержания в объёме. Испытания на токсичность (выход ионов никеля в плазму крови после выдержки стентов в течение 7 суток при температуре человеческого тела (37±2) °С) показали снижение выхода ионов никеля более чем в 2 раза. Коррозионная стойкость, определённая по убыли веса, стентов после выдержки стентов в течение 45 суток при температуре человеческого тела (37±2) °С в физиологическом растворе также оказалась выше по сравнению с немодифицированными стентами примерно в 1,6 раза. В работах (Aleksandr I. Lotkov, Oleg A. Kashin, Yuliya A. Kudryavtseva, Larisa V. Antonova, Andrey N. Kudryashov, Vera G. Matveeva and Evgeniya A. Sergeeva. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions // AIP Conf. Proc. 1683, 020126 (2015); http://dx.doi.org/10.1063/1.4932816; Патент RU 2579314 Лотков А.И., Кашин О.А., Борисов Д.П., Круковский К.В., Кудряшов А.Н., Кудрявцева Ю.А., Антонова Л.В., Коршунов А.В. Способ плазменно-иммерсионной ионной модификации поверхности изделия из сплава на основе никелида титана медицинского назначения, опубл. 10.04.2016, приоритет 22.05.2016) [8, 9] на модельных образцах никелида титана показано, что толщина модифицированного слоя 20÷100 нм достаточна для ускорения эндотелизации поверхности никелида титана в экспериментах in vivo.

Использование метода плазменно-иммерсионной ионной обработки ионами кремния при отрицательном импульсном напряжении смещения на изделии 800÷1000 В позволило обработать как внешнюю, так и внутреннюю поверхность стента. На фиг. 3 в качестве примера приведена фотография стента и распределение концентрации (в условных единицах) атомов кремния вдоль стента на внутренней и внешней поверхности после модификации. Видно, что концентрация атомов кремния по длине стента с модифицированной атомами кремния поверхностью варьируется в пределах 0,5÷1,0 ат. % как на внутренней, так и на внешней поверхности, что свидетельствует о достаточно равномерном распределении.

Величина отрицательного напряжения смещения от 800 до 1000 В обусловлена тем, что при меньших напряжениях преобладает процесс осаждения и на поверхности изделия формируется покрытие из кремния, которое оказывает слабое влияние на скорость эндотелизации поверхности имплантата.

Величина формовосстановления после сжатия стента на половину диаметра практически одинакова для всех испытанных стентов и близка к 100 %. Испытания in vitro показали, что эффективность пролиферации эндотелиальных клеток на стентах с модифицированной поверхностью примерно в 1,4 раза выше, чем для стентов с немодифицированной поверхностью.

Изобретение осуществляют следующим образом.

Пример.

Лазерной резкой вырезают заготовку стента из трубки из сплава на основе никелида титана диаметром 1,7÷2,0 мм, в виде цилиндра сетчатой формы исходного диаметра. Заготовку стента после лазерной вырезки размещают на формообразующей оправке в виде цилиндра заданного диаметра и отжигают в течение 20 минут в соляной ванне при температуре 500±20 °С с последующей закалкой в воду. Затем отожжённую заготовку размещают на следующей оправке, причём относительное увеличение диаметра оправки должно быть в пределах 20÷50 %. Для заготовок, предназначенных для изготовления стентов с конечным диаметром 4 мм, используют последовательно оправки со следующими диаметрами (мм, в скобках указано относительное увеличение диаметра оправки в %):

2,0 (43)→3,0 (50)→3,7 (23),

а для заготовок, предназначенных для изготовления стентов с конечным диаметром 10 мм, используют оправки:

3,0 (50)→4,0 (33)→5 (25)→6 (20)→8 (33)→10 (25).

После задания диаметра стента 4 мм для всех конечных типоразмеров стента проводят пескоструйную обработку корундовым абразивом дисперсностью 10 мкм. Затем, при необходимости, проводят термообработки для задания конечного диаметра стентов. Электрополировку поверхности стентов ведут в электролите ElectroPolish Ti2 RDZ. Стенты с электрополированной поверхностью помещают в вакуумную камеру установки, оснащённой магнетронной системой. После этого проводят откачку камеры до вакуума 6×10-4 Па, затем в камеру напускают газ аргон, при этом поддерживается динамический вакуум не выше 0,3 Па, и включают магнетронную систему с кремниевым катодом. Обработку стентов изделия в плазме, содержащей ионы кремния, ведут при отрицательном импульсном напряжении смещения на изделии 800÷1000 В. После отключения магнетронов охлаждают образцы изделия в вакууме до комнатной температуры.

Использование предлагаемого способа изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью позволяет повысить выход годных изделий не менее чем на 5 %.


Способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью
Способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью
Способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью
Источник поступления информации: Роспатент

Showing 21-30 of 48 items.
13.01.2017
№217.015.6881

Вихревой ракетный двигатель малой тяги на газообразном топливе

Изобретение относится к области ракетной техники и может быть использовано при разработке ракетных двигателей, работающих на газообразных компонентах топливной смеси. Вихревой ракетный двигатель малой тяги на газообразном топливе содержит камеру сгорания с соплом и тангенциальные завихрители...
Тип: Изобретение
Номер охранного документа: 0002591391
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a67

Способ получения керамического композита с нулевым коэффициентом термического линейного расширения

Изобретение относится к получению керамических композитов с нулевым коэффициентом термического линейного расширения, предназначенных для изготовления, в частности, запорных элементов нефтегазового комплекса. Техническим результатом изобретения является получение керамического композита с...
Тип: Изобретение
Номер охранного документа: 0002592923
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7150

Способ вакуумно-плазменного азотирования изделий из нержавеющей стали в дуговом несамостоятельном разряде низкого давления

Изобретение относится к области вакуумно-плазменных химико-термических технологий обработки материалов и изделий и может быть использовано при химико-термической упрочняющей обработке методом азотирования конструкционных изделий из нержавеющей стали в машиностроении, приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002596554
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.75e1

Способ получения наноструктурного порошка вольфрамата циркония

Изобретение относится к получению наноструктурного порошка вольфрамата циркония ZrWO. Ведут синтез прекурсора ZrWO(OH,Cl)·2HO из смеси растворов оксихлорида циркония, натрия вольфрамовокислого и соляной кислоты в дистиллированной воде, взятых при стехиометрическом соотношении элементов Zr :...
Тип: Изобретение
Номер охранного документа: 0002598728
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8148

Клапан летательного аппарата для слива воды

Группа изобретений относится к авиационной технике, а именно к клапану летательного аппарата для слива воды, и предназначена для предотвращения течи топлива при деформации конструкций клапана и топливного бака в случае нештатной жесткой посадки летательного аппарата. Клапан летательного...
Тип: Изобретение
Номер охранного документа: 0002602027
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.86d2

Способ получения диборида алюминия

Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив. Диборид алюминия получают высокотемпературной обработкой смеси порошков бора и алюминия в инертной атмосфере путем...
Тип: Изобретение
Номер охранного документа: 0002603793
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8a8b

Внутрикостный штифт

Изобретение относится к медицинской технике. Устройство содержит опорный стержень в виде собранных в жгут никелид-титановых нитей и облегающую стержень оболочку из проницаемо-пористого никелида титана, химически связанную с опорным стержнем. Диаметры отдельных нитей и среднестатистический...
Тип: Изобретение
Номер охранного документа: 0002604390
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9ddb

Способ исследования процесса гравитационного осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки способов и установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Частицы предварительно смачивают водным раствором...
Тип: Изобретение
Номер охранного документа: 0002610607
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a008

Защитное покрытие на основе полимерного композиционного радиоматериала

Изобретение относится к области радиопоглощающих материалов и покрытий. Описано защитное покрытие на основе полимерного композиционного радиоматериала, содержащее наполнитель и эпоксидную смолу в качестве полимерного связующего, в котором в качестве наполнителя использованы многостенные...
Тип: Изобретение
Номер охранного документа: 0002606350
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bfa6

Установка для исследования осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Устройство ввода частиц в жидкость выполнено в виде плоского...
Тип: Изобретение
Номер охранного документа: 0002617167
Дата охранного документа: 21.04.2017
Showing 21-30 of 55 items.
13.01.2017
№217.015.6881

Вихревой ракетный двигатель малой тяги на газообразном топливе

Изобретение относится к области ракетной техники и может быть использовано при разработке ракетных двигателей, работающих на газообразных компонентах топливной смеси. Вихревой ракетный двигатель малой тяги на газообразном топливе содержит камеру сгорания с соплом и тангенциальные завихрители...
Тип: Изобретение
Номер охранного документа: 0002591391
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a67

Способ получения керамического композита с нулевым коэффициентом термического линейного расширения

Изобретение относится к получению керамических композитов с нулевым коэффициентом термического линейного расширения, предназначенных для изготовления, в частности, запорных элементов нефтегазового комплекса. Техническим результатом изобретения является получение керамического композита с...
Тип: Изобретение
Номер охранного документа: 0002592923
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7150

Способ вакуумно-плазменного азотирования изделий из нержавеющей стали в дуговом несамостоятельном разряде низкого давления

Изобретение относится к области вакуумно-плазменных химико-термических технологий обработки материалов и изделий и может быть использовано при химико-термической упрочняющей обработке методом азотирования конструкционных изделий из нержавеющей стали в машиностроении, приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002596554
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.75e1

Способ получения наноструктурного порошка вольфрамата циркония

Изобретение относится к получению наноструктурного порошка вольфрамата циркония ZrWO. Ведут синтез прекурсора ZrWO(OH,Cl)·2HO из смеси растворов оксихлорида циркония, натрия вольфрамовокислого и соляной кислоты в дистиллированной воде, взятых при стехиометрическом соотношении элементов Zr :...
Тип: Изобретение
Номер охранного документа: 0002598728
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8148

Клапан летательного аппарата для слива воды

Группа изобретений относится к авиационной технике, а именно к клапану летательного аппарата для слива воды, и предназначена для предотвращения течи топлива при деформации конструкций клапана и топливного бака в случае нештатной жесткой посадки летательного аппарата. Клапан летательного...
Тип: Изобретение
Номер охранного документа: 0002602027
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.86d2

Способ получения диборида алюминия

Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив. Диборид алюминия получают высокотемпературной обработкой смеси порошков бора и алюминия в инертной атмосфере путем...
Тип: Изобретение
Номер охранного документа: 0002603793
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8a8b

Внутрикостный штифт

Изобретение относится к медицинской технике. Устройство содержит опорный стержень в виде собранных в жгут никелид-титановых нитей и облегающую стержень оболочку из проницаемо-пористого никелида титана, химически связанную с опорным стержнем. Диаметры отдельных нитей и среднестатистический...
Тип: Изобретение
Номер охранного документа: 0002604390
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9ddb

Способ исследования процесса гравитационного осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки способов и установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Частицы предварительно смачивают водным раствором...
Тип: Изобретение
Номер охранного документа: 0002610607
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a008

Защитное покрытие на основе полимерного композиционного радиоматериала

Изобретение относится к области радиопоглощающих материалов и покрытий. Описано защитное покрытие на основе полимерного композиционного радиоматериала, содержащее наполнитель и эпоксидную смолу в качестве полимерного связующего, в котором в качестве наполнителя использованы многостенные...
Тип: Изобретение
Номер охранного документа: 0002606350
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.bfa6

Установка для исследования осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Устройство ввода частиц в жидкость выполнено в виде плоского...
Тип: Изобретение
Номер охранного документа: 0002617167
Дата охранного документа: 21.04.2017
+ добавить свой РИД