×
29.12.2017
217.015.fa36

Результат интеллектуальной деятельности: Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом и азотом, и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности. Изготовление постоянных магнитов проводят азотацией монокристаллической заготовки, полученной из сплава редкоземельных металлов с железом. При этом скорость выращивания монокристалла находится в интервале от 0,1 до 2 мм/с, а степень разориентации текстуры 3,6-30,7. Изобретение позволяет улучшить магнитные характеристики магнитов за счет повышения плотности и уменьшения степени разориентации частиц магнитного материала. 3 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом с азотом и может быть использовано в электротехнической, приборостроительной и других областях промышленности.

В настоящее время известны четыре основных типа магнитотвердых материалов на основе соединений редкоземельных металлов: SmCo5, Sm2Co17, Nd2Fe14B и Sm2Fe17N3. Особенностью магнитотвердых материалов на основе соединения Sm2Fe17N3 является их низкая температурная стойкость, обусловленная протеканием реакции разложения (Sm2Fe17N3→2SmN+Fe4N+13Fe) при температурах выше 450°С [Попович, А.А. Особенности азотирования магнитотвердого материала Sm2Fe17 / А.А. Попович, Н.Г Разумов, Т.А. Попович // Научно-технические ведомости Санкт-Петербургского государственного политехнического ун-та. - 2013. - №3 (178) - С. 206-215.]. Это делает невозможным использование для данных материалов стандартной технологии изготовления редкоземельных магнитов, а именно получение мелкодисперсного порошка магнитного материала, его формование в магнитном поле и спекание в вакууме при температурах 1100-1200°С. Поэтому практически единственным способом получения постоянных магнитов из порошков магнитных материалов Sm2Fe17N3 является их формование с добавлением полимерной или металлической связки.

Недостатком такого способа является низкая остаточная индукция Br получаемых магнитов, поскольку плотность формованной заготовки всегда значительно меньше теоретической. Так, на образцах магнитов Sm2Fe17N3, полученных по данной технологии даже в лабораторных условиях, она не превысила 0,96 Тл, в то время как на порошках данного материала Br составляет 1,54 Тл. [Kobayashi, K. Magnetic properties of the single magnetic domain particles of Sm2Fe17Nx compounds / K. Kobayashi, T. Iriyama Т., T. Yamaguchi // J. Alloys Comp. - 1993. - V. 193. - P. 235].

Известен способ, при котором заготовку магнита из порошка сплава РЗМ-Fe, не содержащего азота, формуют в магнитном поле, после чего азотируют [Пат. DE 4117104 A1, H01F 1/053, С22С 38/00 Способ получения азотсодержащих постоянных магнитов, в частности Sm-Fe-N/ Reppel, Georg-Werner; патентообладатель Vacuumschmelze GmbH. - DE 19914117104; заявл. 25.05.1991]. Достоинством данного способа является возможность доспекания заготовки на первой стадии азотирования при температурах несколько выше, чем температура разложения материала Sm2Fe17N3, что позволяет повысить плотность формованной заготовки и соответственно ее магнитные параметры.

Основным недостатком данного способа является тот факт, что все соединения РЗМ-Fe (в том числе и Sm2Fe17) не обладают одноосной магнитной анизотропией, а только одноплоскостной. В результате при последующем внедрении азота оси легкого намагничивания образующихся частиц Sm2Fe17N3 располагаются хотя и в одной плоскости, но в разных направлениях. Расположение элементарных ячеек магнитного материала в заготовке, формованной в магнитном поле, до (Sm2Fe17) и после (Sm2Fe17N3) азотирования показано на фигуре 1.

В результате остаточная индукция магнитов, полученных данным методом, зависит от среднего угла разориентации осей легкого намагничивания частиц магнитного материала Sm2Fe17N3 и составляет (при среднем значении угла отклонения оси легкого намагничивания от необходимого направления текстуры около 45°) около 70% от теоретически возможной, что не позволяет получать магниты из материала Sm2Fe17N3 с остаточной индукцией выше 1,06 Тл. Данный недостаток указанного способа получения магнитов отмечается и самими авторами изобретения в его описании.

Наиболее близким к предлагаемому способу получения магнитов является способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом (RU 2601149, опубл. 27.10.2016), включает выплавку сплава в индукционной печи, получение слитка из сплава редкоземельных металлов с железом, гомогенизацию полученных слитков в вакууме до растворения магнитомягкой фазы γ-Fe, и последующие азотирование, изготовление порошка магнитного материала, смешивание его с порошком цинка, компактирование и намагничивание, согласно предложенному изобретению компактирование смеси порошков магнитного материала и цинка осуществляют посредством холодного газодинамического напыления их в струе азота, нагретого до температуры газа от 170°С до 240°С, при давлении от 4 атм до 7 атм. Порошок цинка смешивают с порошком магнитного материала в соотношении от 3% до 12% мас. цинка.

Основным недостатком данного способа является то, что сплавы не обладают одноосной магнитной анизотропией, а только одноплоскостной, способ не позволяет получать магниты из материала Sm2Fe17N3 с остаточной индукцией выше 1,06 Тл.

Технический результат заявляемого изобретения направлен на повышение магнитных характеристик магнитов и в первую очередь их остаточной индукции Br.

Поставленная техническая задача решается тем, что в способе получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом, включающем получение заготовки из сплава редкоземельных металлов с железом и их последующее азотирование, изготовление заготовки, согласно предложенному изобретению осуществляют посредством выращивания монокристалла со скоростью до 2 мм/с.

Техническим результатом, достижение которого обеспечивается совокупностью существенных признаков формулы изобретения, является повышение магнитных характеристик магнитов остаточной индукция Br до 1,18 Тл и коэрцитивной силы до 1430 кА/м за счет повышения их плотности и уменьшения степени разориентации осей легкого намагничивания частиц магнитного материала Sm2Fe17N3.

Заявленный технический результат достигается следующим.

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом включает выплавку сплава в индукционной печи, получение слитка из сплава редкоземельных металлов с железом и последующее азотирование, отличающийся тем, что полученные слитки гомогенизируют в вакууме до растворения магнитомягкой фазы γ-Fe, после чего из полученной литой заготовки выращивают монокристаллы методом вертикальной зонной плавки в установке с подвижным индуктором в атмосфере инертного газа со скоростью от 0,1 до 2 мм/с.

Слитки гомогенизируют в вакууме при температуре 1000°С в течение 36 часов.

Азотирование проводят в атмосфере азота с чистотой 99,99% при температуре 450°С и давлении 1,5 атмосфер в течение 96 часов. В качестве инертного газа используют аргон.

Изобретение поясняется чертежами, где на фиг. 1 показано расположение элементарных ячеек магнитного материала в заготовке, формованной в магнитном поле, до (Sm2Fe17) и после (Sm2Fe17N3) азотирования, на фиг. 2 показано расположение элементарных ячеек магнитного материала в монокристаллической заготовке до (Sm2Fe17) и после (Sm2Fe17N3) азотирования.

Главным преимуществом данного способа получения заготовки является наличие в ней кристаллографической анизотропии, свойственной всем монокристаллическим материалам (фиг. 2).

Как видно из фигуры 2, в монокристалле элементарные ячейки материала, например Sm2Fe17, ориентируются по всем кристаллографическим осям в одинаковых направлениях, в отличие от формованной в магнитном поле заготовки, в которых ориентации происходит только по одной плоскости легкого намагничивания.

Проводят выплавку сплава в индукционной печи. После чего получают слитки из сплава редкоземельных металлов с железом. Полученные слитки гомогенизируют в вакууме до растворения магнитомягкой фазы γ-Fe.

Гомогенизацию полученных слитков проводят при температуре 1000°С в течение 36 часов.

Из полученной литой заготовки выращивают монокристаллы методом вертикальной зонной плавки в установке с подвижным индуктором в атмосфере инертного газа со скоростью от 0,1 до 2 мм/с.

При увеличении скорости выращивания монокристаллов выше 2 мм/с наблюдается рост степени разориентации текстуры из-за неконтролируемой кристаллизации материала и, как следствие, падение остаточной индукции получаемых магнитов.

Некоторый рост коэрцитивной силы по намагниченности jHc, происходящий при уменьшении скорости выращивания монокристаллов менее 0,1 мм/с, объясняется проходящим параллельно процессом частичного растворения магнитомягкой фазы γ-Fe, некоторое количество которой всегда содержится в сплавах редкоземельных металлов и железа.

В принципе, чем меньше скорость выращивания монокристаллов, тем будет ниже степень разориентации текстуры магнитов, получаемых по предлагаемому способу, но, с другой стороны, тем продолжительней будет процесс выращивания и, соответственно, выше себестоимость изготовления магнитов.

Кроме того, при большой длительности процесса увеличится и содержание примесей, попадающих в магнитный материал из аргона и технологической оснастки, что начинает отрицательно сказываться на магнитных параметрах изготавливаемых магнитов.

Последующее азотирование проводят в атмосфере азота с чистотой 99,99% при температуре 450°С и давлении 1,5 атмосфер в течение 96 часов.

В результате при последующем азотировании заготовки и внедрении в кристаллическую решетку соединения Sm2Fe17 азота частицы образующегося магнитного материала Sm2Fe17N3 направлены осями легкого намагничивания в одном направлении.

При этом средний угол разориентации осей легкого намагничивания близок к нулю и определяется только качеством выращенного монокристалла.

А с учетом того, что плотность выращенного монокристалла практически равна теоретической плотности материала, из которого он получен, то постоянные магниты, полученные по предлагаемому способу, могут иметь остаточную индукцию Br на уровне теоретического максимума 1,54 Тл.

Пример

Материал Sm2Fe17 был изготовлен выплавкой в индукционной печи в атмосфере аргона и разлит в керамические формы с внутренним диаметром 3 мм и высотой 25 мм. Далее полученные слитки гомогенизировали в вакууме при температуре 1000°С в течение 36 часов для растворения содержащейся в нем магнитомягкой фазы γ-Fe.

Выращивание монокристаллов Sm2Fe17 из литых заготовок проводили на установке «Кристаллизатор-203» в атмосфере аргона (с чистотой 99,99%) методом вертикальной зонной плавки с подвижным индуктором. Скорость выращивания изменяли от 0,1 до 2 мм/с. При более высоких скоростях выращивания визуально фиксировался рост дополнительных кристаллов с произвольной ориентацией. Степень разориентации текстуры магнитного материала (а) определяли методом обратных полюсных фигур на дифрактометре ДРОН-2 с программным комплексом FREAK.

Азотирование выращенных монокристаллов проводили в атмосфере азота (с чистотой 99,99%) при температуре 450°С и давлении 1,5 атм в течение 96 часов. На полученных образцах магнитов на гистерезисграфе «Permograph С-300» были определены основные магнитные характеристики.

Результаты всех измерений приведены в таблице 1, там же приведены результаты, полученные на образцах, изготовленных по известному способу-прототипу.

Как видно из таблицы 1, использование предлагаемого способа получения постоянных магнитов позволяет повысить их остаточную индукцию почти на 10%.

Так, при скорости выращивания монокристалла 0,05 мм/с продолжительность (трудоемкость) операции получения монокристалла увеличивается в 2 раза при падении магнитных параметров на 1-1,5% несмотря на некоторое снижение степени разориентации текстуры.

Таким образом, регулируя скорость выращивания монокристалла, можно регулировать магнитные параметры магнитов и себестоимость их изготовления.


Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом
Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом
Источник поступления информации: Роспатент

Showing 241-250 of 328 items.
19.01.2019
№219.016.b20f

Способ вскрытия эвдиалитового концентрата

Изобретение относится к металлургии редких металлов. Способ переработки эвдиалитового концентрата включает предварительную механоактивацию концентрата и последующую гидрометаллургическую обработку. Предварительную обработку проводят до суммарного количества усвоенной эвдиалитом энергии в виде...
Тип: Изобретение
Номер охранного документа: 0002677571
Дата охранного документа: 17.01.2019
25.01.2019
№219.016.b3d9

Способ обработки магниевого сплава системы mg-y-nd-zr методом равноканального углового прессования

Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов на основе магния, и может быть использовано в авиастроении, ракетной технике, в конструкциях автомобилей, хорошая биосовместимость позволяет использовать магниевые сплавы в медицине. Способ...
Тип: Изобретение
Номер охранного документа: 0002678111
Дата охранного документа: 23.01.2019
15.02.2019
№219.016.bac8

Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к ядерной технике, в частности к поглощающим нейтроны материалам (гафнат диспрозия - DyНfО), и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка гафната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002679822
Дата охранного документа: 13.02.2019
03.03.2019
№219.016.d278

Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля

Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150...
Тип: Изобретение
Номер охранного документа: 0002681022
Дата охранного документа: 01.03.2019
15.03.2019
№219.016.dfe2

Способ получения высокотемпературного термоэлектрического материала на основе кобальтита кальция

Изобретение относится к получению высокотемпературного термоэлектрического материала на основе кобальтита кальция и может быть использовано при производстве устройств термоэлектрического генерирования электроэнергии. Способ включает получение водного раствора из нитратов кобальта и кальция,...
Тип: Изобретение
Номер охранного документа: 0002681860
Дата охранного документа: 13.03.2019
27.04.2019
№219.017.3d45

Способ синтеза нанокомпозитов ag/c

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем...
Тип: Изобретение
Номер охранного документа: 0002686223
Дата охранного документа: 24.04.2019
14.05.2019
№219.017.5183

Способ получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к порошковой металлургии, в частности к получению проницаемого пеноматериала из сверхупругого сплава системы титан-цирконий-ниобий. Может использоваться в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов. Сферичные...
Тип: Изобретение
Номер охранного документа: 0002687352
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.518b

Способ получения твердых сплавов с округлыми зернами карбида вольфрама для породоразрушающего инструмента

Изобретение относится к области порошковой металлургии, в частности, к крупнозернистым твердым сплавам системы WC-Co/Ni/Fe. Может применяться для производства породоразрушающего твердосплавного инструмента. Крупнозернистые узкофракционные порошки WC с зернистостью 5-20 мкм смешивают без размола...
Тип: Изобретение
Номер охранного документа: 0002687355
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51ca

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С....
Тип: Изобретение
Номер охранного документа: 0002687359
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5225

Устройство для адаптивного временного профилирования ультракоротких лазерных импульсов

Изобретение относится к области лазерной техники и касается устройства для адаптивного временного профилирования ультракоротких лазерных импульсов. Устройство включает в себя лазерный задающий осциллятор, стретчер, обеспечивающий чирпирование лазерного импульса, акустооптическую дисперсионную...
Тип: Изобретение
Номер охранного документа: 0002687513
Дата охранного документа: 14.05.2019
Showing 191-192 of 192 items.
10.07.2019
№219.017.a9e3

Способ изготовления коррозионностойких постоянных магнитов

Изобретение относится к изготовлению постоянных магнитов на основе сплавов Nd-Fe-B. Способ включает прессование заготовок, их механическую обработку, нанесение на поверхность слоя алюминия толщиной 10-15 мкм холодным газодинамическим напылением и термообработку в расплаве солей с последующим...
Тип: Изобретение
Номер охранного документа: 0002693887
Дата охранного документа: 05.07.2019
04.11.2019
№219.017.de7e

Способ получения металлургического глинозема кислотно-щелочным способом

Изобретение может быть использовано при переработке низкосортного высококремнистого алюмосодержащего сырья. Для получения металлургического глинозема каолиновые глины выщелачивают в автоклаве соляной кислотой в течение 60-180 мин при температуре 130-190°C. Пульпу после выщелачивания фильтруют...
Тип: Изобретение
Номер охранного документа: 0002705071
Дата охранного документа: 01.11.2019
+ добавить свой РИД