×
14.05.2019
219.017.5183

Результат интеллектуальной деятельности: Способ получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, в частности к получению проницаемого пеноматериала из сверхупругого сплава системы титан-цирконий-ниобий. Может использоваться в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов. Сферичные частицы полиметилметакрилата размером не более 250 мкм и порошка сплава системы титан-цирконий-ниобий размером не более 50 мкм равномерно перемешивают при следующем соотношении в массовых долях: полиметилметакрилат 0,1-0,4, металлический порошок – остальное. Компактируют путем двухстороннего прессования при давлении 150-200 МПа в цилиндрические заготовки диаметром 5-20 мм и высотой 5-40 мм. Затем проводят пиролиз при многоступенчатом нагреве с выдержкой при температуре 400-450°C в течение 2-3 ч и спекание при температуре 1350-1400°C и давлении не менее 0,0001 тор в течение 3-4 ч. Обеспечивается повышение пористости, увеличение объемной доли пор размером 100-800 мкм, повышение предела прочности на сжатие и снижение значения модуля Юнга. 1 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к порошковой металлургии, а именно к созданию способа получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий. Материалы цилиндрической формы, полученные с использованием предлагаемого способа, могут быть использованы в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов.

Известен способ получения имплантационного материала на основе пористого политетрафторэтилена включает подготовку поверхности основы, служащей подложкой, нанесение на подготовленную поверхность подложки поверхностного слоя покрытия модифицированного легирующими элементами, путем магнетронного распыления одной из мишеней выбранной из ряда металлов, включающего: титан, цирконий, гафний, ниобий, тантал; карбидов указанных металлов, или композиционных керамических материалов, выбранных из группы, включающей: карбид титана, содержащий 10 мас. % оксида кальция; карбид титана, содержащий 10 мас. % оксида кальция и 2 мас. % перманганата калия; карбид титана, содержащий 10 мас. % оксида циркония; карбид титана, содержащий 10 мас. % гидроксиапатита, при этом распыление одной из указанных мишеней проводят при давлении 1-2⋅10-1 Па, при температуре подложки в интервале 150-170°C, в атмосфере аргона или смеси аргона с азотом, при парциальном давлении азота 14% (RU 2325191 С1, опублик. 27.05.2008). В отношении получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий известный способ имеет недостатки. Предписываемые способом условия и компоненты позволяют получать композиционные металлокерамические пеноматериалы с малой пористостью (до 10%) и низкими прочностными характеристиками (предел прочности менее 30 МПа). Такие материалы не могут применяться в качестве внутрикостных материалов, работающих под нагрузкой, т.к. костная ткань прочнее.

Известен также способ приготовления медицинского композиционного материала с радиальным градиентом, включающий следующие этапы: порошок Ti, имеющий размер частиц менее 150 мкм, порошок НА, имеющий размер частиц менее 300 нм, и порошок NH4HCO3, имеющий размер частиц от 100 до 500 мкм, смешивают в смесителе для получения смешанного порошка А, и массовый процент порошка Ti в смешанном порошке А составляет 60%. 80%, массовый процент порошка НА составляет от 5 до 20%, а массовый процент порошка NH4HC03 составляет от 5 до 25%; порошки Ti, Nb и Zr с размером частиц менее 150 мкм взвешивают в соответствии с массовым процентным содержанием Nb: от 10 до 16%, Zr: от 10 до 16% и остатком Ti, а затем помещают в резервуар вакуумной шаровой мельницы и в планетарную шаровую мельницу, выполнение шарового помола для получения смешанного порошка Б; зафиксируйте форму внутренней трубки в центре формы рукава с помощью приспособления, заполните смешанный порошок А между формой внутренней трубы и рукава до расчетной высоты образца и прижмите смешанный порошок А под односторонним давлением, после фактического удаления извлекают внутреннюю трубчатую форму, а затем смешанный порошок В заполняют в центр полого цилиндрического зеленого тела, и затем смешанный порошок в гильзе формируют в холодном состоянии, и материал сердцевины и наружного слоя получают после втягивания гильзы (CN 108273126 А, опублик. 13.07.2018). В отношении получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий известный способ имеет недостатки:

- Измельчение и перемешивание чистых материалов в вакуумной шаровой мельнице и в планетарной шаровой мельнице - это дополнительная трудоемкая операция, которая требует контроля химического состава материала. В предлагаемом способе в качестве исходного материала используется порошок сплава известного состава.

- Размеры получаемых образцов ограничены в одном измерении до 20,5 мм. В предлагаемом способе возможно получение гораздо более крупных образцов.

Наиболее близким техническим решением, принятым за прототип, является способ получения биомедицинского пористого титанового сплава Ti-39Nb-6Zr включает стадии: получение слитка сплава Ti-39Nb-6Zr методом вакуумной плавки и получение сферических частиц порошка методом распыления с вращающимся электродом; использование порошка сплава 100-150 меш, добавление связующего вещества или порообразующего агента бикарбоната аммония и связующее, полностью перемешанное, спрессованное в прессованную массу; компакт спекается в печи для спекания с аргоновой трубкой, чтобы полностью удалить связующее или порообразователь и связующее, чтобы получить пористый сплав Ti-39Nb-6Zr (CN 106801163 А, опублик. 06.06.2017).

В результате применения способа-прототипа можно получить пористые материалы с модулем упругости 3.6-12.4 ГПа и пористостью 19.4-42.1%. Ничего не сообщается о параметрах пористой структуры, размере пор и проницаемости материалов. Эти характеристики являются критически важными с точки зрения врастания костной ткани в пористую структуру биоматериала. В результате применения предлагаемого способа становится возможным получение проницаемого пеноматериала с пористостью более 50%, с большей объемной долей пор размером 100-800 мкм, низким модулем упругости 2-15 ГПа и достаточно высокой прочностью (предел прочности более 100 МПа). Этот комплекс характеристик наглядно показывает преимущества предлагаемого способа над рассматриваемым способом-прототипом.

Техническим результатом является создание изобретения в виде способа получения проницаемого пеноматериала из сверхупругих сплавов циллиндрической формы системы титан-цирконий-ниобий. Путем последовательного осуществления процессов перемешивания металлического порошка и порошка полиметилметакриллата сферической формы, компактирование их в формы, пиролиза и спекания можно получать металлические пеноматериалы с заданными зарактеристиками пористостой структуры. Контролируемое применение предложенного способа позволит получать спеченные металлические пеноматериалы с высокой пористостью (более 50%), с большей объемной долей пор размером 100-800 мкм, высоким пределом прочности на сжатие (не менее 100 МПа) и низкими значениями модуля Юнга (2-15 ГПа), близкими к таковым у трабекулярной костной ткани человека.

Изобретение поясняется рисунком, где на фиг. 1 показана схема осуществления способа получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий.

Технический результат достигается следующим образом. Порошок сферической формы из сплава на основе Ti-18Zr-14Nb (в ат. %), полученый методом диспергирования индукционно-расплавляемого электрода газовым потоком, размером не более 50 мкм и порошок полимера (0,2% от общей массы) полиметилметакрилата (ПММА) сферической формы, размером не более 250 мкм равномерно перемешивали.

Прессование порошков Ti-Zr-Nb и ПММА в цилиндрические формы осуществлялось на пресс-машине с давлением 200 МПа по схеме двухстороннего (с плавающей матрицей) прессования. Диаметр получаемых образцов 20 мм, высота не более 40 мм.

Спрессованный образец помещается в вакуумную печь с величиной вакуума не более 1 Па. В рабочей камере вакуумной печи достигается температура 200°C со скоростью 10°C/мин при такой температуре полимер размягчается, но не переходит в газообразную форму, далее скорость нагрева снижается до 2°C/мин, а камера нагревается до 450°C. При данной температуре образец выдерживается в течение двух часов. И по окончанию выдержки охлаждается в печи. В результате данной операции получается продукт, состоящий исключительно из металлического компонента.

Далее образец помещается в вакуумную печь с величиной вакуума не менее 0,0001 торр. Оптимальной температурой для проведения данной операции является температура, равная 0,78 от Тпл, что для данной сплава составляет приблизительно 1400°C. Образец нагревали до 1400°C со скоростью 10°C/мин и выдерживали в течение трех часов, и по окончанию выдержки охлаждали в печи. В результате данной процедуры получается прочный пористый образец.

Пример 1

Для получения проницаемого пористого металлического материала из сплава Ti-18Zr-14Nb цилиндрической формы диаметром 10 мм и высотой 3 мм с заданной пористостью 55% необходимо осуществить следующие действия:

1. Рассев металлического порошка и разделением его на две группы - с размером частиц менее 50 мкм и более 50 мкм;

2. Рассев порообразователя - полиметилметакрилата (ПММА) и разделение его на две группы - с размером частиц от 50 до 160 мкм и размером частиц от 160 до 250 мкм.

3. Смешивание ПММА разных фракций в соотношении 30% с размером частиц от 50 до 160 мкм и 70% с размером частиц от 160 до 250 мкм. Массовая доля металла и ПММА для пористости 55% составляет 0,79 и 0,21 соответственно. Масса замеса зависит от необходимого количества конечных заготовок.

4. Равномерное перемешивание в специальной емкости под углом 15-20 градусов в течении 25 минут.

5. Перемешанный состав массой 0,65 г засыпать в пресс-форму с диаметром отверстия 10 мм.

6. Произвести двустороннее компактирование с усилием в 200 МПа.

7. Для пиролиза необходимо удалить металлический налет со стенок заготовки образовавшегося после компактирования для лучшего выхода газовой фракции (ПММА). Для поддержания формы образцов в процессе пиролиза образцы необходимо обсыпать металлическим порошком крупной фракции(более 50 мкм). Процесс пиролиза проходит в вакууме не менее 0,002 торр. по единому режиму:

а) нагрев заготовки до 300°C со скоростью 10°C/мин

б) нагрев заготовки до 450°C со скоростью 2°C/мин

в) выдержка при 450°C в течении одного часа

г) охлаждение в печи

8. Процесс спекания проходит в вакууме не менее 0,0001 торр. по единому режиму:

а) нагрев заготовки до 1350°C

б) выдержка при 1350°C в течении 3 часов

г) охлаждение в печи.

Таким образом, в результате применения способа, получены проницаемые пористые материалы из сверхупругого сплава системы титан-цирконий-ниобий цилиндрической формы диаметром 10 мм и высотой 3 мм, с пористостью 55%, пределом прочности на сжатие 210 МПа и низкими значением модуля Юнга (10 ГПа).

Пример 2

Для получения проницаемого пористого металлического материала из сплава Ti-22Nb-6Zr цилиндрической формы диаметром 14 мм и высотой 15 мм с заданной пористостью 63% необходимо осуществить следующие действия:

1. Рассев металлического порошка и разделением его на две группы - с размером частиц менее 50 мкм и более 50 мкм;

2. Рассев порообразователя - полиметилметакрилата (ПММА) и разделение его на две группы - с размером частиц от 50 до 160 мкм и размером частиц от 160 до 250 мкм.

3. Смешивание ПММА разных фракций в соотношении 30% с размером частиц от 50 до 160 мкм и 70% с размером частиц от 160 до 250 мкм. Массовая доля металла и ПММА для пористости 62% составляет 0,76 и 0,24 соответственно. Масса замеса зависит от необходимого количества конечных заготовок.

4. Равномерное перемешивание в специальной емкости под углом 15-20 градусов в течении 25 минут.

5. Перемешанный состав массой 6,4 г засыпать в пресс-форму с диаметром отверстия 14 мм.

6. Произвести двустороннее компактирование с усилием в 200 МПа.

7. Для пиролиза необходимо удалить металлический налет со стенок заготовки образовавшегося после компактирования для лучшего выхода газовой фракции (ПММА). Для поддержания формы образцов в процессе пиролиза образцы необходимо обсыпать металлическим порошком крупной фракции(более 50 мкм). Процесс пиролиза проходит в вакууме не менее 0,002 торр. по единому режиму:

а) нагрев заготовки до 300°C со скоростью 10°C/мин

б) нагрев заготовки до 450°C со скоростью 2°C/мин

в) выдержка при 450°C в течении одного часа

г) охлаждение в печи

8. Процесс спекания проходит в вакууме не менее 0,0001 торр. по единому режиму:

а) нагрев заготовки до 1400°C

б) выдержка при 1400°C в течении 3 часов

г) охлаждение в печи

Получение проницаемого металлического материала из сплава Ti-18Zr-14Nb медицинского назначения методом порошковой металлургии с заданной пористостью 63% и геометрическими параметрами D=14 мм, h=15 мм

Таким образом, в результате применения способа, получены проницаемые пористые материалы из сверхупругого сплава системы титан-цирконий-ниобий цилиндрической формы диаметром 14 мм и высотой 15 мм, с пористостью 63%, пределом прочности на сжатие 130 МПа и низкими значением модуля Юнга(5 ГПа).


Способ получения проницаемого пеноматериала из сверхупругих сплавов системы титан-цирконий-ниобий
Источник поступления информации: Роспатент

Showing 1-10 of 322 items.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Showing 1-10 of 14 items.
27.02.2013
№216.012.2b54

Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы и обратимым эффектом памяти формы (варианты)

Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов с памятью формы на основе никелида титана. Заявлен способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы и обратимым эффектом памяти формы (варианты). Способ...
Тип: Изобретение
Номер охранного документа: 0002476619
Дата охранного документа: 27.02.2013
20.06.2013
№216.012.4c9f

Металлический наноструктурный сплав на основе титана и способ его обработки

Изобретение относится к области металлургии, а именно к функциональным металлическим сплавам на основе титана и способу их обработки и может быть использовано для сверхупругих элементов конструкций, а также в хирургии и ортопедической имплантологии. Заявлены сплав на основе титана с эффектом...
Тип: Изобретение
Номер охранного документа: 0002485197
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4f5b

Способ создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах организма и устройства для его осуществления

Группа изобретений относится к хирургии и может быть использована в холецистэктомии, аппендэктомии, резекции желудка, гемиколэктомии, фундаппликации. Способ создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах организма осуществляют с помощью клипсы....
Тип: Изобретение
Номер охранного документа: 0002485908
Дата охранного документа: 27.06.2013
20.09.2013
№216.012.6a25

Траловое устройство для извлечения инородных тел из трубчатых органов

Изобретение относится к медицинской технике и может быть использовано, в частности, для извлечения камней из мочеточника или желчных протоков. Траловое устройство для извлечения инородных тел из трубчатых органов содержит манипулятор, на выходном конце корпуса которого установлен переходник, на...
Тип: Изобретение
Номер охранного документа: 0002492824
Дата охранного документа: 20.09.2013
27.12.2013
№216.012.8fb5

Способ хирургического лечения кишечных непроходимостей тонкого и толстого кишечника и устройство для его осуществления

Группа изобретений относится к медицине и может быть применима для хирургического лечения кишечных непроходимостей тонкого и толстого кишечника. Проводят продвижение эндоскопа по тонкому и толстому кишечнику. Эндоскоп для хирургического лечения кишечных непроходимостей тонкого и толстого...
Тип: Изобретение
Номер охранного документа: 0002502482
Дата охранного документа: 27.12.2013
20.10.2015
№216.013.85ac

Способ сшивания рваных и резаных ран в условиях экстренной хирургии и устройство для его осуществления

Группа изобретений относится к хирургии и может быть применима для сшивания рваных и резаных ран века в условиях экстренной хирургии. Накладывают скобку, выполненную из материала, обладающего эффектом памяти формы, на края раны. Перед наложением на рану скобку пластически деформируют при...
Тип: Изобретение
Номер охранного документа: 0002565823
Дата охранного документа: 20.10.2015
25.08.2017
№217.015.a74a

Способ температурно-деформационного воздействия на сплавы титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы

Изобретение относится к металлургии, а именно к термической обработке сплавов с памятью формы, и может быть использовано в медицине и технике. Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы включает термомеханическую обработку заготовки,...
Тип: Изобретение
Номер охранного документа: 0002608246
Дата охранного документа: 17.01.2017
19.01.2018
№218.016.08ca

Устройство для осуществления динамического химического протравливания спеченных металлических пеноматериалов и определения их проницаемости жидкостями

Изобретение относится к устройству, позволяющему осуществлять контролируемое изменение пористой структуры металлических пеноматериалов путем динамического химического протравливания (ДХП) с одновременным измерением проницаемости. Материалы после обработки с использованием предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002631782
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.175e

Способ деформационно-термической обработки для формирования функциональных характеристик медицинского клипирующего устройства из сплава ti-ni с памятью формы

Изобретение относится к металлургии, а именно к термомеханической обработке изделий из сплавов с памятью формы (СПФ) и наведению в них эффекта памяти формы (ЭПФ), в частности клипирующего устройства для создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах...
Тип: Изобретение
Номер охранного документа: 0002635676
Дата охранного документа: 15.11.2017
20.06.2019
№219.017.8d34

Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к термомеханической обработке титановых сплавов для медицины, а именно к созданию способа получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, и может быть использовано для изготовления костных имплантатов. Способ получения прутков из сверхупругих...
Тип: Изобретение
Номер охранного документа: 0002692003
Дата охранного документа: 19.06.2019
+ добавить свой РИД