×
29.12.2017
217.015.f6f4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ОКИСЛИТЕЛЬНОГО ХЛОРИРОВАНИЯ ЭТИЛЕНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтехимической промышленности, а именно к приготовлению микросферического катализатора окислительного хлорирования этилена в дихлорэтан в производстве получения винилхлорида. Способ состоит из стадий получения микросферического алюмооксидного носителя через распыление суспензии, которая включает в своем составе 55-90 мас.% моногидроксида алюминия псевдобемитной структуры, 35-5 мас.% гидроксохлорида алюминия и 10-5 мас.% модифицированного крахмала, в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоголощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора. Технический результат заключается в получении микросферического катализатора окислительного хлорирования этилена с высокой каталитической активностью и стойкостью к истиранию в псевдоожиженном режиме. 1 табл., 5 пр.

Изобретение относится к области нефтехимической промышленности, а именно к приготовлению микросферического катализатора окислительного хлорирования этилена в дихлорэтан в производстве получения винилхлорида.

Катализатор окислительного хлорирования этилена (Катализатор ОХЭ) представляет собой микросферические гранулы размером 20-100 мкм, имеющий в своем составе алюмооксидный микросферический носитель и нанесенные активные компоненты. Данный катализатор используется в технологическом процессе окислительного хлорирования этилена в дихлорэтан, который является основным сырьем для получения поливинилхлорида. Поливинилхлорид широко используется во всем мире в производстве ПВХ изделий.

Микросферический алюмооксидный носитель в катализаторе ОХЭ выполняет следующие функции: обеспечивает высокую удельную поверхность катализатора, доступность активных центров для реагирующих веществ, необходимую механическую прочность, требуемую насыпную плотность и гранулометрический состав.

Для обеспечения процесса окислительного хлорирования этилена в дихлорэтан, осуществляемого в псевдоожиженном слое катализатора, наряду с каталитическими свойствами, повышенные требования предъявляются к прочности, форме, размерам микросферических частиц, насыпной плотности и развитой пористой структуре катализатора, которые определяются во многом характеристиками алюмооксидного носителя.

Из литературных данных известно, что активным компонентом современных катализаторов ОХЭ является хлорная медь, содержание которой составляет 8-12% массы катализатора. Кроме хлорида меди могут использоваться и другие ее соединения, которые под действием реакционной среды переходят в хлорную медь. Имеются сведения о том, что повышению активности хлорида меди способствует добавление хлоридов щелочных и щелочноземельных элементов. Высокая активность катализатора обусловлена равномерным распределением активного компонента в объеме микросферы катализатора, имеющего оптимальное распределение транспортных пор, которые обеспечивают доступность активных центров.

Эффективная работа катализатора определяется не только его каталитической активностью, но и стабильностью эксплуатационных характеристик в процессе окислительного хлорирования этилена. Одним из таких показателей является стойкость микросферы катализатора к истирающим нагрузкам, который во многом определяется характеристиками микросферического носителя для катализатора.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент США N 4377491], когда полученный в несколько стадий носитель - микросферический оксид алюминия - дополнительно прокаливают при 250-500°C в течение 1-5 часов и для однородного распределения меди на поверхности пропитывают оксид алюминия в кипящем слое при температуре не более 50°C расчетным объемом раствора CuCl2 с концентрацией 160-600 г/л. Пропитанные частицы сушат в кипящем слое, поднимая температуру со скоростью 30°C в час до 140°C, и выдерживают при этой температуре 0,5-15 часов. Такой способ пропитки и сушки позволяет добиться наиболее однородного распределения меди на поверхности. Недостатками указанного способа являются многостадийность, высокая энергоемкость процесса и необходимость использования очень концентрированных растворов.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент РФ №2139761, Патент РФ №2131298], где предлагают смешение отмытого осадка гидроксидов алюминия с хлорной медью или смесью хлорной меди и хлористого магния. Образовавшуюся суспензию гидроксидов алюминия с растворами хлоридов металлов подвергают распылительной сушке при температуре газов на выходе из сушилки 130-200°C с получением микросферического катализатора, который в дальнейшем прокаливают при 600-660°C в течение 2-4 часов. Недостатками указанного способа являются то, что при прокалке микросферы при 600-660°C возможны образование соединений нестехиометрического состава оксида алюминия с медью и промотирующими добавками, а также блокировка активных компонентов в объеме носителя.

Известен способ получения микросферического катализатора окислительного хлорирования этилена [Патент РФ №2281806], когда активный компонент распределен в объеме носителя катализатора неравномерно - распределение атомов меди в большей степени, внутри частицы катализатора, чем на поверхности (слой толщиной ), и атомов магния, в большей степени на поверхности (слой толщиной ), чем внутри частицы. Такая технология подразумевает раздельное нанесение растворов солей, что является недостатком такого способа.

Ближайшим известным решением аналогичной задачи по технической сущности является способ получения микросферического катализатора окислительного хлорирования этилена является изобретение [Патент США №4451683], когда сначала получают микросферический алюмооксидный носитель осаждением гидроксида алюминия взаимодействием азотной кислоты и алюмината натрия, затем распылительной сушкой отмытого и отфильтрованного гидроксида алюминия получают микросферические частицы, которые после прокаливания при 730°C превращаются в оксид алюминия - носитель для катализатора оксихлорирования. На приготовленный таким образом носитель распыляют при 70°C раствор CuCl2 или смеси CuCl2 и KCl и сушат при 130°C.

Недостатками указанного способа является многостадийность процесса, необходимость термообработки материала при высоких (730°C) температурах, недостаточная равномерность распределения активного солевого состава на поверхности и в объеме катализатора.

Основной задачей предлагаемого нами решения является разработка безотходной, бессточной и достаточно простой технологии приготовления микросферического катализатора окислительного хлорирования этилена с высокой каталитической активностью и стойкостью к истиранию в псевдоожиженном режиме.

Поставленная цель достигается предлагаемым способом получения микросферического катализатора окислительного хлорирования этилена, включающим стадии получения микросферического алюмооксидного носителя через распыление суспензии в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоглощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора.

Отличительной чертой предлагаемого способа получения катализатора является то, что суспензия для получения микросферического алюмооксидного носителя через распыление суспензии в среде дымовых газов включает в своем составе (55-90)% моногидроксида алюминия псевдобемитной структуры, (35-5)% гидроксохлорида алюминия и (10-5)% модифицированного крахмала.

Порошок моногидроксида алюминия псевдобемитной структуры в сочетании с гидроксохлоридом алюминия и модифицированного крахмала в составе суспензии обеспечивают формирование эффективной вторичной пористой структуры микросферы, а также высокую стойкость к истиранию в псевдоожиженном режиме.

Изменяя соотношение компонентов в суспензии порошка моногидроксид алюминия псевдобемитной структуры, гидроксохлорида алюминия и модифицированного крахмала, можно получит микросферический алюмооксидный носитель с различными показателями по насыпной плотности, объема пор, удельной поверхностью и стойкостью к истиранию.

Таким образом, применение порошка моногидроксид алюминия псевдобемитной структуры, гидроксохлорида алюминия и модифицированного крахмала при получении микросферического катализатора в заявляемом способе соответствует критерию "новизна".

Промышленная применимость предлагаемого способа приготовления микросферического катализатора ОХЭ подтверждается следующими примерами.

Сырье:

1. Моногидроксид алюминия псевдобемитной структуры, Na2O не более 0,1%, ППП (потери при прокаливании) = 25-27%;

2. Гидроксохлорида алюминия (содержание сухого остатка в пересчете на Al2O3 19,5-21,0%);

3. Модифицированный крахмал;

4. Вода химически очищенная (ХОВ);

Оборудование:

1. Емкость с мешалкой (Е-1) 1 м3.

2. Распылительная сушилка (РС-2) с мощностью до 250 л/ч по испаренной влаге.

3. Z-образный смеситель СМП-3 с пропитывателем на 0,2 м3.

4. Вращающаяся прокалочная печь П-1 с верхним пределом температур на 800°C

Все расчеты в примерах приводятся с учетом того, что рабочим объемом емкости с мешалкой принято до 80% объема от исходного.

Пример 1

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 150 кг порошка моногидроксид алюминия псевдобемитной структуры. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоголощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 2

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 135 кг порошка моногидроксид алюминия псевдобемитной структуры и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 3

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 135 кг порошка моногидроксид алюминия псевдобемитной структуры, 7,5 кг гидроксохлорида алюминия и 7,5 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоголощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 4

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 120 кг порошка моногидроксид алюминия псевдобемитной структуры, 15 кг гидроксохлорида алюминия и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

Пример 5

Для приготовления суспензии в 1 м3 емкость с мешалкой Е-1 заливают 0,45 м3 химочищенной воды (ХОВ), засыпают при перешивании 112,5 кг порошка моногидроксид алюминия псевдобемитной структуры, 22,5 кг гидроксохлорида алюминия и 15 кг модифицированного крахмала. После засыпки всех компонентов, суспензия перемешивается в емкости в течение 1 ч. Затем формование микросфер в распылительной сушилке РС-2 в среде дымовых газов с температурой 140-170°C. После прокалка микросфер при температуре 550-650°C во вращающейся прокалочной печи П-1.

Засыпка в смеситель СМП-3 100 кг микросферического алюмокосидного носителя и нанесение пропиткой по водопоглощению растворами солей, содержащий хлорида меди 9% и хлорида щелочноземельных элементов 1% к массе носителя. Затем прокалка при температуре 290-300°C во вращающейся прокалочной печи П-1. Выгрузка готового катализатора.

У полученных образцов катализатора затем определяли их насыпную плотность, удельную поверхность, общий объем пор по воде, объемы мезопор и микропор, стойкость к истиранию в газовом потоке в псевдоожиженном режиме и показатели каталитической активности на лабораторной установке в процессе оксихлорирования этилена при температуре 225-235°C.

Из результатов таблицы следует, что изменение соотношения компонентов в исходной суспензии оказывает существенное влияние на характеристики гранул катализатора и на каталитическую активность. При одинаковом содержании активного компонента на показатель активности катализатора и горение этилена (побочный процесс) влияют также насыпной вес и характеристики пористой структуры самого катализатора.

Анализ представленных материалов позволяет сделать вывод о том, что предлагаемое техническое решение дает возможность получать микросферический катализатор процесса окислительного хлорирования этилена с высокими показателями каталитической активности, пористой структуры и стойкостью к истиранию в псевдоожиженном режиме.

Способ получения микросферического катализатора окислительного хлорирования этилена, состоящий из стадий получения микросферического алюмооксидного носителя через распыление суспензии, которая включает в своем составе 55-90 мас.% моногидроксида алюминия псевдобемитной структуры, 35-5 мас.% гидроксохлорида алюминия и 10-5 мас.% модифицированного крахмала, в среде дымовых газов, прокалкой носителя, пропитки полученного носителя по водопоглощению растворами солей хлоридов меди и хлоридами щелочных и щелочноземельных элементов, прокалкой катализатора.
Источник поступления информации: Роспатент

Showing 231-240 of 268 items.
26.08.2017
№217.015.e334

Способ получения 4-(о, м, п-галогенфенил)-2, 6-дитиа-4-азабицикло[5.3.1]ундека-1(11),7,9-триенов

Изобретение относится к способу получения 4-(-галогенфенил)-2,6-дитиа-4-азабицикло[5.3.1]ундека-1(11),7,9-триенов общей формулы (1): Технический результат: получены новые 4-(-галогенфенил)-2,6-дитиа-4-азабицикло[5.3.1]ундека-1(11),7,9-триены, которые могут найти применение в качестве...
Тип: Изобретение
Номер охранного документа: 0002626006
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e555

Соль n,n,n,n-тетраметил-2-бутин-1,4-диамина с 2,4-дихлорофеноксиацетатом, проявляющая гербицидную активность, и способ ее получения

Изобретение относится к новой соли N,N,N,N-тетраметил-2-бутин-1,4-диамина с 2,4-дихлорофеноксиацетатом структурной формулы (1), обладающей гербицидной активностью. Соединения активны особенно в отношении однолетних и многолетних двудольных сорняков. Соединение представляет собой соль,...
Тип: Изобретение
Номер охранного документа: 0002626649
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e558

Соль n,n,n,n-тетраметил-2-бутин-1,4-диамина с 2-метокси-3,6-дихлоробензоатом, проявляющая гербицидную активность, и способ ее получения

Изобретение относится к новой соли N,N,N,N-тетраметил-2-бутин-1,4-диамина с 2-метокси-3,6-дихлоробензоатом соответствующей структурной формулы (1). Соединение проявляет высокую гербицидную активность, особенно при борьбе с однолетними и многолетними двудольными сорняками, и может найти...
Тип: Изобретение
Номер охранного документа: 0002626648
Дата охранного документа: 31.07.2017
29.12.2017
№217.015.f481

Способ получения хелатных цис-s,s-комплексов диацетат(дибромид)[ди-1,6-(3,5-диметилизоксазол-4-ил)-2,5-дитиагексан]палладия(ii)

Изобретение относится к области химии координационных соединений, в частности к способу получения хелатных цис-S,S-комплексов диацетат(дибромид)[ди-1,6-(3,5-диметилизоксазол-4-ил)-2,5-дитиагексан]палладия(II) общей формулы (1) Способ включает взаимодействие бидентатного реагента -...
Тип: Изобретение
Номер охранного документа: 0002637943
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f927

Способ определения углеводородных газов в газовых смесях

Изобретение относится к эмиссионному спектральному анализу и может быть использовано для определения качественного состава и количественного содержания углеводородных газов в газовой смеси. Способ характеризуется тем, что для определения состава газов используется механическое воздействие на...
Тип: Изобретение
Номер охранного документа: 0002639580
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fa90

Способ получения алкиловых эфиров 4-бифенилкарбоновой кислоты

Изобретение относится к области органической химии, в частности к способу получения алкиловых эфиров 4-бифенилкарбоновой кислотыгде R=Me, Et, Pr, которые используются в качестве исходных соединений для получения лекарственных препаратов и термотропных полимеров. Сущность способа заключается во...
Тип: Изобретение
Номер охранного документа: 0002640205
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fac8

Способ получения 3,8-диарил-2,3,4,7,8,9-гексагидробензо[1,3]оксазино[5,6-h][1,3]бензоксазинов

Изобретение относится к области органической химии, в частности к способу получения 3,8-диарил-2,3,4,7,8,9-гексагидробензо[1,3]оксазино[5,6-h][1,3]бензоксазинов общей формулы (1), которые могут найти применение в качестве препаратов, обладающих фунгицидной, противовоспалительной,...
Тип: Изобретение
Номер охранного документа: 0002640202
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fadf

Способ получения комплексов 1-хлор-2-алкил(фенил)бориранов с sme

Изобретение относится к способу получения комплексов 1-хлор-2-алкил(фенил)бориранов общей формулы где R=н-СН, н-СН, Ph. Способ включает взаимодействие α-олефина (окт-1-ена, или гекс-1-ена, или стирола) с BCl⋅SMe в присутствии Mg (порошок) и катализатора CpTiCl при мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002640209
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fae6

Способ получения 6-[4-гидрокси(тио,карбокси)фенил]-1,11-диокса-4,8-дитиа-6-азациклотридеканов

Изобретение относится к способу получения 6-[4-гидрокси(тио,карбокси)фенил]-1,11-диокса-4,8-дитиа-6-азациклотридеканов общей формулы (1):
Тип: Изобретение
Номер охранного документа: 0002640211
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fb28

Способ получения алкиловых эфиров метоксибензойных кислот

Изобретение относится к области органической химии, в частности к способу получения алкиловых эфиров метоксибензойных кислот, которые используются в качестве исходных соединений для получения лекарственных препаратов. Сущность способа заключается во взаимодействии анизола с четыреххлористым...
Тип: Изобретение
Номер охранного документа: 0002640206
Дата охранного документа: 27.12.2017
Showing 231-240 of 276 items.
06.06.2019
№219.017.73f0

Способ получения 2,3-диалкилхинолинов

Изобретение относится к способу получения хинолинов путем каталитической гетероциклизации анилина и альдегидов (пропионовый, масляный), характеризующемуся тем, что в качестве катализатора используют гранулированный иерархический цеолит Ymmm в Н-форме в количестве 10-20% мас. по отношению к...
Тип: Изобретение
Номер охранного документа: 0002690535
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.7bae

Способ получения адсорбента алюмосиликатного для очистки углеводородов

Изобретение относится к области получения алюмосиликатных адсорбентов. Способ получения адсорбента для очистки масел состоит в грануляции и модификации синтетического алюмосиликата, содержащего цеолит типа Y в катион-декатионированной форме с содержанием редкоземельных элементов. Грануляцию...
Тип: Изобретение
Номер охранного документа: 0002331466
Дата охранного документа: 20.08.2008
19.06.2019
№219.017.8887

Способ алкилирования бензола этиленом и катализатор для его осуществления

Изобретение относится к катализатору алкилирования бензола этиленом на основе цеолита ZSM-5, а также способу алкилирования бензола этиленом, использующему этот катализатор, при этом катализатор характеризуется тем, что является экструдированным (черенковым), состоящим из 55-90 мас.% цеолита...
Тип: Изобретение
Номер охранного документа: 0002410368
Дата охранного документа: 27.01.2011
19.06.2019
№219.017.88cf

Способ получения гранулированного без связующего цеолита типа nay высокой фазовой чистоты

Изобретение относится к получению гранулированного без связующего типа NaY высокой фазовой чистоты. Способ предусматривает смешение каолина с порошкообразным цеолитом типа NaY и поливиниловым спиртом в таком количестве, чтобы общее содержание исходных компонентов в смеси составляло, мас.%: -...
Тип: Изобретение
Номер охранного документа: 0002412903
Дата охранного документа: 27.02.2011
12.08.2019
№219.017.be9d

Способ получения 2,8-бис-циклоалкил-2,3,8,9,12c,12d-гексагидро-1h,7h-5,11-диокса-2,3a,4,6,6b,8,9a,10,12,12b-декаазадициклопента[e,1]пиренов

Изобретение относится к способу получения 2,8-бис-циклоалкил-2,3,8,9,12с,12d-гексагидро-1H,7H-5,11-диокса-2,3а,4,6,6b,8,9а,10,12,12b-декаазадициклопента[е,l]пиренов общей формулы (1), в котором 1,3,5-трициклоалкил-1,3,5-триазинаны подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002696778
Дата охранного документа: 06.08.2019
23.08.2019
№219.017.c251

Способ получения 2,3-диалкил-n-фенил-1,2,3,4-тетрагидрохинолин-4-аминов

Изобретение относится к органической химии, а именно к способу получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов путем каталитической гетероциклизации анилина и альдегидов (пропионовый, масляный, валерьяновый), характеризующееся тем, что в качестве катализатора используют цеолит...
Тип: Изобретение
Номер охранного документа: 0002697876
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c264

Способ получения олигомеров пент-1-ена в присутствии аморфного мезопористого алюмосиликата asm

Изобретение относится к области нефтехимического синтеза, а именно способу получения олигомеров пент-1-ена. Олигомеризацию осуществляют взаимодействием пен-1-ена с катализатором на основе мезопористого материала, в качестве которого используют аморфный мезопористый алюмосиликат ASM с мольным...
Тип: Изобретение
Номер охранного документа: 0002697885
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c26f

Способ получения 2,3-диалкил-n-фенил-1,2,3,4-тетрагидрохинолин-4-аминов

Изобретение относится к органической химии, а именно к способу получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов путем каталитической гетероциклизации анилина и альдегидов (пропионовый, масляный, валерьяновый), характеризующееся тем, что в качестве катализатора используют...
Тип: Изобретение
Номер охранного документа: 0002697875
Дата охранного документа: 21.08.2019
10.10.2019
№219.017.d3e6

Способ получения 2,2,4-триалкил-2,3-дигидро-1н-1,5-бензодиазепинов

Изобретение относится к области органической химии, а именно к способу получения 1,5-бензодиазепинов, указанной ниже формулы, в которой R=Me или Et, путем каталитической гетероциклизации о-фенилендиамина с кетонами (ацетон, бутан-2-он), характеризующемуся тем, что в качестве катализатора...
Тип: Изобретение
Номер охранного документа: 0002702359
Дата охранного документа: 08.10.2019
10.10.2019
№219.017.d461

Способ получения 2,3-диалкил-n-фенил-1,2,3,4-тетрагидрохинолин-4-аминов

Изобретение относится к способу получения 2,3-диалкил-N-фенил-1,2,3,4-тетрагидрохинолин-4-аминов взаимодействием анилина с альдегидами в присутствии катализатора, отличающемуся тем, что в качестве катализатора используют цеолит Y в Н-форме, реакцию анилина с алифатическим альдегидом...
Тип: Изобретение
Номер охранного документа: 0002702354
Дата охранного документа: 08.10.2019
+ добавить свой РИД