×
26.08.2017
217.015.da5a

Результат интеллектуальной деятельности: СПОСОБ РЕНТГЕНОСТРУКТУРНОГО КОНТРОЛЯ ДЕТАЛЕЙ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Использование: для неразрушающего рентгеноструктурного контроля деталей газотурбинного двигателя. Сущность изобретения заключается в том, что осуществляют снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-K и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-K, определение параметра, зависящего от наработки детали, при этом при снятии рентгенограммы с контролируемой детали вычисляется интегрированный рентгеноструктурный параметр Δ, причем в качестве параметра, зависящего от наработки детали, используют параметр остаточного ресурса Р, определяемый по заданной зависимости. Технический результат: увеличение производительности технологического процесса контроля деталей неразрушающим способом как в процессе эксплуатации, так и на этапе ресурсных испытаний. 3 з.п. ф-лы, 2 табл.

Изобретение относится к неразрушающим способам рентгеноструктурного контроля и эксплуатации авиационных двигателей и может использоваться для оценки остаточного ресурса новых и ремонтных дисков компрессоров из титановых сплавов в лабораторных и заводских условиях.

Известен способ рентгеноструктурного контроля деталей, имеющих концентраторы напряжений, включающий снятие с детали рентгенограммы, по которой определяют остаточные напряжения сжатия, определение контролируемого параметра и сравнение его с предельным значением (патент №2505799, G01N 23/00, опубл. 27.01.2014).

Недостатком данного способа является то, что способ очень трудозатратный, так как для определения остаточных напряжений в любой точке требуется проведение не менее 10 точных единичных измерений, при этом вначале оценки требуется определить предельное значение контролируемого параметра.

Наиболее близким является способ рентгеноструктурного контроля деталей газотурбинного двигателя (патент №2488099, G01N 23/00, опубл. 20.07.2013), включающий снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Κβ, определение параметра, зависящего от наработки детали, при этом при снятии рентгенограммы с контролируемой детали вычисляется интегрированный рентгеноструктурный параметр Δ. В данном способе в качестве контролируемого параметра для деталей из титановых сплавов используется интегрированный структурный параметр Δ меньше 1, при этом деталь является годной, если интегрированный структурный параметр Δ будет больше 1.

Недостатком данного способа является то, что способ не позволяет численно прогнозировать остаточный ресурс детали на любых стадиях накопления повреждения материала.

Техническим результатом, на достижение которого направлено предлагаемое решение, является увеличение производительности технологического процесса контроля деталей неразрушающим способом как в процессе эксплуатации, так и на этапе ресурсных испытаний за счет повышения точности измерения рентгеноструктурных параметров в связи с использованием специальной оснастки для позиционирования деталей и регистрации рентгеновского спектра с использованием специального гониометра с двумя детекторами, сокращения времени регистрации экспериментальных данных и отсутствия необходимости предварительно определять предельные значения контролируемых параметров на исследуемых деталях.

Технический результат достигается тем, что в способе рентгеноструктурного контроля деталей газотурбинного двигателя, включающий снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Kβ, определение параметра, зависящего от наработки детали, при этом при снятии рентгенограммы с контролируемой детали вычисляется интегрированный рентгеноструктурный параметр Δ, в отличие от известного в качестве параметра, зависящего от наработки детали используют параметр остаточного ресурса Pост, определяемый по зависимости:

Pост=T⋅S⋅K,

где Τ - длительности эксплуатации детали в одном цикле;

S - коэффициент нерегулярности интегрированного рентгеноструктурного параметра Δ;

K - понижающий коэффициент интегрированного рентгеноструктурного параметра Δ.

Параметр длительности эксплуатации детали в одном цикле Τ может быть равен отношению наработки детали в часах tЧ к наработке детали в циклах tЦ с учетом коэффициента kt, зависящего от типа двигателя: .

Коэффициент нерегулярности S интегрированного рентгеноструктурного параметра может быть определен по зависимости

где Δi - интегрированный рентгеноструктурный параметр для i-той точки измерения детали.

Понижающий коэффициент K интегрированного рентгеноструктурного параметра может быть определен по зависимости

где Δmin - минимальное значение интегрированного рентгеноструктурного параметра;

nмин - количество точек измерения для вычисления значения минимального интегрированного рентгеноструктурного параметра для i-той точки детали: Δmin≤Δ≤(Δmin+1);

Ν - общее количество i-тых точек измерений на детали.

Способ осуществляется следующим образом.

Контролируемую деталь на предполагаемой поверхности разрушения подвергают рентгеновскому излучению. Излучение происходит от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Kβ. Далее снимают и выполняют запись рентгенограммы во всех i-тых точках измерения. Затем для каждой i-той точки измерения проводят расчет интегрированного рентгеноструктурного параметра Δi, после чего вычисляют коэффициент нерегулярности S интегрированного рентгеноструктурного параметра.

Вычисляют интегрированный структурный параметр Δi как произведение параметра ширины B дифракционной линии без фона и параметра профиля P дифракционной линии без фона:

Δi=B⋅P.

Параметр ширины B дифракционной линии без фона определяют как отношение ширины дифракционной линии от отражающей плоскости (11.0) при использовании титанового излучения Ti-Kα к ширине дифракционной линии от отражающей плоскости (01.3) при использовании титанового излучения Ti-Kβ:

Параметр профиля P дифракционной линии без фона определяют как отношение интегральной интенсивности (площади профиля) дифракционной линии без фона от отражающих плоскостей (11.0) к интегральной интенсивности (площади профиля) дифракционной линии без фона от отражающих плоскостей (01.3) :

или как отношение максимальной интенсивности (высот пика) дифракционной линии без фона от отражающих плоскостей (11.0) к максимальной интенсивности (высот пика) дифракционной линии без фона от отражающих плоскостей (01.3) ·

Вычисляют коэффициент нерегулярности S интегрированного рентгеноструктурного параметра по следующей зависимости:

где Δi - интегрированный рентгеноструктурный параметр для i-той точки измерения детали.

Затем выявляют минимальное значение интегрированного рентгеноструктурного параметра Δmin и рассчитывают понижающий коэффициент K интегрированного рентгеноструктурного параметра.

Понижающий коэффициент K интегрированного рентгеноструктурного параметра может быть определен по зависимости

,

где Δmin - минимальное значение интегрированного рентгеноструктурного параметра;

nмин - количество точек измерения для вычисления значения минимального интегрированного рентгеноструктурного параметра для i-той точки детали: Δmin≤Δ≤(Δmin+1);

N - общее количество i-тых точек измерений на детали.

Далее для оценки технического состояния контролируемой детали используют параметр остаточного ресурса, который определяется по формуле:

Pост=T⋅S⋅K,

где T - параметр длительности эксплуатации детали в одном цикле;

S - коэффициент нерегулярности интегрированного рентгеноструктурного параметра Δ;

K - понижающий коэффициент интегрированного рентгеноструктурного параметра Δ.

Параметр длительности эксплуатации детали в одном цикле Т может быть определен из отношения:

где tЧ - наработки детали в часах;

tЦ - наработка детали в циклах;

kt - коэффициент, зависящий от типа двигателя или установки для испытания.

Параметр остаточного ресурса позволяет с определенной точностью прогнозировать остаточный ресурс детали в дальнейшей эксплуатации.

Пример

С помощью рентгеновского дифракторметра выполняется измерение параметров рентгеновского спектра, например, диска компрессора низкого давления, при этом для точной установки и позиционирования диска в автоматизированном режиме используются специальные держатели диска. В каждой точке измерения на торцах обода диска дуга гониометра устанавливается вдоль радиуса диска. Предлагаемая схема позиционирования дисков позволяет обеспечить высокую производительность измерения и воспроизводимость результатов измерения рентгеноструктурных параметров.

Способ автоматизированного сканирования заключается в записи рентгенограмм на всех точках измерения, проведения расчета рентгеноструктурных параметров Δi, Δmin, S и K и определения величины параметра остаточного ресурса Pост, который позволяет с определенной точностью прогнозировать остаточный ресурс диска в дальнейшей эксплуатации.

Из таблицы 1 видно, что для дисков компрессоров с более высоким значением эксплуатационного параметра Т изменение величин структурных параметров S и K на дисках в процессе эксплуатации происходит медленнее, соответственно величина параметра остаточного ресурса Pост выше, при этом для новых дисков без наработки эксплуатационный параметр Т устанавливается условно (Т=1,0 ч), а при расчете параметра Pост использован коэффициент Kt=1.

Из таблицы 2 видно, что на дисках после ресурсных испытаний по циклу, близкому к эксплуатационному, происходит уменьшение параметра Pост. Для диска 3 с максимальным эксплуатационным параметром Т происходит незначительное уменьшение параметра Pост, при этом диск 1 прошел ресурсные испытания в составе технологического двигателя, а для дисков 2 и 3 после ресурсных испытаний на установке УИР-3 эксплуатационный параметр устанавливается условно, равный эксплуатационному параметру в процессе эксплуатации в составе двигателя, или же задается расчетным способом.

Дальнейшие мероприятия показали, что на диске 2 после испытания по режимам полетного цикла через 18 циклов была выявлена трещина в пазу диска. Последующие испытания до выхода трещины на торец диска не проводились. На диске 3 никаких дефектов не обнаружено. Диск признан ремонтнопригодным и используется в исследовательских целях. Диск 1 выдержал последующие ресурсные испытания.

Соответственно, можно считать, что предлагаемый способ рентгеноструктурного контроля деталей газотурбинного двигателя позволяет спрогнозировать ресурс диска с достаточно высокой степенью сходимости результатов фактического и прогнозируемого ресурса.

Также использование предлагаемого способа позволило получить приблизительную оценку скорости изменения параметра остаточного ресурса Pост в зависимости от эксплуатационного параметра Т. При ресурсных испытаниях дисков с эксплуатационным параметром Т, большим 2,5 часов, величина Pост уменьшается в 6-8 раз, с параметром Т=2,5-1,5 часа величина Pост уменьшается в 3-5 раз и с параметром Т, меньшим 1,5 часов, величина Pост уменьшается в 1,1-2,0 раза. Эти результаты можно будет использовать при расчетном моделировании изменения остаточного ресурса дисков на стадии изготовления или ремонта диска.

Таким образом, для прогнозирования остаточного ресурса дисков компрессоров можно использовать экспериментальный неразрушающий способ оценки рентгеноструктурных параметров на новых и ремонтных дисках компрессоров, а также данный способ можно использовать для управления ресурсом дисков при оптимизации эксплуатационных характеристик.

В результате за счет повышение точности измерения рентгеноструктурных параметров, сокращения времени регистрации экспериментальных данных и отсутствия необходимости предварительно определять предельные значения контролируемых параметров на исследуемых деталях данное техническое решение позволяет обеспечить повышение производительности технологического процесса контроля деталей неразрушающим способом.


СПОСОБ РЕНТГЕНОСТРУКТУРНОГО КОНТРОЛЯ ДЕТАЛЕЙ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
СПОСОБ РЕНТГЕНОСТРУКТУРНОГО КОНТРОЛЯ ДЕТАЛЕЙ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
СПОСОБ РЕНТГЕНОСТРУКТУРНОГО КОНТРОЛЯ ДЕТАЛЕЙ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 51-60 of 99 items.
26.08.2017
№217.015.da1d

Способ круговой электрохимической обработки компрессорных лопаток газотурбинного двигателя

Изобретение относится к электрохимической обработке. В способе заготовку лопатки устанавливают в рабочую камеру станка и ведут обработку лопатки двумя электродами-инструментами с подачей напряжения на электроды и лопатку, прокачкой электролита через межэлектродный промежуток и заданием...
Тип: Изобретение
Номер охранного документа: 0002623938
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da82

Способ получения направленной кристаллизацией крупноразмерных отливок из жаропрочных сплавов

Изобретение относится к литейному производству. Нагретый до температуры выше температуры ликвидуса жаропрочный сплав через стояк 2 и коллектор 3 литниковой системы заливают в тонкостенную керамическую форму 1 с затравкой, расположенной в верхней части формы. Форму заполняют снизу вверх до...
Тип: Изобретение
Номер охранного документа: 0002623941
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dab8

Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой. Литейный никелевый сплав содержит, мас. %: хром 9-18, кобальт 7-20, вольфрам 1-8, молибден 0,2-4,0,...
Тип: Изобретение
Номер охранного документа: 0002623940
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e31a

Литейный жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к литейным жаропрочным сплавам на никелевой основе, используемым для изготовления высоконагруженных деталей газотурбинных двигателей и установок, а именно рабочих и сопловых лопаток газовых турбин с направленной столбчатой и...
Тип: Изобретение
Номер охранного документа: 0002626118
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e417

Выносная камера сгорания

Изобретение относится к области турбомашиностроения и может быть использовано в конструкциях камер сгорания газотурбинных установок наземного и морского применения. Выносная камера сгорания содержит силовой корпус в виде двух конических стенок, неразъемно соединенных между собой большими...
Тип: Изобретение
Номер охранного документа: 0002626180
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e5f2

Комбинированная радиальная опора

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками. Комбинированная радиальная опора содержит корпус (1) подшипника, в пазах которого установлены лепестки (2), охватывающие втулку...
Тип: Изобретение
Номер охранного документа: 0002626783
Дата охранного документа: 01.08.2017
19.01.2018
№218.016.02d4

Способ литья крупногабаритных лопаток турбин

Изобретение относится к области технологии литейного производства и может найти применение для изготовления отливок крупногабаритных рабочих и сопловых турбинных лопаток из жаропрочных и коррозионностойких сплавов. Способ включает изготовление литейной формы, нанесение на поверхность литейной...
Тип: Изобретение
Номер охранного документа: 0002630104
Дата охранного документа: 05.09.2017
20.02.2019
№219.016.bdbb

Компрессор двухконтурного газотурбинного двигателя

Изобретение относится к управлению и регулированию компрессора газотурбинного двигателя. Компрессор двухконтурного газотурбинного двигателя содержит корпус регулируемых направляемых аппаратов (НА), который вместе с силовым промежуточным корпусом образует единый жесткий модуль, привод...
Тип: Изобретение
Номер охранного документа: 0002235914
Дата охранного документа: 10.09.2004
01.03.2019
№219.016.ca62

Газотурбинный двигатель

Двухконтурный газотурбинный двигатель содержит наружный контур 1 и внутренний контур с последовательно размещенными в нем компрессором высокого давления 2, камерой сгорания 3 и охлаждаемой турбиной 4. Воздушная полость 14 камеры сгорания 3 связана посредством многоканального воздуховода 15 с...
Тип: Изобретение
Номер охранного документа: 02236609
Дата охранного документа: 20.09.2004
01.03.2019
№219.016.ca7c

Способ испытаний газотурбинного двигателя

Изобретение относится к авиадвигателестроению, а именно к стендовым испытаниям авиационных двигателей, оборудованных соплами с управляемым вектором тяги. Способ испытаний ГТД осуществляют на стенде с силоизмерительным устройством, которое предварительно нагружает осевой, вертикальной и боковой...
Тип: Изобретение
Номер охранного документа: 02238533
Дата охранного документа: 20.10.2004
Showing 51-60 of 65 items.
26.08.2017
№217.015.da1d

Способ круговой электрохимической обработки компрессорных лопаток газотурбинного двигателя

Изобретение относится к электрохимической обработке. В способе заготовку лопатки устанавливают в рабочую камеру станка и ведут обработку лопатки двумя электродами-инструментами с подачей напряжения на электроды и лопатку, прокачкой электролита через межэлектродный промежуток и заданием...
Тип: Изобретение
Номер охранного документа: 0002623938
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da82

Способ получения направленной кристаллизацией крупноразмерных отливок из жаропрочных сплавов

Изобретение относится к литейному производству. Нагретый до температуры выше температуры ликвидуса жаропрочный сплав через стояк 2 и коллектор 3 литниковой системы заливают в тонкостенную керамическую форму 1 с затравкой, расположенной в верхней части формы. Форму заполняют снизу вверх до...
Тип: Изобретение
Номер охранного документа: 0002623941
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dab8

Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой. Литейный никелевый сплав содержит, мас. %: хром 9-18, кобальт 7-20, вольфрам 1-8, молибден 0,2-4,0,...
Тип: Изобретение
Номер охранного документа: 0002623940
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e31a

Литейный жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к литейным жаропрочным сплавам на никелевой основе, используемым для изготовления высоконагруженных деталей газотурбинных двигателей и установок, а именно рабочих и сопловых лопаток газовых турбин с направленной столбчатой и...
Тип: Изобретение
Номер охранного документа: 0002626118
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e417

Выносная камера сгорания

Изобретение относится к области турбомашиностроения и может быть использовано в конструкциях камер сгорания газотурбинных установок наземного и морского применения. Выносная камера сгорания содержит силовой корпус в виде двух конических стенок, неразъемно соединенных между собой большими...
Тип: Изобретение
Номер охранного документа: 0002626180
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e5f2

Комбинированная радиальная опора

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками. Комбинированная радиальная опора содержит корпус (1) подшипника, в пазах которого установлены лепестки (2), охватывающие втулку...
Тип: Изобретение
Номер охранного документа: 0002626783
Дата охранного документа: 01.08.2017
19.01.2018
№218.016.02d4

Способ литья крупногабаритных лопаток турбин

Изобретение относится к области технологии литейного производства и может найти применение для изготовления отливок крупногабаритных рабочих и сопловых турбинных лопаток из жаропрочных и коррозионностойких сплавов. Способ включает изготовление литейной формы, нанесение на поверхность литейной...
Тип: Изобретение
Номер охранного документа: 0002630104
Дата охранного документа: 05.09.2017
09.08.2018
№218.016.79e2

Вакуумная индукционная плавильно-заливочная установка

Изобретение относится к области металлургии. Вакуумная индукционная плавильно-заливочная установка для получения отливок с направленной и монокристаллической структурой содержит камеру плавильную со сферической крышкой, шлюзовую камеру, блок откатной и охлаждаемый медный подъемный стол. Камера...
Тип: Изобретение
Номер охранного документа: 0002663025
Дата охранного документа: 01.08.2018
13.10.2018
№218.016.919d

Способ определения периодичности контроля деталей газотурбинных двигателей

Изобретение относится к области эксплуатации и диагностики авиационных газотурбинных двигателей и может найти применение в способах определения периодичности контроля деталей авиационных газотурбинных двигателей (ГТД) с помощью вихретокового метода обнаружения подповерхностных дефектов....
Тип: Изобретение
Номер охранного документа: 0002669432
Дата охранного документа: 11.10.2018
29.01.2019
№219.016.b512

Жаропрочный коррозионно-стойкий сплав на основе никеля для литья крупногабаритных рабочих и сопловых лопаток газотурбинных установок

Изобретение относится к металлургии, в частности, к литейным жаропрочным коррозионно-стойким сплавам на основе никеля и может быть использовано для изготовления литьем с равноосной структурой крупногабаритных толстостенных рабочих и сопловых лопаток газотурбинных установок (ГТУ), работающих при...
Тип: Изобретение
Номер охранного документа: 0002678353
Дата охранного документа: 28.01.2019
+ добавить свой РИД