×
13.01.2017
217.015.75e1

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРНОГО ПОРОШКА ВОЛЬФРАМАТА ЦИРКОНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению наноструктурного порошка вольфрамата циркония ZrWO. Ведут синтез прекурсора ZrWO(OH,Cl)·2HO из смеси растворов оксихлорида циркония, натрия вольфрамовокислого и соляной кислоты в дистиллированной воде, взятых при стехиометрическом соотношении элементов Zr : W=1:2, затем проводят термическое разложение полученного прекурсора в воздушной атмосфере при температуре 700-900 К в течение 0,75-1,5 часа при скорости нагрева до указанной температуры не выше 100 К/час. Обеспечивается исключение агломерации и уменьшение времени старения порошка. Полученный наноструктурный порошок вольфрамата циркония имеет средний размер вытянутых частиц в поперечном направлении не более 15 нм, в продольном не более 0,5 мкм. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способам получения наноструктурных керамических оксидных (композиционных) порошков, которые могут быть, в частности, использованы для изготовления износостойких керамических материалов (или изделий) с нулевым коэффициентом термического линейного расширения.

Известна работа Е.С. Дедовой и др. Получение и свойства вольфрамата циркония с аномальными характеристиками. // Известия Томского политехнического университета. Химия. - 2014. - Т. 324 - №3, С. 22-25. В качестве исходных компонентов для получения прекурсора использовали: Na2WO4·2H2O (ч.д.а.), ZrOCl2-8H2O (х.ч.) и HCl (х.ч.). Гидротермальная реакция осуществлялась при температуре 160°С в течение 36 часов. Для получения монофазного порошка ZrW2O8 синтезированный прекурсор отжигали при температуре 570°С в течение 1 часа на воздухе.

Основными недостатками известного технического решения являются:

- продолжительное время старения прекурсора (до 3 недель),

- агломерация порошка.

Наиболее близким по технической сущности является способ получения наноструктурного порошка вольфрамата циркония гидротермальным методом, описанный в статье: Kozy, L.С. Particle size and morphology control of the negative thermal expansion material cubic zirconium tungstate / L.C. Kozy, M.N. Tahir // J. Mater. Chem. - 2009. - V. 19. - P. 2760-2765. Гидрат гидроксида вольфрамата цирконий был подготовлен гидротермически в кислых средах. В эксперименте растворы 0,240 г ZrOCl2·H2O (0,80 ммоль) и 0,330 г Na2WO4 2H2O (1,00 ммоль) и 1,6 мл воды выливают одновременно в емкость с тефлоновым вкладышем, и образуется белый гелеобразный осадок. Подготавливают смесь из 6,1 мл концентрированной HClO4/2,98 г NaCl (0,05 моль) и 0,9 мл воды добавляют к первой смеси и перемешивают в течение нескольких минут. Конечные концентрации исходных материалов были 0,08М ZrOCl2·H2O, 0,1 M Na2WO4 2H2O, 7М HClO4 и 5М NaCl. После емкость помещают в предварительно нагретую духовку при 130°С в течение 72 ч. После охлаждения, белый осадок центрифугируют и промывают несколько раз водой.

Основным недостатком известного способа является агломерация конечного порошка.

Задачей предлагаемого изобретения является разработка способа получения наноструктурного порошка вольфрамата циркония (ZrW2O8).

Техническим результатом предлагаемого способа получения наноструктурного порошка вольфрамата циркония (ZrM2O8) является отсутствие агломерации и уменьшение время старения порошка.

Указанный технический результат достигается тем, что способ получения наноструктурного порошка вольфрамата циркония включает синтез прекурсора (ZrW2O7(OH,Cl)2·2H2O), затем его термическое разложение, при этом для синтеза прекурсора используют смесь растворов оксихлорида циркония, натрия вольфрамовокислого и соляной кислоты в дистиллированной воде, взятых при стехиометрической соотношении элементов Zr:W=1:2, а термическое разложение прекурсора (ZrW2O7(OH,Cl)2·2H2O) проводят в воздушной атмосфере при температуре 800-900 К в течение 0.75-1.5 часа, причем скорость нагрева до указанной температуры не должна превышать 100 К/час.

Синтез прекурсора проводят в автоклаве с воздушной атмосферой при давлении 2-3 атм, температуре 400-450 К в течение 10-12 часов, затем охлаждают до комнатной температуры и подвергают прекурсор многократной промывке при комнатной температуре на воздухе с последующей сушкой при температуре 375-400 К.

Полученный наноструктурный порошок вольфрамата циркония имеет средний размер вытянутых частиц: в поперечном направлении не более 15 нм, в продольном не более 0.5 мкм

Сущность изобретения заключается в следующем.

Известно, что синтез наноструктурного порошка вольфрамата циркония возможен несколькими способами. Наиболее предпочтительным является гидротермальный метод, позволяющий получать монофазный вольфрамат циркония при относительно низких температурах. Основными преимуществами по сравнению с другими методами «мягкой химии» являются отсутствие агломерации и уменьшение время старения порошка.

Параметры гидротермального синтеза определяют свойства конечных порошков.

Основными стадиями предлагаемого гидротермального метода являются:

- синтез прекурсора;

- термическое разложение прекурсора до соединения вольфрамата циркония.

Кислотность раствора, тип кислоты и продолжительность термической обработки играют решающую роль на морфологию порошка.

При синтезе вольфрамата циркония в условиях гидротермального синтеза в качестве исходной кислоты наиболее эффективно использовать соляную HCl кислоту, обеспечивающую наилучшую кристаллизацию порошка по сравнению с другими кислотами. Также тип кислоты обуславливает морфологию порошка. Например, морфология вольфрамата циркония, полученного с использованием HCl, представлена частицами вытянутой формы. Средний размер вытянутых частиц в поперечном направлении не превышал 15 нм, в продольном - 0.5 мкм.

Размер частиц порошка напрямую зависит от кислотности раствора: чем выше кислотность, тем меньше размер частиц прекурсора. Высокая гомогенность порошка и однородность распределения определяются продолжительностью гидротермальной реакции. Благодаря некоторой растворимости прекурсора при низком pH раствора наблюдается рекристаллизация ZrW2O7(OH)2·2H2O, которая обуславливает однородность порошка.

Гидротермальный метод позволяет понизить температуру кристаллизации вольфрамата циркония по сравнению с другими химическими методами. Монокристаллы ZrW2O8 кристаллизуются уже при 573 К.

К основным достоинствам получения вольфрамата циркония в условиях гидротермального синтеза следует отнести:

- высокую гомогенность прекурсора;

- пониженные температуры кристаллизации монокристаллов вольфрамата циркония.

Нанокристалический порошок вольфрамата циркония изготавливают по следующей рецептуре:

- оксихлорид циркония,

- натрий вольфрамовокислый 2 водный,

- соляная кислота.

Предложена следующая последовательность технологических операций. Сначала получают прекурсор (ZrW2O7(OH,Cl)2·2H2O) в условиях гидротермального метода.

Синтез прекурсора (ZrW2O7(OH,Cl)2·2H2O) проводят из стехиометрической смеси Zr:W=1:2. В качестве исходных компонентов используют растворы оксихлорида циркония и натрия вольфрамовокислого и соляной кислоты в дистиллированной воде. Водный раствор Na2WO4·2H2O в количестве 25 мл (0.5 М) смешивают с 25 мл ZrOCl2·8H2O (0.25 M), затем постепенно добавляют по 25 мл раствора соляной кислоты различной концентрации (0.4 М, 0.7 М, 1.4 М, 2.5 М).

Свежеприготовленный раствор тщательно перемешивают при комнатной температуре при нормальном атмосферном давлении.

Полученную суспензию помещают в стальной автоклав с тефлоновым вкладышем и ставят в печь для осуществления гидротермальной реакции. Нагревание производят в воздушной атмосфере при температуре 400-450 К в печи с нагревателями из хромита лантана. Продолжительность гидротермальной реакции составляет 10-12 часов.

После выключения печи стальной автоклав охлаждают до комнатной температуры. Полученный прекурсор подвергают фильтрации с помощью фильтрованной бумаги различной плотности, затем многократному промыванию дистиллированной водой и сушке при комнатной температуре на воздухе при температуре 375-400 К.

Затем синтезируют из полученного прекурсора нанокристаллический порошок вольфрамата циркония (ZrW2O8) путем термического разложения прекурсора (ZrW2O7(OH,Cl)2·2H2O). Термическое разложение прекурсора производят в воздушной атмосфере при температуре 800-900 К в печи с нагревателями из хромита лантана. Длительность изотермической выдержки 0.75-1.5 часа, скорость нагрева до температуры термического разложения не превышает 100 К/час.

На фиг. 1 и 2 представлены изображения порошков вольфрамата циркония, полученных при различных температурах термического разложения, соответственно 700 К и 900 К.

Примеры конкретного выполнения

Пример 1

В качестве исходных компонентов используют растворы оксихлорида циркония и натрия вольфрамовокислого и соляной кислоты в дистиллированной воде. Водный раствор Na2WO4·2H2O в количестве 25 мл (0.5 М) смешивают с 25 мл ZrOCl2·8H2O, затем постепенно добавляют по 25 мл раствора соляной кислоты различной концентрации (0.4 М, 0.7 М, 1.4 М, 2.5 М).

Свежеприготовленный раствор в объеме 150 мл тщательно перемешивают при комнатной температуре при нормальном атмосферном давлении, при этом соблюдено стехиометрическое соотношение элементов Zr:W=1:2.

Полученную суспензию помещают в стальной автоклав с тефлоновым вкладышем и ставят в печь для осуществления гидротермальной реакции. Нагревание производят в воздушной атмосфере при давлении 2 атм, температуре 400 К в печи с нагревателями из хромита лантана. Продолжительность гидротермальной реакции составляет 12 часов. После выключения печи стальной автоклав охлаждают до комнатной температуры. Полученный прекурсор подвергают фильтрации с помощью фильтрованной бумаги различной плотности, затем многократному промыванию дистиллированной водой и сушке при комнатной температуре на воздухе при температуре 375 К.

Затем синтезируют из полученного прекурсора нанокристаллический порошок вольфрамата циркония (ZrW2O8) путем термического разложения прекурсора ZrW2O7(OH, Cl)2·2Н2О в воздушной атмосфере при температуре 900 К в печах с нагревателями из хромита лантана. Длительность изотермической выдержки 0.75 час, скорость нагрева до температуры термического разложения 100 К/час.

Пример 2

В качестве исходных компонентов используют растворы оксихлорида циркония и натрия вольфрамовокислого и соляной кислоты в дистиллированной воде. Водный раствор Na2WO4·2H2O в количестве 25 мл (0.5 М) смешивают с 25 мл ZrOCl2·8H2O (0.25 M), затем постепенно добавляют по 25 мл раствора соляной кислоты различной концентрации (0.4 М, 0.7 М, 1.4 М, 2.5 М).

Свежеприготовленный раствор в объеме 150 мл тщательно перемешивают при комнатной температуре при нормальном атмосферном давлении.

Полученную суспензию помещают в стальной автоклав с тефлоновым вкладышем и ставят в печь для осуществления гидротермальной реакции. Нагревание производят в воздушной атмосфере при давлении 3 атм и температуре 450 К в печи с нагревателями из хромита лантана. Продолжительность гидротермальной реакции составляет 10 часов.

После выключения печи стальной автоклав охлаждают до комнатной температуры. Полученный прекурсор подвергают фильтрации, затем многократному промыванию дистиллированной водой и сушке при комнатной температуре на воздухе при температуре 385 К.

Затем синтезируют из полученного прекурсора нанокристаллический порошок вольфрамата циркония (ZrW2O8) путем термического разложения прекурсора ZrW2O7(OH, Cl)2·2H2O в воздушной атмосфере при температуре 700 К в печах с нагревателями из хромита лантана. Длительность изотермической выдержки 1.5 часа, скорость нагрева до температуры термического разложения 90 К/час.

Пример 3

В качестве исходных компонентов используют растворы оксихлорида циркония и натрия вольфрамовокислого и соляной кислоты в дистиллированной воде. Водный раствор Na2WO4·2H2O в количестве 25 мл (0.5 М) смешивают с 25 мл ZrOCl2·8H2O (0.25 M), затем постепенно добавляют по 25 мл раствора соляной кислоты различной концентрации (0.4 М, 0.7 М, 1.4 М, 2.5 М).

Свежеприготовленный раствор в объеме 150 мл тщательно перемешивают при комнатной температуре при нормальном атмосферном давлении.

Полученную суспензию помещают в стальной автоклав с тефлоновым вкладышем и ставят в печь для осуществления гидротермальной реакции. Нагревание производят в воздушной атмосфере при давлении 2 атм и температуре 430 К в печи с нагревателями из хромита лантана. Продолжительность гидротермальной реакции составляет 11 часов.

После выключения печи стальной автоклав охлаждают до комнатной температуры. Полученный прекурсор подвергают фильтрации, затем многократному промыванию дистиллированной водой и сушке при комнатной температуре на воздухе при температуре 400 К.

Затем синтезируют из полученного прекурсора нанокристаллический порошок вольфрамата циркония (ZrW2O8) путем термического разложения прекурсора ZrW2O7(OH, Cl)2·2Н2О в воздушной атмосфере при температуре 800 К в печах с нагревателями из хромита лантана. Длительность изотермической выдержки 1.0 час, скорость нагрева до температуры термического разложения 95 К/час.

Полученный наноструктурный порошок вольфрамата циркония имеет средний размер вытянутых частиц в поперечном направлении не превышал 15 нм, в продольном - 0.5 мкм.


СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРНОГО ПОРОШКА ВОЛЬФРАМАТА ЦИРКОНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 47 items.
27.02.2013
№216.012.2a7f

Способ получения пористого керамического материала

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию...
Тип: Изобретение
Номер охранного документа: 0002476406
Дата охранного документа: 27.02.2013
10.07.2013
№216.012.544f

Способ упрочнения легких сплавов

Изобретение относится к металлургии, в частности к получению легких сплавов на основе алюминия. В расплав на основе алюминия вводят лигатуру, содержащую частицы тугоплавкого соединения. В качестве лигатуры используют порошок микронных размеров тугоплавкого соединения, частицы которого покрывают...
Тип: Изобретение
Номер охранного документа: 0002487186
Дата охранного документа: 10.07.2013
27.10.2014
№216.013.0232

Способ получения керамического шликера

Предлагаемое изобретение относится к порошковой металлургии и может быть использовано для формования изделий как методом литья термопластичного шликера, так и методом прямого формования инжектированием через форсунки. Заявленный способ получения керамического шликера обеспечивает повышенную...
Тип: Изобретение
Номер охранного документа: 0002531960
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0344

Способ измерения механических свойств материала в условиях всестороннего давления (варианты)

Изобретение относится к области исследования, а именно измерения механических свойств твердых материалов, например твердых геологических пород в условиях гидростатического давления, и может быть использовано для оценки их качества, а именно их прочности и модуля упругости при сжатии. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002532234
Дата охранного документа: 27.10.2014
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
27.06.2015
№216.013.5a0c

Способ определения глинистых минералов

Использование: для определения глинистых минералов с помощью рентгеноструктурного анализа. Сущность изобретения заключается в том, что выполняют отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, при этом для...
Тип: Изобретение
Номер охранного документа: 0002554593
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.6452

Катализатор низкотемпературного окисления монооксида углерода и способ его применения

Изобретение относится к области гетерогенного катализа, а именно к низкотемпературному окислению CO, и может быть использовано для систем очистки воздуха в замкнутых помещениях, например в салонах автотранспорта, производственных, офисных и жилых помещениях. Предложен катализатор...
Тип: Изобретение
Номер охранного документа: 0002557229
Дата охранного документа: 20.07.2015
27.11.2015
№216.013.948e

Устройство для ограничения давления в скважине и способ разрыва продуктивного пласта давлением пороховых газов с использованием указанного устройства

Группа изобретений относится к горному делу и может быть применена для предохранения обсадной колонны от разрушения при разрыве продуктивного пласта давлением пороховых газов. Устройство содержит герметичную чугунную емкость с цилиндрической полостью с кольцевым уступом. На нем установлен...
Тип: Изобретение
Номер охранного документа: 0002569649
Дата охранного документа: 27.11.2015
27.05.2016
№216.015.43e4

Способ получения пористого керамического биоматериала на основе диоксида циркония

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из...
Тип: Изобретение
Номер охранного документа: 0002585291
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4947

Микрохирургический шовный материал

Изобретение относится к медицинской микрохирургической технике. Описан шовный материал для микрохирургических операций, который выполнен из никелид-титановой проволоки с диаметром 30-40 мкм. Поверхностный слой нити с толщиной 5-10 мкм имеет пористо-проницаемую структуру и служит депо для...
Тип: Изобретение
Номер охранного документа: 0002586781
Дата охранного документа: 10.06.2016
Showing 1-10 of 49 items.
27.02.2013
№216.012.2a7f

Способ получения пористого керамического материала

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию...
Тип: Изобретение
Номер охранного документа: 0002476406
Дата охранного документа: 27.02.2013
27.10.2014
№216.013.0232

Способ получения керамического шликера

Предлагаемое изобретение относится к порошковой металлургии и может быть использовано для формования изделий как методом литья термопластичного шликера, так и методом прямого формования инжектированием через форсунки. Заявленный способ получения керамического шликера обеспечивает повышенную...
Тип: Изобретение
Номер охранного документа: 0002531960
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0344

Способ измерения механических свойств материала в условиях всестороннего давления (варианты)

Изобретение относится к области исследования, а именно измерения механических свойств твердых материалов, например твердых геологических пород в условиях гидростатического давления, и может быть использовано для оценки их качества, а именно их прочности и модуля упругости при сжатии. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002532234
Дата охранного документа: 27.10.2014
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
27.06.2015
№216.013.5a0c

Способ определения глинистых минералов

Использование: для определения глинистых минералов с помощью рентгеноструктурного анализа. Сущность изобретения заключается в том, что выполняют отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, при этом для...
Тип: Изобретение
Номер охранного документа: 0002554593
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.6452

Катализатор низкотемпературного окисления монооксида углерода и способ его применения

Изобретение относится к области гетерогенного катализа, а именно к низкотемпературному окислению CO, и может быть использовано для систем очистки воздуха в замкнутых помещениях, например в салонах автотранспорта, производственных, офисных и жилых помещениях. Предложен катализатор...
Тип: Изобретение
Номер охранного документа: 0002557229
Дата охранного документа: 20.07.2015
27.11.2015
№216.013.948e

Устройство для ограничения давления в скважине и способ разрыва продуктивного пласта давлением пороховых газов с использованием указанного устройства

Группа изобретений относится к горному делу и может быть применена для предохранения обсадной колонны от разрушения при разрыве продуктивного пласта давлением пороховых газов. Устройство содержит герметичную чугунную емкость с цилиндрической полостью с кольцевым уступом. На нем установлен...
Тип: Изобретение
Номер охранного документа: 0002569649
Дата охранного документа: 27.11.2015
27.05.2016
№216.015.43e4

Способ получения пористого керамического биоматериала на основе диоксида циркония

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из...
Тип: Изобретение
Номер охранного документа: 0002585291
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4947

Микрохирургический шовный материал

Изобретение относится к медицинской микрохирургической технике. Описан шовный материал для микрохирургических операций, который выполнен из никелид-титановой проволоки с диаметром 30-40 мкм. Поверхностный слой нити с толщиной 5-10 мкм имеет пористо-проницаемую структуру и служит депо для...
Тип: Изобретение
Номер охранного документа: 0002586781
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4da1

Воздушно-центробежный классификатор порошков циклонного типа

Изобретение относится к области порошковой технологии и может быть использовано в металлургической, машиностроительной, химической, атомной и других отраслях промышленности, связанных с переработкой порошкообразных материалов по разделению частиц по размерам. Воздушно-центробежный классификатор...
Тип: Изобретение
Номер охранного документа: 0002595116
Дата охранного документа: 20.08.2016
+ добавить свой РИД