×
19.01.2018
218.016.036c

Результат интеллектуальной деятельности: Способ извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению материалов для химической и электронной промышленности, обогащению минерального сырья, предназначено для извлечения из дисперсного углерод-катализаторного композита в отдельный продукт углеродных нанотрубок, применяющихся в производстве сорбентов, носителей катализаторов, неподвижных хроматографических фаз, композиционных материалов и функциональных покрытий и др. Способ извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита заключается в репульпировании композита в воде при соотношении Т:Ж=1:3-Т:Ж=1:5 с интенсивным перемешиванием пульпы при скорости вращения мешалки 200-1000 об/мин, кондиционировании пульпы с добавлением реагентов на основе ацетиленовых или высших алифатических спиртов, флотации углеродных нанотрубок в пенный продукт, промывке углеродных нанотрубок водой с последующими декантацией и сушкой при температуре 90-200°C. Технический результат - повышение эффективности и производительности извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита. 3 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к получению материалов для химической и электронной промышленности, обогащению минерального сырья, предназначено для извлечения из дисперсного углерод-катализаторного композита в отдельный продукт углеродных нанотрубок, применяющихся в производстве сорбентов, носителей катализаторов, неподвижных хроматографических фаз, композиционных материалов, функциональных покрытий и др.

Свойства аллотропных модификаций углерода радикально отличаются, например свойства сажи и алмаза. Углеродные нанотрубки получают искусственно, они состоят из атомов углерода в кристаллической аллотропии, представляют собой цилиндрические кристаллы. Структура и свойства углеродных нанотрубок отличаются от структуры и свойств графита и аморфного углерода - угля и сажи. Длина углеродных нанотрубок в зависимости от метода и режима получения составляет до 1000 нм и более, диаметр 4-8 нм. Углеродные нанотрубки отличаются от других модификаций углерода размерами частиц, окисляемостью, электропроводностью, плотностью, свойствами поверхности и др.

Углеродные нанотрубки получают электроразрядом на графитовых электродах и при разложении газообразных углеводородов (ацетилен, метан, этилен и др.), проходящих через нагретый до 600-1000°С катализатор. В качестве катализатора используются материалы (графит, цеолит, силикагель и др.), которые содержат или на которые нанесены металлы или их соединения - синтетические катализаторы, или применяется содержащее металлы природное рудное сырье - руда или концентрат. Рудные катализаторы значительно дешевле и доступнее, чем синтетические катализаторы. Продолжительность получения нанотрубок на синтетических катализаторах составляет 10-17 ч (RU №2146648, опубл. 20.03.2000), на природном рудном сырье - марганцевой руде, несколько минут (RU №2457175, опубл. 27.07.2012).

Электроразрядным методом образуются нанотрубки относительно небольшого размера, их выход составляет не более 25% от общей массы углерода. Этим методом практически невозможно регулировать размеры нанотрубок и сложно выделять чистую фракцию нанотрубок, не содержащую примесей других модификаций углерода - графита и аморфного углерода.

Каталитическим методом можно получать практически весь углерод в виде нанотрубок при низком содержании или отсутствии аморфного углерода, регулировать размеры и другие свойства трубок, получать однослойные и многослойные, прямые, наклонные и скрученные нанотрубки фуллеренового диаметра, волокна и др. Использование дисперсного катализатора позволяет значительно увеличить выход нанотрубок.

При получении углеродных нанотрубок на поверхности катализатора создаются центры роста нанотрубок, которые эпитаксиально связаны с катализатором, то есть образуется углерод-катализаторный композит, в котором трубки составляют единое целое с катализатором. Для получения качественного материала углеродных нанотрубок необходимо их отделить от катализатора без значительных повреждений и извлечь в отдельный продукт с минимальным количеством примесей.

Разделение углеродных нанотрубок, графита и аморфного углерода проводится с использованием измельчения, окисления при высокой температуре, вследствие различия окисляемости аллотропных форм углерода, и обогащения, основанного на различии размеров и плотности частиц, например центрифугирования. Известные способы отделения углеродных нанотрубок от примесных частиц графита очень сложны и требуют высоких затрат (US №5695734, опубл. 09.12.1997, US №5641466, опубл. 24.06.1997, US №5560898, опубл. 01.10.1996).

Применение для извлечения углеродных нанотрубок из углерод-катализаторного композита механической оттирки катализатора приводит к обламыванию нанотрубок на короткие сегменты и образованию большого количества мелких частиц, что снижает качество продукта углеродных нанотрубок и его применение.

Для выделения углеродных нанотрубок в основном применяется растворение катализатора кислотами и их смесями при нагревании, также в сочетании с ультразвуковым воздействием, с отмывкой нанотрубок от образовавшихся солей (MacKenzie К., Dunens О., Harris А.Т. A review of carbon nanotube purification by microwave assisted acid digestion // Separation and purification Technology. - 2009. - Vol. 66. - P. 209-222; RU №2146648, опубл. 20.03.2000, RU №2379387, опубл. 20.01.2010). Основными недостатками этого способа являются разрушающее воздействие сильных кислот на стенки углеродных нанотрубок, появление большого количества нежелательных кислородсодержащих функциональных групп на их поверхности (Liangti Qu, Kyung Min Lee, Liming Dai // Functionalization and application of carbon nanotubes // Carbon nanotechnology. Elsevier. - 2006. - Ch. 7. - P. 155-234). Металлические частицы катализатора инкапсулируются во внутренней полости трубки и становятся недоступными для реагентов и загрязняют продукт. Для реализации способов требуется большой расход кислот, затрат энергии на нагревание, катализатор безвозвратно теряется, что приводит к высокой стоимости реализации способа, кроме того, нагретые кислоты оказывают вредное воздействие на здоровье персонала.

Известны способы извлечения углистых веществ флотацией с использованием реагентов из измельченной золотосодержащей руды (RU №2483808, опубл 10.06.2013, RU №2339454, опубл. 27.11.2008) и обогащение угля флотацией (RU №2457905, опубл.. 10.08.2012, RU №2004343, опубл. 15.12.1993). Эти способы предназначены для извлечения веществ аморфной аллотропии углерода и не подходят для извлечения углеродных нанотрубок кристаллической аллотропии характерной формы.

Наиболее близким по технической сути к изобретению является способ отделения углеродных нанотрубок от графита, включающий тонкое измельчение материала, диспергирование в жидкой среде, разделение частиц центрифугированием и микрофильтрацией, прокаливание твердой фазы в кислородсодержащей атмосфере при температуре отжига графитовых частиц (US №5560898, опубл. 01.10.1996).

Недостатками способа является повреждение нанотрубок при тонком измельчении материала и, соответственно, снижение качества материала нанотрубок, низкая эффективность отделения нанотрубок центрифугированием и производительность микрофильтрации, большое количество операций и затрат на прокаливание и в результате невысокая экономичность реализации способа.

Техническим результатом изобретения является повышение эффективности, экономичности и производительности извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита, сохранение свойств образованных нанотрубок в продукте, простота реализации способа.

Указанный технический результат извлечения углеродных нанотрубок из дисперсного углерод-катализаторного композита достигается репульпированием композита в воде при соотношении Т:Ж=1:3 - Т:Ж=1:5 с интенсивным перемешиванием пульпы при скорости вращения мешалки 200-1000 об/мин, кондиционированием пульпы с добавлением реагентов на основе ацетиленовых или высших алифатических спиртов, флотацией углеродных нанотрубок в пенный продукт, промывкой углеродных нанотрубок водой с последующими декантацией и сушкой при температуре 90°С-200°С.

Частными случаями реализации изобретения являются репульпирование углерод-катализаторного композита в воде с интенсивным перемешиванием продолжительностью 5-45 минут, кондиционирование пульпы с реагентом продолжительностью 3-30 минут, флотации углеродных нанотрубок в пенный продукт продолжительностью 5-60 минут.

В изобретении извлечение образованных на дисперсном катализаторе углеродных нанотрубок и эпитаксиально связанных с поверхностью катализатора из углеродно-катализаторных композитов в отдельный продукт без растворения катализатора состоит из двух основных операцией: отсоединение, отрыв нанотрубок от поверхности катализатора и разделение отделенных нанотрубок и частиц катализатора в продукты.

В изобретении для минимального разрушения, повреждения углеродных нанотрубок отрыв их от катализатора осуществляется мягким гидродинамическим воздействием - интенсивным перемешиванием композита в воде в отличие от применения ультразвука или измельчения в аналогах и прототипе. Отсоединение углеродных нанотрубок от поверхности катализатора наиболее эффективно до 99% при репульпировании композита в воде при соотношении Т:Ж=1:3 - Т:Ж=1:5, где твердая фаза - композит, жидкая фаза - вода, с интенсивным перемешиванием со скоростью вращения мешалки 200-1000 об/мин, продолжительностью перемешивания 5-45 минут. Режим репульпирования выбирается в зависимости от содержания нанотрубок в композите, их длины и диаметра: при уменьшении содержания нанотрубок, увеличении их длины и уменьшении диаметра плотность пульпы уменьшается, соотношение Т:Ж - увеличивается, и соответственно перемешивание осуществляется при меньшей скорости вращения и продолжительности перемешивания.

В изобретении для разделения отсоединенных нанотрубок и катализатора в отдельные продукты применяется производительный, эффективный и экономичный процесс пенной флотации с использованием небольшого расхода реагентов и энергии, просто реализуемый, который не изменяет состав и свойства нанотрубок, в отличие от применения растворения катализатора кислотами, прокаливания при температуре отжига, микрофильтрации и др. Разделение нанотрубок и катализатора флотацией включает кондиционирование пульпы воздухом с добавлением реагентов и флотации с выделением нанотрубок в пенный продукт. Кондиционированием подготавливается поверхность углеродных нанотрубок к флотации, сорбция на поверхности реагентов. Продолжительность кондиционирования составляет от 3 до 30 минут и зависит от плотности пульпы и применяемых реагентов: при увеличении соотношения Т:Ж продолжительность кондиционирования уменьшается. Для извлечения нанотрубок в пенный продукт флотацией в качестве реагентов могут использоваться собиратели и активаторы, пенообразователи и депрессоры. Наибольшее извлечение в пенный продукт нанотрубок флотацией достигается применением реагентов основе ацетиленовых или высших алифатических спиртов. При продолжительности флотации углеродных нанотрубок 5-60 минут с применением реагентов извлечение нанотрубок в пенный продукт составляет до 99,5%. Для получения готового продукта углеродных нанотрубок пенный продукт промывают водой для удаления флотореагентов, обезвоживают декантацией и сушат при температуре 90°С-200°С.Катализатор, остающийся в камерном продукте, может использоваться повторно для каталитического получения углеродных нанотрубок или для других целей.

По изобретению извлечение углеродных нанотрубок из дисперсного углерод-катализаторного композита более эффективно, чем по аналогам и прототипу, так как извлечение в пенный продукт нанотрубок достигает 99,5%, больше чем центрифугированием и растворением катализатора кислотами, продукт нанотрубок содержит меньше примесей, качество получаемого продукта нанотрубок выше, так как они не разрушаются в операциях извлечения.

Большая производительность извлечения нанотрубок обеспечивается меньшим количеством операций и небольшим временем флотации, составляющим в сумме 15-135 минут, обезвоживания декантацией и сушки углеродных нанотрубок в отличие от продолжительных операций растворения катализатора кислотами при нагревании, микрофильтрации тонкоизмельченных частиц, отжига и др.

Большая экономичность реализации изобретения обеспечивается низким расходом реагентов (100-200 г/т) и энергии для извлечения флотацией, меньшим количеством операций и продолжительностью операций флотации и декантирования по сравнению с операциями растворения, измельчения, прокаливания и микрофильтрации, а также получения продукта нанотрубок более высокого качества и сохранением катализатора для повторного использования.

В получаемом по изобретению продукте сохраняются свойства углеродных нанотрубок вследствие мягкого гидродинамического режима отрыва нанотрубок от поверхности катализатора в отличие от тонкого измельчения и механической оттирки, при котором трубки обламываются на сегменты; отсутствия химического воздействия на нанотрубки растворителей катализатора при нагревании и отжига в кислородсодержащей среде, при которых разрушаются стенки нанотрубок, появляется большое количество нежелательных кислородсодержащих функциональных групп на их поверхности.

Способ просто реализуется, так как используется практически одна операция флотации, осуществляемая в флотомашине, небольшая продолжительность операции в отличие от применения нескольких операций: измельчения в мельнице, центрифугирования, прокаливания в печах, и др.

Пример 1 реализации изобретения

Полученные пиролизом метана на дробленой марганцевой руде крупностью -3,0+1,0 мм углеродные нанотрубки диаметром 4-6 нм, длиной до 1000-1200 нм извлекались из дисперсного углеродно-катализаторного композита, в котором содержание углерода составляло 32,1%, что соответствует содержанию нанотрубок в композите (таблица).

Углеродно-катализаторный композит репульпировался в воде при Т:Ж=1:5 во флотомашине с перемешиванием со скоростью вращения мешалки 200-400 об/мин в течение 5-10 минут. Кондиционирование пульпы проводилось с расходом воздуха 475 дм3/мин продолжительностью 3-5 минут с добавлением реагентов на основе высших алифатических спиртов С712 или ацетиленовых спиртов: диметил (изопропенилэтинил) карбинола (СН3)2С(ОН)С=С-С(СН3)=СН2 (ДМИПЭК) или 3-метилбутинол-3 (СН3)2С(ОН)С=СН (ДК-80). Продолжительность флотации составляла 6 минут, пенный продукт углеродных нанотрубок промывался водой, декантировался и сушился при температуре 180-200°С.

Извлечение углеродных нанотрубок в пенный продукт без применения реагентов составило 56%, при выходе 18%, с применением реагентов извлечение углеродных нанотрубок увеличилось до 87,9-96,5%, выход пенного продукта до 28,2-30,9%. Более эффективно нанотрубки извлекаются в пенный продукт с применением реагента ДК-80: извлечение достигает 96,5% при расходе реагента 170 г/т, что на 4,2% и 8,6% больше, чем с применением раствора спиртов С712 и реагента ДМИПЭК, выход пенного продукта с использованием ДК-80 составляет 30,9%, больше на 1,3% и на 2,7%, соответственно. Наибольшее извлечение углеродных нанотрубок достигается при расходе реагентов на флотацию 150-200 г на тонну композита. Марганцевая руда после отделения нанотрубок может использоваться повторно для получения углеродных нанотрубок или в металлургии.

Пример 2 реализации изобретения

Образованные пиролизом на дисперсном синтетическом катализаторе крупностью гранул -0,5+0,2 мм, содержащем около 80% железа, 5% кобальта и 15% оксида алюминия, углеродные нанотрубки диаметром 5-8 нм, длиной 800-1000 нм, извлекались из углерод-катализаторного композита, содержащего нанотрубок углеродных 63,5%.

Углеродно-катализаторный композит репульпировался в воде при Т:Ж=1:3 с интенсивным перемешиванием со скоростью вращения мешалки 1000 об/мин, продолжительностью 45 минут, затем пульпа кондиционировалась в течение 30 минут с добавлением реагента ДК-80 - 3-метилбутинол-3 (СН3)2С(ОН)С=СН в количестве 200 г/т, пенной флотации в течение 60 минут. Пенный продукт после флотации промывался водой и высушивался при температуре 90-100°С.

Извлечение углеродных нанотрубок в пенный продукт составило 99,4%, выход 62,7% из 63,7%, следовательно содержание примесей в продукте небольшое. Изучение структуры углеродно-катализаторного композита и пенного продукта микроскопированием показало, что нанотрубки не повреждены и сохраняется их исходная длина и форма.

Источник поступления информации: Роспатент

Showing 221-230 of 322 items.
01.09.2018
№218.016.8204

Антифрикционная полимерная композиция на основе фторопласта

Изобретение относится к области полимерного материаловедения, а именно к антифрикционным полимерным материалам триботехнического назначения, которые могут быть использованы для изготовления узлов трения, работающих в экстремальных условиях среды. Антифрикционная композиция включает, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002665429
Дата охранного документа: 29.08.2018
05.09.2018
№218.016.82fb

Катализатор и способ получения диметилкарбоната с его использованием

Изобретение относится к катализаторам и каталитическим системам для синтеза диметилкарбоната (ДМК), а также к способу получения ДМК. Описан катализатор на основе SnO, нанесенного на оксид алюминия, который содержит промотирующие добавки в виде галогенидов металлов (CuCl; ZnCl и KF). Катализатор...
Тип: Изобретение
Номер охранного документа: 0002665681
Дата охранного документа: 04.09.2018
14.09.2018
№218.016.87ea

Диэлектрический метаматериал с тороидным откликом

Изобретение относится к метаматериалам для получения сильной локализации электромагнитных полей в небольшой, по сравнению с длиной волны, областью. Изобретение может использоваться для прототипирования оптических устройств различного рода и диапазонов частот, в качестве элементов сенсоров, в...
Тип: Изобретение
Номер охранного документа: 0002666965
Дата охранного документа: 13.09.2018
25.09.2018
№218.016.8b5f

Способ акустико-эмиссионной диагностики ответственных деталей тележек грузовых вагонов при эксплуатации

Изобретение относится к способам диагностики состояния ответственных деталей подвижного состава железнодорожного транспорта. Согласно изобретению диагностику деталей проводят при движении грузового состава в режиме реального времени, при этом датчики акустической эмиссии (АЭ) устанавливают на...
Тип: Изобретение
Номер охранного документа: 0002667808
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8cc9

Способ получения катализатора окислительного дегидрирования этана

Изобретение относится к технологии приготовления наночастиц катализатора окислительного дегидрирования углеводородов в условиях СВЧ активации (нагрева) реакционной массы, и в частности Mo-V-Te-Nb-O катализатора окислительного дегидрирования этана (ОДЭ). Описан способ получения катализатора для...
Тип: Изобретение
Номер охранного документа: 0002668215
Дата охранного документа: 27.09.2018
03.10.2018
№218.016.8cd9

Катализатор и способ алкилирования бифенила олефинами c-c

Изобретение относится к области органического синтеза и, в частности, к катализаторам и реакциям алкилирования бифенила олефинами С-С. Предложены катализаторы алкилирования бифенила олефинами С-С, в которых в качестве носителя используют фторированный AlO или SiO, а в качестве модификатора...
Тип: Изобретение
Номер охранного документа: 0002668218
Дата охранного документа: 27.09.2018
03.10.2018
№218.016.8ddf

Способ получения кристаллов магнетита

Изобретение относится к технологии получения кристаллов магнетита (FeO), которые могут найти применение в качестве контрастных агентов, средств доставки лекарств, при магнитной гипертермии. Способ получения кристаллов магнетита включает смешение октадецена с олеатом железа (III) или...
Тип: Изобретение
Номер охранного документа: 0002668440
Дата охранного документа: 01.10.2018
04.10.2018
№218.016.8f36

Способ определения склонности к преждевременному разрушению твердых сплавов, используемых в качестве упрочняющих наплавок рабочих органов сельскохозяйственных машин

Изобретение относится к сельскохозяйственному машиностроению и может быть использовано для оценки склонности к преждевременному разрушению (трещиностойкости) деталей упрочненных деталей рабочих органов почвообрабатывающих машин. Способ включает определение сопротивляемости сплавов разрушению по...
Тип: Изобретение
Номер охранного документа: 0002668691
Дата охранного документа: 02.10.2018
11.10.2018
№218.016.8fcd

Коррозионно-стойкий материал с повышенным содержанием бора

Изобретение относится к области металлургии, а именно к коррозионно-стойким нейтроно-поглощающим сплавам на основе железа, используемым для изготовления стеллажей уплотненного хранения топлива. Сплав содержит углерод, марганец, кремний, хром, бор, титан, цирконий и железо при следующем...
Тип: Изобретение
Номер охранного документа: 0002669261
Дата охранного документа: 09.10.2018
26.10.2018
№218.016.9689

Способ подготовки микропроводов со стеклянной оболочкой для электрического соединения

Изобретение относится к области гальванотехники и может быть использовано в микроэлектронике для изготовления качественных электрических контактов на микропроводах диаметром до 40 мкм со стеклянной оболочкой до 15 мкм, в том числе переменного сечения, использующихся для изготовления ГМИ,...
Тип: Изобретение
Номер охранного документа: 0002670631
Дата охранного документа: 24.10.2018
Showing 171-179 of 179 items.
04.04.2018
№218.016.30ed

Литниковая система для заливки лопаток из жаропрочных сплавов для газотурбинного двигателя в формы, изготовленные автоматизированным способом

Изобретение относится к литейному производству. Литниковая система содержит приемную чашу 1, вертикальный колодец 2 с дросселирующим элементом 3 и зумпфом 4. От вертикального колодца 2 отходят нижние 5 и верхние 7 питатели, соединенные кольцевыми коллекторами 8. Нижние питатели 5 направлены...
Тип: Изобретение
Номер охранного документа: 0002644868
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3108

Катализатор и способ получения ацетальдегида с его использованием

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида....
Тип: Изобретение
Номер охранного документа: 0002644770
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3124

Автоматический нейросетевой настройщик параметров пи-регулятора для управления нагревательными объектами

Автоматический нейросетевой настройщик параметров ПИ-регулятора для управления нагревательными объектами содержит уставку по температуре, ПИ-регулятор, объект управления, два блока задержки сигналов, нейросетевой настройщик, соединенные определенным образом. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002644843
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
29.03.2019
№219.016.f5d6

Катализатор для получения углеродных нанотрубок из метансодержащих газов

Изобретение относится к области наноматериалов. В качестве катализатора в процессе получения углеродных нанотрубок из метансодержащих газов используют природную руду, содержащую, мас.%: оксиды марганца 7÷43, оксиды железа 3÷29, остальное - до 100. Изобретение позволяет упростить технологию...
Тип: Изобретение
Номер охранного документа: 0002457175
Дата охранного документа: 27.07.2012
29.05.2019
№219.017.6621

Твердый сорбент сероводорода на основе оксидных соединений марганца

Изобретение относится к очистке промышленных газов от сероводорода. Предложен сорбент для очистки газов от сероводорода, представляющий собой обогащенные или необогащенные руды, содержащие оксиды марганца в количестве 18-70 мас.%, выбранные из ряда: океанические железомарганцевые конкреции или...
Тип: Изобретение
Номер охранного документа: 0002381832
Дата охранного документа: 20.02.2010
+ добавить свой РИД