×
29.12.2017
217.015.f8d3

Результат интеллектуальной деятельности: Способ получения порошка карбида

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической, металлургической и инструментальной отраслях промышленности при изготовлении износостойких сплавов, катализаторов. Порошок карбида получают в изотермических условиях в атмосфере инертного газа в ионном расплаве на основе галогенидов щелочных металлов, в который вводят соединение карбидообразующего элемента - его соль или комплексную соль, и порошок углерода. Получают высокочистые порошки карбидов металлов из ряда, включающего Ti, W, V, Та, Zr, Cr, Mo, Al, Nd, или карбид бора или кремния, размером от примерно 10 до нескольких сот нм стехиометрического состава с пониженным содержанием газовых примесей.

Изобретение относится к электрохимическому синтезу высокочистых порошков карбидов и может найти применение в производстве твердых износостойких сплавов, обладающих высокими физико-механическими и эксплуатационными свойствами, в металлургической и инструментальной отраслях промышленности, а также в катализе.

Потребительские свойства порошков карбидов зависят от их размера, дефектности структуры, загрязнения примесями и содержания связанного и свободного углерода. Чем меньше размер, отсутствие дефектов и примесей, тем выше потребительские свойства порошков.

Существуют различные способы получения порошков карбидов. В промышленном производстве порошков карбидов различных элементов в основном используются углетермический, СВС-синтез, гидридно-кальциевый и плазмохимический способы. В последнее время развивается новый способ получения карбидов. В этом способе используется электрохимический синтез в расплаве солей.

Наиболее распространенным способом получения порошков карбидов является углетермический способ (Косолапова Т.Я. Карбиды. Изд-во «Металлургия», 1968, с. 101-203). В этом способе в качестве исходных компонентов используют порошки металлов или их оксиды и газовую сажу. Компоненты тщательно перемешивают и производят спекание при высоких температурах вплоть до 2200°C в вакууме, смеси инертного газа с водородом или в атмосфере окиси углерода. Переносчиком углерода являются метан, ацетилен или окись углерода, всегда присутствующие в реакционном пространстве.

Недостатками этого метода являются крупный размер и нестехиометрический состав порошков карбидов, их загрязнение газами и свободным углеродом и, как следствие, - низкие потребительские свойства получаемых порошков.

Известен способ получения нанодисперсных порошков двойных карбидов вольфрама и молибдена путем электролиза расплава, который осуществляют в открытых ваннах в гальваностатическом режиме при плотности катодного тока 1,5-3,0 А/см2 и температуре 800-900°C с получением карбидно-солевой груши, которую сбивают с катода, измельчают, после чего полученный порошок двойных карбидов вольфрама и молибдена отмывают и сушат при температуре 100°C в течение 1 часа. Электролит содержит вольфрамат лития, молибдат лития, карбонат лития, вольфрамат натрия при следующем соотношении компонентов, мол.%: вольфрамат лития 24,0-36,8, молибдат лития 1,0-5,0, карбонат лития 7,0-35,0, вольфрамат натрия - остальное (RU, патент №2459015, МПК С25С 5/00, B8Y 40/00, опубл. 20.08.2012).

Недостатками данного способа являются нестехиометрический состав, большое количество растворенных газов в карбиде и большой разброс по размерам получаемых порошков.

Известен также способ получения порошков карбидов тугоплавких металлов, в котором синтез осуществляется в ионно-электронных расплавах хлоридов щелочных или щелочноземельных металлов. При этом в качестве хлоридов щелочных или щелочноземельных металлов используют хлорид лития, смесь хлорида лития с хлоридом калия, хлорид кальция или магния, карналлит (смесь хлорида магния с хлоридом калия), в качестве щелочного металла или щелочноземельного металла используют металлический литий, кальций, магний или смесь кальция с магнием, а в качестве углерода - сажу или углеводы. Исходным сырьем служат оксиды и хлориды тугоплавких металлов. Ионно-электронный расплав из хлоридов щелочных или щелочноземельных металлов с растворенными в нем щелочными или щелочноземельными металлами служит транспортной средой. Растворенный щелочной или щелочноземельный металл при 600-900°C восстанавливает оксид или хлорид и, взаимодействуя с углеродом, переносит его через солевой расплав на тугоплавкий металл (RU, патент №2043967, МПК6 С01В 31/30, B22F 9/16, опубл. 20.09.1995).

Получаемые таким способом порошки карбидов тугоплавких металлов имеют ряд недостатков. Если в качестве исходного сырья используются крупные порошки оксидов с дефектами кристаллической структуры, то и полученные порошки карбидов будут иметь низкие потребительские свойства. Кроме того, порошки карбидов металлов, полученные из оксидов, содержат большой процент растворенного кислорода, что также ухудшает их потребительские свойства.

Известен способ получения порошков карбидов, включающий проведение процесса в изотермических условиях и атмосфере инертного газа в расплаве на основе галогенидов щелочных металлов, в который вводят соединение карбидообразующего элемента и порошок углерода, раскрытый в заявке CN 105502398 (CN, кл. С01 31/30, заявка №105502398, 20.04.2016 - прототип). В протекающих в ионном расплаве реакциях порошки соединения карбидообразующего элемента и углерода служат сырьем, а растворенный магний восстановителем.

В рассмотренных выше способах синтез порошков карбидов происходит вследствие переноса углерода на карбидообразующий элемент. При таком процессе происходит диффузия углерода в элемент и, как следствие, размер частиц карбида и их структура всегда задаются исходным размером частиц карбидообразующего элемента и их структурой.

Техническим результатом предлагаемого изобретения является синтез высокочистого кристаллического порошка карбида, стехиометрического по составу путем переноса карбидообразующего элемента на углерод протекающими в ионном расплаве электрохимическими транспортными реакциями.

Указанный технический результат достигается тем, что в способе получения порошка карбида, включающем проведение процесса в изотермических условиях и в атмосфере инертного газа в расплаве на основе галогенидов щелочных металлов, в который вводят соединение карбидообразующего элемента и порошок углерода, согласно изобретению добавляют порошок карбидообразующего элемента и используют ионный расплав, в который в качестве соединения карбидообразующего элемента вводят его соль или комплексную соль.

При этом предлагаемым способом получают, например карбиды металлов из ряда, включающего Ti, W, V, Та, Zr, Cr, Mo, Al, Nd, или карбид бора или кремния.

Наличие в ионном расплаве карбидообразующего соединения в виде соли или комплексной соли обеспечивает коррозию карбидообразующего порошка с образованием ионов более низких степеней окисления, их транспорт через ионный расплав к углероду, окислительно-восстановительные реакции диспропорционирования или обмена на поверхности углерода с образованием карбидов. Движущей силой переноса служит энергия карбидообразования.

Использование в качестве исходных реагентов порошков углерода и карбидообразующего элемента, например W, Mo, Cr, V, Та, Ti, Zr, Al, Nd и других металлов, а также Si и В позволяет упростить предлагаемый способ, так как были использованы серийно выпускаемая сажа и порошки карбидообразующих элементов микронных размеров, которые широко известны и доступны по стоимости.

В качестве примера рассмотрим процесс протекания реакций при карбидизации титана:

1. Карбидообразование

3TiCl2+C→TiC+2TiCl3

Эта реакция является движущей силой переноса титана на углерод.

2. Образование гальванопары из частиц порошка титана и карбида титана

Tiанод|TiCl3-NaCl|TiCкатод|C

3. Окисление анода гальванопары

Ti+2TiCl3→3TiCl2

Далее повторяется реакция (1). Таким образом, происходит перенос титана циркуляционным методом на основе реакции диспропорционирования субхлоридов титана.

Перенос карбидообразующего элемента на углерод с последующей кристаллизацией частиц карбидов в ионных средах с использованием электрохимических транспортных реакций позволяет получить ряд существенных преимуществ по отношению к технологиям получения карбидов с переносом углерода на карбидообразующий элемент:

1. Карбидообразующий элемент переносится на углерод в атомарном виде, поэтому процесс карбидизации протекает без затруднений путем роста частиц карбида. В традиционных способах происходит перенос углерода на карбидообразующий элемент и карбидизация протекает путем диффузии углерода в структуру карбидообразующего элемента, а этот процесс на порядки величин более медленный, чем диффузия ионов в электролите и рост частиц. Таким образом, при заявляемом способе процесс карбидизации можно вести при более низких температурах <900°C и меньших временных выдержках.

2. Поскольку процесс кристаллизации частиц карбидов протекает в однородном расплаве в изотермических условиях, они вырастают кристаллическими и стехиометричными по углероду, тогда как при переносе углерода на карбидообразующий элемент частицы карбида наследуют структуру и имеющиеся дефекты исходных реагентов.

3. Если в традиционных технологиях размерность частиц карбида задается размерностью частиц карбидообразующего элемента или его соединения, то в данной технологии составом электролита, температурой процесса и температурой плавления карбида, что позволяет синтезировать частицы от ~10 нм до нескольких сот нм.

4. В процессе коррозии карбидообразующего порошка более электроположительные примеси не участвуют в процессе, т.е. происходит естественная дополнительная очистка получаемого порошка от более электроположительных примесей.

5. Крайне низкая растворимость газов в электролите на уровне ~10-8-10-9 моль/моль при используемых температурах синтеза способствует очистке синтезируемых карбидов от газовых примесей.

6. Большинство составных частей оборудования, необходимого для реализации промышленной технологии производства нанокристаллических порошков карбидов на основе без токового электрохимического способа, серийно выпускаются и не являются дорогостоящими. Высокотемпературная ячейка для проведения синтеза, по сути, герметизированная мешалка. Для ее проектирования и изготовления не требуются высококвалифицированные инжиниринговые коллективы. Таким образом, реализуемая технология легко встраивается в существующие производственные технологические цепочки, обеспечивая низкое энергопотребление и безотходное производство.

Для апробации способа были использованы серийно выпускаемые галогениды щелочных металлов и соль или комплексная соль марок Ч, порошки элементов микронных размеров и сажа марки П 904, которые широко известны и доступны по стоимости.

Пример 1. Получение порошков TiC

Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Реагенты: электролит TiCl2(10%)+NaCl(90%), порошок титана, полученный электрохимическим способом из титана марки ВТ 1,0 с размером частиц <40 мкм, и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического TiC. Процесс карбидизации выполнялся при Т~850°C в течение 4 часов в атмосфере Ar. Получили порошок черного цвета с Sуд.~30 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле TiC1.0 с размерностью частиц ~40 нм.

Пример 2. Получение порошков WC

Тигель и мешалка выполнены из углерод-углеродного композита. Реагенты: электролит Na2WO4(10%)+NaCl(90%), порошок вольфрама размерностью 1-2 мкм (производства ОАО КЗТС) и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического WC. Процесс карбидизации выполнялся при Т~900°C в течение 12 часов в атмосфере Ar. Получили порошок черного цвета с Sуд.~17 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле WC с размерностью частиц ~20-25 нм.

Пример 3. Получение порошков VC0,86

Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Реагенты: электролит VF3(7%)+NaCl(93%), порошок ванадия марки ВЭЛ-2 размерностью 40-60 мкм и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического VC0,88. Процесс карбидизации выполнялся при Т~870°C в течение 6 часов в атмосфере Ar. Получили порошок темно-серого цвета. Рентгенофазовый анализ показал, что порошок соответствует формуле VC0,86 с размерностью частиц ~100 нм.

Пример 4. Получение порошков ТаС

Тигель и мешалка выполнены из никеля марки НП-2. Реагенты: электролит K2TaF7(10%)+NaCl(85%)+NaF(5%), конденсаторный порошок тантала 3 класса 5-40 мкм (АО «УМЗ») и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического ТаС. Процесс карбидизации выполнялся при Т~870°C в течение 7 часов в атмосфере Не. Получили порошок черного цвета с Sуд.~21 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле ТаС с размерностью частиц ~20 нм.

Пример 5. Получение порошков ZrC

Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Реагенты: электролит K2ZrF6(8%)+NaCl(92%), порошок циркония <40 мкм и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического ZrC. Процесс карбидизации выполнялся при Т~870°C в течение 5 часов в атмосфере Ar. Получили порошок черного цвета с Sуд.~30 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле ZrC с размерностью частиц ~30 нм.

Пример 6. Получение порошков Cr7C3

Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Реагенты: электролит CrF3(10%)+NaCl(45%)+KCl(45%), порошок хрома намолотый в мельнице из хрома марки Х99Н1 с размерностью <40 мкм и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического Cr7C3. Процесс карбидизации выполнялся при Т~800°C в течение 6 часов в атмосфере Ar. Получили порошок черного цвета с Sуд.~13 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле Cr7C3 с размерностью частиц <80 нм.

Пример 7. Получение порошков SiC

Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Реагенты: электролит Na2[SiF6](10%)+NaCl(остальное), порошок кремния намолотый в шаровой мельнице из кремния марки КР-00 с размерностью <40 мкм и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического SiC. Процесс карбидизации выполнялся при Т~900°C в течение 4 часов в атмосфере Ar. Получили порошок черного цвета с Sуд.~98 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле SiC с размерностью частиц <20 нм.

Пример 8. Получение порошков Mo2C

Тигель и мешалка выполнены из углерод-углеродного композита. Реагенты: электролит Na2MoO4(10%)+NaCl(90%), порошок молибдена размерностью 1-2 мкм ГОСТ и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического МоС. Процесс карбидизации выполнялся при Т~900°C в течение 5 часов в атмосфере Ar. Получили порошок черного цвета с Sуд.~17 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле Мо2С с размерностью частиц ~40 нм.

Пример 9. Получение порошков В4С

Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Реагенты: электролит NaBF4(10%)+LiCl(45%)+KCl(45%), порошок бор аморфный марка Б (дисперсность <20 мкм) и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического В4С. Процесс карбидизации выполнялся при Т~900°C в течение 4 часов в атмосфере Ar. Получили порошок черного цвета с Sуд.~80 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле В4С с размерностью частиц <30 нм.

Пример 10. Получение порошков Al4C3

Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Реагенты: электролит Na3AlF6(10%)+LiCl(45%)+KCl(45%), порошок алюминия (марка ПАП-2 Sуд.~1 м2/г) и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического Al4C3. Процесс карбидизации выполнялся при Т~550°C в течение 4 часов в атмосфере Ar. Получили порошок черного цвета с Sуд.~16 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле Al4C3 с размерностью частиц ~180 нм.

Пример 11. Получение порошков NdC2

Тигель и мешалка выполнены из нержавеющей стали 12Х18Н10Т. Реагенты: электролит NdF3(10%)+NaCl(90%), порошок неодима (размер частиц: 40-60 мкм) и углерод сажа марки П 904 в количествах, которые необходимы для получения стехиометрического NdC2. Процесс карбидизации выполнялся при Т~870°C в течение 4 часов в атмосфере Не. Получили порошок черного цвета с Sуд.~l2 м2/г. Рентгенофазовый анализ показал, что порошок соответствует формуле NdC2 с размерностью частиц ~130 нм.

Источник поступления информации: Роспатент

Showing 61-70 of 75 items.
24.05.2019
№219.017.5e56

Способ получения металлизованных окатышей

Изобретение относится к области черной металлургии, а именно к получению металлизованных окатышей. Способ включает подготовку шихты путем смешивания железорудных материалов с твердым восстановителем, формирование сырых окатышей, загрузку их на колосниковую решетку, обработку...
Тип: Изобретение
Номер охранного документа: 0002688765
Дата охранного документа: 22.05.2019
29.05.2019
№219.017.6258

Способ сорбционного извлечения редких элементов из водных растворов

Изобретение относится к гидрометаллургии редких элементов и может быть использовано для извлечения из водных растворов галлия и германия, в том числе для их последующего определения. Проводят сорбционное извлечение редких элементов из водных растворов. Сорбцию ведут в статических условиях...
Тип: Изобретение
Номер охранного документа: 0002689347
Дата охранного документа: 27.05.2019
05.07.2019
№219.017.a65c

Способ электролитического рафинирования меди

Изобретение относится к электролитическому рафинированию меди, содержащей примеси в количестве до 2 мас.%. Способ включает формирование из меди анода и электролитическое растворение анода в сернокислотном растворе с осаждением катодной меди. Формируют насыпной анод из гранул меди крупностью...
Тип: Изобретение
Номер охранного документа: 0002693576
Дата охранного документа: 03.07.2019
01.09.2019
№219.017.c5cb

Способ получения сложного оксида лютеция и железа lufeo

Изобретение относится к технологии получения сложных оксидов, которые обладают свойствами материалов-мультиферроиков, проявляют магнитоэлектрический эффект, магнитокалорический эффект и могут быть применены в области многофункциональных устройств в информационных и энергосберегающих...
Тип: Изобретение
Номер охранного документа: 0002698689
Дата охранного документа: 28.08.2019
24.10.2019
№219.017.da33

Способ переработки сульфидных и смешанных молибденсодержащих концентратов

Изобретение относится к области цветной металлургии и может быть использовано для извлечения молибдена и рения из сульфидных и смешанных молибденсодержащих концентратов. Способ переработки сульфидных и смешанных молибденсодержащих концентратов включает смешивание концентрата с кальцийсодержащей...
Тип: Изобретение
Номер охранного документа: 0002703757
Дата охранного документа: 22.10.2019
09.11.2019
№219.017.df9c

Способ брикетирования железосодержащих отходов в виде окалины

Изобретение относится к подготовке железосодержащих отходов к металлургической переработке и может быть использовано при брикетировании окалины. При брикетировании железосодержащих отходов в виде окалины осуществляют смешивание окалины с углеродсодержащими добавками, взятыми в массовом...
Тип: Изобретение
Номер охранного документа: 0002705483
Дата охранного документа: 07.11.2019
10.11.2019
№219.017.e004

Способ получения биметаллической полосы с антифрикционным порошковым покрытием на основе меди для подшипников скольжения

Изобретение относится к области порошковой металлургии, в частности к способу получения биметаллической полосы с антифрикционным покрытием на основе меди из металлических порошков, предназначенной для изготовления подшипников скольжения. Исходную шихту, содержащую, мас.%: 9-11 порошка железа с...
Тип: Изобретение
Номер охранного документа: 0002705486
Дата охранного документа: 07.11.2019
31.12.2020
№219.017.f46a

Способ сорбционного извлечения рения из водных растворов

Изобретение относится к гидрометаллургии редких элементов, в частности к способам применения органических сорбентов для извлечения из водных растворов ионов рения (VII), в том числе для последующего определения их концентрации. Проводят сорбционное извлечение рения из водных растворов. Сорбцию...
Тип: Изобретение
Номер охранного документа: 0002710615
Дата охранного документа: 30.12.2019
02.03.2020
№220.018.082a

Комплексный сплав для микролегирования и раскисления стали на основе железа

Изобретение относится к области металлургии и может быть использовано в сталеплавильном производстве для микролегирования и раскисления металлического железоуглеродистого расплава бором. Комплексный сплав содержит, мас.%: бор 0,5-2,5, алюминий 10,0-15,0, кремний 50,0-60,0, железо и примеси...
Тип: Изобретение
Номер охранного документа: 0002715510
Дата охранного документа: 28.02.2020
01.04.2020
№220.018.1232

Способ электрохимического получения наноразмерного порошка силицида металла

Изобретение относится к получению наноразмерного порошка силицида металла. Загружают в герметичный тигель электролит, состоящий из галогенида щелочного металла и соли металла, и расходуемые компоненты микронных размеров в виде порошков металла и кремния, производят нагрев до рабочих температур...
Тип: Изобретение
Номер охранного документа: 0002718022
Дата охранного документа: 30.03.2020
Showing 61-64 of 64 items.
02.10.2019
№219.017.cc2d

Способ дефосфорации карбонатных марганцевых руд и концентратов

Изобретение относится к черной металлургии. Способ дефосфорации расплава карбонатных марганцевых концентратов включает осуществление расплавления концентрата в электрической печи. После его расплавления в расплав добавляют кварцит из расчета получения основности оксидного расплава CaO/SiO,...
Тип: Изобретение
Номер охранного документа: 0002701245
Дата охранного документа: 25.09.2019
13.01.2020
№220.017.f4b4

Способ выплавки среднеуглеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке среднеуглеродистого ферромарганца. В способе осуществляют расплавление марганцевого концентрата и дефосфорацию марганецсодержащего оксидного расплава путем продувки расплава газообразным монооксидом углерода, при...
Тип: Изобретение
Номер охранного документа: 0002710706
Дата охранного документа: 09.01.2020
27.01.2020
№220.017.fad5

Способ выплавки передельного малофосфористого марганцевого шлака с получением товарного низкофосфористого углеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке передельного малофосфористого марганцевого шлака с получением товарного низкофосфористого углеродистого ферромарганца. В способе осуществляют расплавление марганцевого концентрата в электропечи и последующую...
Тип: Изобретение
Номер охранного документа: 0002711994
Дата охранного документа: 23.01.2020
01.04.2020
№220.018.1232

Способ электрохимического получения наноразмерного порошка силицида металла

Изобретение относится к получению наноразмерного порошка силицида металла. Загружают в герметичный тигель электролит, состоящий из галогенида щелочного металла и соли металла, и расходуемые компоненты микронных размеров в виде порошков металла и кремния, производят нагрев до рабочих температур...
Тип: Изобретение
Номер охранного документа: 0002718022
Дата охранного документа: 30.03.2020
+ добавить свой РИД