×
03.10.2018
218.016.8ddf

Результат интеллектуальной деятельности: Способ получения кристаллов магнетита

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения кристаллов магнетита (FeO), которые могут найти применение в качестве контрастных агентов, средств доставки лекарств, при магнитной гипертермии. Способ получения кристаллов магнетита включает смешение октадецена с олеатом железа (III) или ацетилацетонатом железа (III) в диапазоне концентраций 0,02-0,10 моль/л и олеиновой кислотой и олеатом натрия в диапазоне концентраций 0,02-0,10 моль/л и 0,06-0,20 моль/л, соответственно, нагрев смеси до 70°С и ее выдерживание при этой температуре в течение 30 мин, повторный нагрев смеси в атмосфере инертного газа с 70°С до 320°С со скоростью от 2 до 6°С/мин, ее выдерживание при этой температуре в течение 25-60 мин и охлаждение смеси до комнатной температуры в течение 30-120 мин, проводимые в атмосфере инертного газа, введение в систему изопропанола объемом 200-400% от объема реакционной смеси и отделение кристаллов магнетита, после чего осуществляют диспергирование кристаллов магнетита в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин, до достижения концентрации 3,20-15,5 мг/мл по магнетиту в присутствии олеиновой кислоты и олеата натрия с концентрациями в диапазоне 0,02-0,10 моль/л и 0,06-0,30 моль/л, соответственно, нагрев полученной дисперсии до температуры 290-350°С в атмосфере инертного газа со скоростью 2-6°С/мин с последующим введением в нагретую дисперсию по каплям раствора олеата железа (III) в неполярном высококипящем органическом растворителе с концентрацией 0,04-0,50 моль/л в течение 1-10 ч и охлаждение дисперсии до комнатной температуры в течение 30-120 мин, проводимыми в атмосфере инертного газа, с повторным введением в систему изопропанола и отделением кристаллов магнетита. Изобретение по сравнению с известными аналогами повышает в 5,5 раз намагниченность насыщения кристаллов FeOи увеличивает в 3,7 раза скорость их r-релаксивности. 3 пр.

Изобретение относится к области неорганической химии и касается способа получения кристаллов магнетита (Fe3O4), которые могут найти применение в качестве контрастных агентов, средств доставки лекарств, при магнитной гипертермии и т.д.

Известен способ получения кристаллов магнетита путем смешения 15 мл высококипящего органического растворителя - октадецена с 2,09 г органического соединения железа (III) - олеата железа (III) и 0,71 мг олеата натрия в круглодонной колбе, прикрепленной к линии Шленка через конденсатор, сушки смеси под вакуумом в течение 30 мин при 120°С, нагрева смеси до 200°С до полного растворения олеата натрия, нагрева смеси в атмосфере инертного газа - аргона до 320°С и охлаждения смеси до комнатной температуры, проводимыми в атмосфере инертного газа, введения в систему смеси гексана и этанола и отделения кристаллов магнетита (Kovalenko М.V. et al. Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: The case of inverse spinel iron oxide // Journal of the American Chemical Society, 2007. V. 129, P. 6352-6353). Данный способ имеет такие признаки, совпадающие с существенными признаками заявляемого технического решения, как смешение октадецена с олеатом железа (III) и олеатом натрия, нагрев смеси до 320°С и охлаждение смеси до комнатной температуры, проводимые в атмосфере инертного газа, введение в систему осадителя и отделение кристаллов магнетита.

Недостатком этого способа является то, что полученные кристаллы магнетита обладают относительно невысокими магнитными свойствами, что затрудняет проведение с их помощью эффективную МРТ-диагностику и осложняет удаленное манипулирование ими во внешнем магнитном поле.

Известен способ получения кристаллов магнетита путем смешения 32 мл высококипящего органического растворителя - октадецена с органическим соединением железа (III) - олеатом железа (III) и 0,71 мг олеиновой кислоты, нагрева смеси в атмосфере инертного газа - аргона до 295°С со скоростью нагрева 0,88°С/мин и охлаждения смеси до комнатной температуры, проводимыми в атмосфере инертного газа, введения в систему этанола и отделения кристаллов магнетита (Basini, М. et al. Local spin dynamics of iron oxide magnetic nanoparticles dispersed in different solvents with variable size and shape: A 1H NMR study. The Journal of chemical physics, 2017. V. 146, P. 1-10, 034703). Данный способ имеет такие признаки, совпадающие с существенными признаками заявляемого технического решения, как смешение октадецена с олеатом железа (III) и олеиновой кислотой, нагрев смеси в атмосфере инертного газа и охлаждение смеси до комнатной температуры, проводимые в атмосфере инертного газа, введение в систему осадителя и отделение кристаллов магнетита.

Недостатком данного способа является то, что полученные кристаллы магнетита обладают относительно невысокими магнитными свойствами, что снижает эффективность МРТ-диагностики и осложняет удаленное манипулирование во внешнем магнитном поле.

Наиболее близким к заявляемому является известный способ получения кристаллов магнетита путем смешения 10 мл октадецена с 0,5 г органического соединения железа (III) - олеата железа (III) и 0,1 мл олеиновой кислоты, нагрева смеси до 70°С и ее выдерживания при этой температуре в течение 30 мин, нагрева смеси в атмосфере инертного газа - аргона до 320°С, ее выдерживания при этой температуре в течение 30 мин и охлаждения смеси до комнатной температуры, проводимыми в атмосфере инертного газа, введения в систему изопропанола и отделения кристаллов магнетита (Sharma V.К., Alipour A., Soran-Erdem Z., Aykut Z.G., Demir H.V. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1 - T2 MRI contrast agents // Nanoscale, 2011. V. 7, P. 10519-10526 - прототип).

Известный способ дает возможность получать кристаллы магнетита, имеющие размеры 8-11 нанометров (нм). Его основным недостатком являются относительно невысокие магнитные свойства и параметр r2-релаксивности. Так, намагниченность насыщения составляет 18 Ам2/кг, а значение скорости г2-релаксивности составляет 90 мМ-1-1.

Задача изобретения заключается в разработке способа получения кристаллов магнетита, лишенного вышеуказанных недостатков.

Технический результат изобретения заключается в улучшении магнитных свойств кристаллов за счет повышения их намагниченности насыщения и увеличения скорости r2-релаксивности.

Предварительно были проведены эксперименты с различными неполярными высококипящими органическими растворителями, различными органическими соединениями железа (III) и различными методиками получения кристаллов магнетита, которые показали, что указанный технический результат достигается в том случае, когда в известном способе получения кристаллов магнетита путем смешения октадецена с органическим соединением железа (III) и олеиновой кислотой, нагрева смеси до 70°С и ее выдерживания при этой температуре в течение 30 мин, нагрева смеси в атмосфере инертного газа с 70°С до 320°С, ее выдерживания при этой температуре и охлаждения смеси до комнатной температуры в течение 30-120 мин, проводимыми в атмосфере инертного газа, введения в систему изопропанола и отделения кристаллов магнетита, в качестве органического соединения железа (III) используют олеат железа (III) или ацетилацетонат железа (III), в смесь органического соединения железа (III) и олеиновой кислоты добавляют олеат натрия, после отделения кристаллов магнетита их диспергируют в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин, в присутствии олеиновой кислоты и олеата натрия, полученную дисперсию нагревают до температуры 290°С - 350°С в атмосфере инертного газа с последующим введением в нагретую дисперсию по каплям раствора олеата железа (III) в неполярном высококипящем органическом растворителе в течение 1-10 ч и охлаждения дисперсии до комнатной температуры в течение 30-120 мин, проводимыми в атмосфере инертного газа, с повторным введением в систему изопропанола и отделением кристаллов магнетита.

Предлагаемый способ является новым и не описан в патентной и научно-технической литературе.

В предлагаемом способе в качестве неполярного высококипящего органического растворителя можно использовать растворители, выбранные из группы, включающей дибензиловый эфир, октадецен и триоктиламин. Если на этой стадии синтеза кристаллов магнетита вместо неполярного высококипящего органического растворителя использовать полярный высококипящий органический растворитель, то технический результат изобретения не достигается.

Экспериментально было показано, что в качестве органического соединения железа (III) можно использовать олеат железа (III) или ацетилацетонат железа (III). При этом концентрация органического соединения трехвалентного железа в неполярном высококипящем органическом растворителе может варьироваться и составлять, например, 0,02-0,10 моль/л. Концентрация олеиновой кислоты и олеата натрия в предложенном способе также может варьироваться и составлять, например, 0,02-0,10 моль/л и 0,06-0,20 моль/л, соответственно.

Оптимальная температура первоначального нагрева смеси органического соединения железа (III), олеиновой кислоты, олеата натрия и октадецена, равная 70°С, и оптимальная продолжительность нагрева вышеуказанной смеси при 70°С, равная 30 мин, были установлены экспериментально. Следует отметить, что проводить вышеуказанные стадии синтеза кристаллов магнетита можно в присутствие воздуха. После проведения вышеуказанных стадий синтеза необходимо в атмосфере инертного газа нагреть реакционную смесь с 70°С до 320°С.При этом скорость нагрева реакционной смеси на каждой стадии синтеза может быть различна и составлять, например, 2-6°С/мин и все стадии синтеза кристаллов магнетита при температурах выше 70°С необходимо проводить в атмосфере любого инертного газа, например, такого, как азот, аргон и т.д. После нагрева смеси до 320°С реакционную смесь необходимо выдержать при данной температуре в течение определенного времени, например, в течение 25-60 мин, при этом данную операцию также необходимо проводить в атмосфере инертного газа. После выдерживания реакционной смеси ее необходимо охладить до комнатной температуры, при этом продолжительность охлаждения реакционной смеси также может быть различной и составлять, например, 30-120 мин. Следует отметить, что стадию охлаждения реакционную смеси также необходимо проводить в атмосфере инертного газа. Если вышеуказанные стадии синтеза проводить не в атмосфере инертного газа, а, например, в присутствия воздуха или хотя бы одну из вышеуказанных стадий синтеза вообще не проводить, то технический результат изобретения не достигается.

После охлаждения смеси до комнатной температуры в предложенном способе в систему необходимо ввести изопропанол, необходимый для декантации полученных кристаллов магнетита, причем для выполнения этой стадии синтеза атмосфера инертного газа не требуется и ее можно проводить в присутствии воздуха. При этом количество вводимого изопропанола может варьироваться в широких пределах и составлять, например, 200 - 400% от объема реакционной смеси.

После введения изопропанола кристаллы магнетита можно отделять с использованием традиционно применяемых для этих целей методов, например, таких как центрифугирование или магнитная декантация.

В предлагаемом способе после отделения кристаллов магнетита их диспергируют в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин, в присутствии добавок олеиновой кислоты и олеата натрия. При этом концентрация олеиновой кислоты и олеата натрия в неполярном высококипящем органическом растворителе может составлять, например, 0,02-0,10 моль/л и 0,06-0,30 моль/л, соответственно.

На второй стадии синтеза исходная концентрация дисперсии ранее полученных кристаллов магнетита в смеси неполярного высококипящего органического растворителя, олеиновой кислоты и олеата натрия также может варьироваться и составлять, например, 3,20-15,50 г/л. В предложенном способе после диспергирования кристаллов магнетита полученную дисперсию нагревают до температуры 290°-350°С в атмосфере любого инертного газа. Затем в атмосфере инертного газа в нагретую дисперсию по каплям вводят раствор олеата железа (III) в неполярном высококипящем органическом растворителе в течение 1-10 ч. При этом концентрация раствора олеата железа (III) в вышеуказанной смеси может варьироваться и составлять, например, 0,04-0,50 моль/л. Если в предлагаемом способе любую из вышеуказанных стадий синтеза кристаллов магнетита не проводить, или их проводить в других условиях, например, вводить олеат железа (III) не по каплям в течение 1-10 ч, а в один прием, то предлагаемый способ утрачивает работоспособность.

В предлагаемом техническом решении после охлаждения смеси до комнатной температуры, например, в течение 30-120 мин в систему повторно вводят изопропанол, необходимый для декантации полученных кристаллов магнетита, причем для выполнения этой стадии синтеза атмосфера инертного газа не требуется и ее можно проводить в присутствии воздуха. При этом количество повторно вводимого изопропанола также может варьироваться в широких пределах и составлять, например, 200-400% от объема реакционной смеси. Затем увеличившие свой размер в процессе второй стадии синтеза кристаллы магнетита отделяют с использованием традиционно применяемых для этих целей методов, например, таких как центрифугирование или магнитная декантация. Массу полученных кристаллов магнетита определяют гравиметрически.

Полученные кристаллы магнетита можно хранить как на воздухе, так и при пониженной температуре в холодильнике в герметичной стеклянной посуде без ухудшения свойств в течение длительного времени, например, в течение 1 года.

Размер, морфология и распределение по размерам кубических кристаллов магнетита были исследованы с помощью просвечивающей электронной микроскопии с использованием программы ImageG. Магнитные свойства полученных кристаллов были исследованы на приборе Вибромагнетометр VSM-250. Структура полученных кристаллов была исследована на дифратометре SmartLab Rigaku. Я2-релаксация полученных кристаллов была исследована на приборе ClinScan.

Преимущества предлагаемого способа иллюстрируют следующие примеры.

Пример 1.

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 20,0 мл октадецена, 1,800 г олеата железа (III), 0,570 г олеиновой кислоты и 1,220 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°С со скоростью 6°С/мин и выдерживают при этой температуре в течение 30 мин. После чего в колбу подают ток азота, после дегазации содержимого колбы ее нагревают с 70°С до 320°С со скоростью 2°С/мин с постепенным увеличением мощности плитки. Колбу выдерживают при 320°С в течение 25 мин, затем извлекают из масляной бани и содержимое колбы оставляют остывать до комнатной температуры, проводя эти стадии синтеза в атмосфере азота. Через 30 мин содержимое колбы выливают в химический стакан, содержащий 80,0 мл изопропанола, после чего содержимое стакана перемешивают. Выпавший в осадок кристаллы магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 10,0 мл триоктиламина, 0,284 г олеиновой кислоты и 0,912 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают азотом, колбу помещают в масляную баню и нагревают до 350°С со скоростью 2°С/мин, после чего туда в атмосфере азота по каплям вводят раствор 18,000 г олеата железа (III) в 22,0 мл триоктиламина в течение 10 ч. Затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере азота. После чего содержимое колбы переносят в химический стакан, содержащий 200,0 мл изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 1,701 г кристаллов магнетита.

Методом просвечивающей электронной микроскопии было показано, что полученные кристаллы магнетита имеют кубическую форму со стороной 25 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 78 А*м2/кг. С помощью дифрактометра Rigaku Smartlab было выявлено, что положение рентгеновских рефлексов полученных кристаллов, соответствуют справочным значениям рефлексов магнетита. Скорость r2-релаксивности полученных кристаллов магнетита, определенная методом МРТ-томографии, составляет 310 мМ-1*c-1.

Полученные кристаллы магнетита при хранении на воздухе сохраняют свои свойства в течение, по крайней мере, 1 года.

Пример 2.

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 15,0 мл октадецена, 0,900 г олеата железа (III), 0,280 г олеиновой кислоты и 0,610 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°С со скоростью 5°С/мин и выдерживают при этой температуре в течение 30 мин. После чего в колбу подают ток аргона и после дегазации содержимого колбы ее нагревают с 70°С до 320°С со скоростью 5°С/мин, затем содержимое колбы выдерживают при 320°С в течение 30 мин, после чего колбу извлекают из масляной бани и оставляют остывать до комнатной температуры в атмосфере аргона. Через 60 мин содержимое колбы выливают в химический стакан, содержащий 30 мл изопропанола, после чего содержимое стакана перемешивают. Выпавшие в осадок кристаллы магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 8,0 мл октадецена, 0,057 г олеиновой кислоты и 0,180 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают аргоном, колбу помещают в масляную баню и нагревают со скоростью 5°С/мин до 318°С, после чего туда в атмосфере аргона по каплям вводят раствор 9,00 г олеата железа (III) в 18 мл октадецена в течение 5 ч. Затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона. После этого содержимое колбы переносят в химический стакан, содержащий 110 мл изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 0,851 г кристаллов магнетита.

Методом просвечивающей электронной микроскопии было показано, что полученные кристаллы магнетита имеют кубическую форму со стороной 23 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 73 А*м2/кг. С помощью дифрактометра Rigaku Smartlab было показано, что положение рентгеновских рефлексов полученных кристаллов, соответствуют справочным значениям рефлексов магнетита. Значение скорости г2-релаксивности полученных кристаллов магнетита, определенное методом МРТ-томографии, составляет 293 мМ-1-1.

Полученные кристаллы магнетита при хранении на воздухе сохраняют свои свойства в течение, по крайней мере, 1 года.

Пример 3.

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 25,0 мл октадецена, 0,177 г ацетилацетоната железа (III), 0,142 г олеиновой кислоты и 0,456 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°С со скоростью 2°С/мин и выдерживают при этой температуре в течение 30 мин. После чего в колбу подают ток аргона и после дегазации содержимого колбы ее нагревают с 70°С до 320°С со скоростью 4°С/мин, затем колбу выдерживают при 320°С в течение 60 мин, после чего колбу извлекают из масляной бани и содержимое колбы оставляют остывать до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона. Через 120 мин содержимое колбы выливают в химический стакан, содержащий 75,0 мл изопропанола, после чего содержимое стакана перемешивают. Выпавшие в осадок кристаллов магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 12,0 мл дибензилового эфира, 0,068 г олеиновой кислоты и 0,219 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают аргоном, колбу помещают в масляную баню и нагревают до 290°С со скоростью 6°С/мин. После чего туда в атмосфере аргона по каплям подают раствор 1,368 г олеата железа (III) в 38,0 мл дибензилового эфира в течение 1 ч, затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона, и содержимое колбы переносят в химический стакан, содержащий 100,0 мл изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 0,155 г кристаллов магнетита.

Методом просвечивающей электронной микроскопии было показано, что полученные кристаллы магнетита имеют кубическую форму со стороной 27 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 88 Ам2/кг. С помощью дифрактометра Rigaku Smartlab было показано, что положение рентгеновских рефлексов полученных кристаллов, соответствуют справочным значениям рефлексов магнетита. Скорость r2-релаксивности полученных кристаллов магнетита, определенная методом МРТ-томографии, составляет 332 мМ-1-1.

Полученные кристаллы магнетита при хранении на воздухе сохраняют свои свойства в течение 1 года.

Таким образом, из приведенных примеров видно, что предложенный способ по сравнению с прототипом действительно улучшает магнитные свойства кристаллов магнетита, повышая значение их магнитного насыщения в 5,50 раз и увеличивая в 3,73 раза значение скорости их r2-релаксивности.

Способ получения кристаллов магнетита, включающий смешение октадецена с олеатом железа (III) или ацетилацетонатом железа (III) в диапазоне концентраций 0,02-0,10 моль/л и олеиновой кислотой и олеатом натрия в диапазоне концентраций 0,02-0,10 моль/л и 0,06-0,20 моль/л, соответственно, нагрев смеси до 70°С и ее выдерживание при этой температуре в течение 30 мин, повторный нагрев смеси в атмосфере инертного газа с 70°С до 320°С со скоростью от 2 до 6°С/мин, ее выдерживание при этой температуре в течение 25-60 мин и охлаждение смеси до комнатной температуры в течение 30-120 мин, проводимые в атмосфере инертного газа, введение в систему изопропанола объемом 200-400% от объема реакционной смеси и отделение кристаллов магнетита, после чего осуществляют диспергирование кристаллов магнетита в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин, до достижения концентрации 3,20-15,5 мг/мл по магнетиту в присутствии олеиновой кислоты и олеата натрия с концентрациями в диапазоне 0,02-0,10 моль/л и 0,06-0,30 моль/л, соответственно, нагрев полученной дисперсии до температуры 290-350°С в атмосфере инертного газа со скоростью 2-6°С/мин с последующим введением в нагретую дисперсию по каплям раствора олеата железа (III) в неполярном высококипящем органическом растворителе с концентрацией 0,04-0,50 моль/л в течение 1-10 ч и охлаждение дисперсии до комнатной температуры в течение 30-120 мин, проводимыми в атмосфере инертного газа, с повторным введением в систему изопропанола и отделением кристаллов магнетита.
Источник поступления информации: Роспатент

Showing 1-10 of 322 items.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Showing 1-10 of 39 items.
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
10.07.2015
№216.013.5bc1

Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота. Носитель модифицируют кремнийорганическим соединением, содержащим группу -SH или -NH, обрабатывают коллоидным раствором...
Тип: Изобретение
Номер охранного документа: 0002555030
Дата охранного документа: 10.07.2015
10.08.2016
№216.015.559e

Устройство для исследования воздействия низкочастотного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы

Изобретение относится к медицинской технике. Устройство для исследования биохимических систем, содержащих магнитные наночастицы, при воздействии низкочастотного негреющего магнитного поля, включающее источник питания, соединенный с генератором, питающим обмотки электромагнита. При этом...
Тип: Изобретение
Номер охранного документа: 0002593238
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.ca4c

Способ покрытия наночастиц магнетита слоем золота

Изобретение относится к способам получения наночастиц магнетита (FeO), покрытых слоем золота, которые могут быть использованы в качестве контрастного агента для магнитно-резонансной томографии, магнитной сепарации, адресной доставки лекарств и т.д. Изобретение увеличивает выход покрытых золотом...
Тип: Изобретение
Номер охранного документа: 0002620166
Дата охранного документа: 23.05.2017
29.12.2017
№217.015.f8cc

Композиция, ингибирующая теломеразу

Изобретение относится к композиции, ингибирующей теломеразу. Указанная композиция включает блок-сополимер полиоксиэтилена и полиоксипропилена, а также координационное соединение производного имидизол-4-она, ингибирующее теломеразу, общей формулы При этом координационное соединение производного...
Тип: Изобретение
Номер охранного документа: 0002639819
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.011f

Новые диспиро-индолиноны, ингибиторы mdm2/p53 взаимодействия, способ получения и применения

Изобретение относится к области органической химии, а именно к новым производным диспиро-индолинонам формулы 1 или к их фармацевтически приемлемым солям, или оптическим изомерам, где R выбран из группы, включающей фенил, возможно замещенный 1-2 заместителями, выбранными из атома галогена,...
Тип: Изобретение
Номер охранного документа: 0002629750
Дата охранного документа: 01.09.2017
10.05.2018
№218.016.3aae

Способ определения цитотоксичности веществ

Изобретение относится к биомедицине и может быть использовано для определения цитотоксичности веществ путем обработки клетки веществом с последующим определением токсичности вещества по изменению уровня внутриклеточных активных форм кислорода. Определение уровня внутриклеточных активных форм...
Тип: Изобретение
Номер охранного документа: 0002647464
Дата охранного документа: 15.03.2018
09.06.2018
№218.016.5f84

Способ получения модифицированных кристаллов магнетита

Изобретение относится к области неорганической химии и касается способа получения модифицированных кристаллов магнетита FeO, содержащих на поверхности флуоресцентный краситель, что дает возможность визуализировать и отслеживать их поведение как в живой клетке, так и в живом организме in vivo....
Тип: Изобретение
Номер охранного документа: 0002656667
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.62ab

Способ получения системы для доставки противоопухолевого препарата в клетки опухоли

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения системы для доставки противоопухолевого препарата в клетки опухоли, включающий смешение в присутствии воды модифицированных полимером наночастиц магнетита, эпитаксиально выращенных на...
Тип: Изобретение
Номер охранного документа: 0002657835
Дата охранного документа: 15.06.2018
05.07.2018
№218.016.6c03

Способ получения препарата на основе магнитных наночастиц (мнч) оксида железа для мрт-диагностики новообразований

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения препарата для МРТ-диагностики опухолевых заболеваний, включающий приготовление раствора ацетилацетоната железа (III) в бензиловом спирте с концентрацией 75-200 г/л с последующим нагревом в токе...
Тип: Изобретение
Номер охранного документа: 0002659949
Дата охранного документа: 04.07.2018
+ добавить свой РИД