×
25.08.2017
217.015.d1b3

Результат интеллектуальной деятельности: Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиолокации. Техническим результатом изобретения является повышение точности определения курса неманеврирующей аэродинамической цели. Указанный результат достигается за счет использования фиксированной выборки квадратов дальности и уменьшения влияния ошибок измерения азимута. Указанный результат достигается за счет того, что определяют путевую скорость путем взвешенного суммирования выборки квадратов дальности, радиальную скорость путем взвешенного суммирования измерений дальности и вычисляют курсовой угол в середине интервала наблюдения Курс вычисляют по формуле , где - азимут, устраняют неоднозначность определения курса, вычисляют ошибки определения курса, потребителям выдают значение курса с меньшей ошибкой. 2 н.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к области радиолокации и может быть использовано в РЛС для определения курса неманеврирующей аэродинамической цели (АЦ).

Известен способ, в котором текущий курс определяют как сумму курсового угла и азимута цели в предыдущем обзоре Q=qnn-1. Для определения курсового угла, то есть угла между линией визирования цели (между направлением «РЛС - АЦ») и направлением вектора скорости, вычисляют несколько вспомогательных величин: разность азимутов в соседних обзорах δβn; произведение дальности в последнем обзоре на синус разности азимутов bn=rnsinδβn; разность между дальностью в предыдущем обзоре и произведением дальности в последнем обзоре на косинус разности азимутов an=rn-1-rncosδβn; вспомогательный угол По знаку (положительный или отрицательный) an и bn устраняют неоднозначность определения курса. Далее производят экспоненциальное сглаживание текущих значений курса [1, с. 360-365]. Недостаток способа: большие ошибки определения курса при грубых измерениях азимута.

Наиболее близким аналогом заявляемому способу (прототипом) является способ определения курса по выборкам прямоугольных координат. Для этого вычисляют оценки (сглаженные значения) скорости изменения прямоугольных координат и (горизонтальных составляющих вектора скорости) путем оптимального взвешенного суммирования фиксированных выборок прямоугольных координат. Затем вычисляют значение вспомогательного угла Q*, равное арктангенсу отношения абсолютных значений этих оценок: .

Для устранения неоднозначности определения курса используют информацию о знаке оценок в соответствии с таблицей 1 [2, с. 314].

Как видно из фиг. 1-3, неоднозначность устраняется для всех траекторий.

Недостаток способа-прототипа: большие ошибки определения курса АЦ при грубых измерениях азимута цели.

Техническим результатом заявляемого изобретения является повышение точности определения курса за счет использования фиксированной выборки квадратов дальности.

Для достижения этого технического результата в заявляемом способе определения курса неманеврирующей аэродинамической цели с использованием фиксированной выборки квадратов дальности так же, как в прототипе, в РЛС измеряют дальность ri и азимут βi АЦ, преобразуют их в прямоугольные координаты (xi, yi). Путем оптимального взвешенного суммирования фиксированной выборки этих координат определяют оценки скорости изменения прямоугольных координат и Затем вычисляют оценку вспомогательного угла и устраняют неоднозначность определения курса по знаку оценок и . Если и больше нуля, то курс равен вспомогательному углу . Если больше нуля, а меньше нуля, то курс равен . Если и меньше нуля, то курс равен . Если меньше нуля, а больше нуля, то курс равен

В отличие от прототипа согласно заявляемому изобретению определяют оценку радиальной скорости в середине интервала наблюдения путем оптимального взвешенного суммирования фиксированной выборки измеренных значений дальности ri.

Кроме того, измеряют путевую скорость Для этого перемножают цифровые сигналы дальности и получают значения квадратов дальности. Далее определяют оценку второго приращения квадрата дальности за период обзора T0 путем оптимального взвешенного суммирования фиксированной выборки квадратов дальности. Затем вычисляют квадратный корень из этой оценки и делят на период обзора [3, 4]. После этого вычисляют курсовой угол в середине интервала наблюдения

Путем оптимального взвешенного суммирования измеренных значений азимута βi определяют оценку азимута в середине интервала наблюдения , среднеквадратическую ошибку этой оценки , где σβ - СКО измерения азимута.

В отличие от прототипа, значение курса определяется неоднозначно.

Как видно из фиг. 1-3, курс может быть равен как сумме курсового угла и азимута так и разности между азимутом и курсовым углом при одинаковых значениях радиальной скорости, азимута и дальности АЦ, а также при одинаковых или противоположных знаках оценок скорости изменения прямоугольных координат. Кроме того, как видно из фиг. 2, курс может быть равен а из фиг. 3 получена следующая формула:

Поэтому для устранения неоднозначности вычисляют суммы или разности между углами, равными курсовому углу , азимуту , π и 2π, то есть Затем сравнивают разность между полученными результатами и значением курса, определенного в прототипе с СКО определения курса в заявляемом изобретении. Эту СКО вычисляют по формуле:

где - СКО определения курсового угла;

σr - СКО измерения дальности;

N - объем фиксированной выборки;

rcp - дальность АЦ в середине интервала наблюдения.

Вычисляют СКО оценки курса в способе-прототипе по формуле:

Затем сравнивают СКО определения курса в заявляемом изобретении и в прототипе. На выход выдают значение курса с меньшей СКО.

Схема устройства, реализующего заявляемый способ, приведена в фиг. 4. Заявляемое устройство определения курса неманеврирующей аэродинамической цели с использованием фиксированной выборки квадратов дальности содержит так же, как прототип, измеритель курса по выборкам прямоугольных координат (блок 1), состоящий из преобразователя координат (блок 1.1), на входы которого подают данные измерений дальности и азимута, а первый и второй выходы соединены с входами первого и второго цифровых нерекурсивных фильтров (блоки 1.2 и 1.3, ЦНРФ-1 и ЦНРФ-2), выходы которых подключены к первому и второму входам вычислителя вспомогательного угла (блок 1.4), выход которого соединен с первым входом блока устранения неоднозначности определения курса (блок 1.5).

В отличие от прототипа согласно заявляемому изобретению в схему дополнительно введены измеритель путевой скорости АЦ (блок 2), содержащий последовательно соединенные умножитель (блок 2.1), ЦНРФ-3 (блок 2.2), вычислитель квадратного корня (блок 2.3) и делитель на период обзора (блок 2.4), выход которого подключен к первому входу вычислителя курсового угла (блок 5), второй вход которого соединен с выходом измерителя радиальной скорости АЦ (блок 3), содержащего последовательно соединенные ЦНРФ-4 (блок 3.1) и делитель на период обзора (блок 3.2), на входы измерителей путевой и радиальной скорости подают данные измерений дальности, выход вычислителя курсового угла подключен к второму входу блока устранения неоднозначности определения курса в заявляемом устройстве (блок 6), первый вход которого подключен к выходу измерителя курса по выборкам прямоугольных координат (блок 1), а третий вход соединен с выходом ЦНРФ-5 оценивания азимута АЦ в середине интервала наблюдения (блок 4), на вход которого подают данные измерений азимута АЦ, выход блока устранения неоднозначности определения курса в заявляемом устройстве подключен к первому входу схемы сравнения (блок 7), второй вход которого соединен с выходом измерителя курса по выборкам прямоугольных декартовых координат (блок 1), а третий и четвертый входы соединены с выходами вычислителей СКО определения курса в прототипе и в заявляемом устройстве, первый и второй выходы схемы сравнения являются выходами заявляемого устройства.

Как видно из фиг. 4, основными блоками устройства являются цифровые нерекурсивные фильтры, построенные по одинаковой схеме (смотри фиг. 5). ЦНРФ содержит последовательно соединенные запоминающее устройство из N-1 элементов задержки (линии задержки, регистры сдвига и др.) на период обзора, блок умножителей на весовые коэффициенты из N умножителей и сумматор. Входной сигнал в текущем обзоре (uN) умножают на весовой коэффициент и подают на сумматор. Сигналы предыдущих обзоров (uN; uN-1, …, u2, u1) задерживают на соответствующее число обзоров и умножают на весовые коэффициенты. В итоге на входе сумматора формируют фиксированную выборку из N взвешенных сигналов, а на выходе сумматора получают оценку (сглаженное значение) сигнала или его первого и второго приращения в выбранной точке интервала наблюдения.

ЦНРФ отличаются друг от друга типом входного сигнала и весовыми коэффициентами. Так ЦНРФ-1, 2, 4 (блоки 1.2, 1.3 и 3.1) используют весовые коэффициенты оценивания первого приращения, вычисляемые по формуле: В ЦНРФ-3 используют весовые коэффициенты оценивания второго приращения а в ЦНРФ-5 - весовые коэффициенты оценивания азимута в середине интервала наблюдения [2, с. 151-155].

Для доказательства реализуемости заявленного технического результата вычислим СКО определения курса для следующего случая. АЦ летит к РЛС параллельно оси Y (курс Q=180°) с курсовым параметром r0=50 км (см. фиг. 6). Длина интервала наблюдения АС («скользящего окна») равна 30 км, время оценивания - 2 минуты.

СКО определения курса в заявляемом изобретении и в прототипе приведены в таблицах 2 и фиг. 6. Как видно из таблицы 2 и графиков фиг. 3, при ошибках измерения дальности σr=50 м заявляемое изобретение обеспечивает большую точность определения курса по сравнению с прототипом начиная с дальности 220 км, а при σr=25 м точность выше в полтора раза чем в прототипе уже на дальности 300 км.

В заявляемом изобретении, в отличие от прототипа, точность определения курса практически не зависит от ошибок измерения азимута. Как видно из табл. 2, СКО сглаженного значения азимута АЦ в середине интервала наблюдения не превышает 0,62°.

Следует отметить, что проблематично существенно уменьшить ошибки измерения азимута в РЛС метрового диапазона, размеры антенны которых соизмеримы с длиной волны. В то же время ошибки измерения дальности не зависят от размеров антенны. Например, в американской РЛС AN/TPS-59 достигнута точность измерения дальности около 30 метров [5, с. 36].

Таким образом, доказана промышленная реализуемость технического результата заявляемого изобретения: повышение точности определения курса неманеврирующей аэродинамической цели за счет использования фиксированной выборки квадратов дальности и уменьшения влияния ошибок измерения азимута.

Список использованных источников

1. Кузьмин С.З. Цифровая обработка радиолокационной информации. - М.: «Радио и связь», 1967.

2. Кузьмин С.З. Основы теории цифровой обработки радиолокационной информации. - М.: «Сов. радио», 1974.

3. Способ определения модуля скорости аэродинамической цели. Патент на изобретение №2559296.

4. Устройство радиолокационного определения путевой скорости неманеврирующей воздушной цели. Патент на полезную модель №152617.

5. Радиоэлектронные системы: основы построения и теория. Справочник / Под ред. Я.Д. Ширмана. - М: ЗАО «МАКВИС», 1998.


Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности
Источник поступления информации: Роспатент

Showing 61-70 of 93 items.
11.06.2018
№218.016.6089

Способ дорожных испытаний на надежность транспортных средств с автоматической гидромеханической трансмиссией

Изобретение относится к способу дорожных испытаний на надежность ТС с автоматической гидромеханической трансмиссией. Способ заключается в перемещении ТС по опорной поверхности в ведущем неустановившемся режиме движения. При этом двигатель и агрегаты трансмиссии нагружают крутящим моментом...
Тип: Изобретение
Номер охранного документа: 0002657090
Дата охранного документа: 08.06.2018
11.06.2018
№218.016.609b

Плавающее гусеничное шасси

Изобретение относится к управляемости на плаву гусеничного шасси. В плавающее гусеничное шасси в передней части гидродинамических решеток дополнительно устанавливаются водометные движители шнекового типа. Водометные движители приводятся во вращение от гусеничных движителей через резиновые шины...
Тип: Изобретение
Номер охранного документа: 0002657102
Дата охранного документа: 08.06.2018
20.06.2018
№218.016.646d

Способ установки бронестекла ветрового окна

Изобретение относится к способу установки бронестекла ветрового окна. Способ заключается в том, что бронестекло, выполненное трапецеидальной формы в горизонтальном сечении, приклеивают боковыми сторонами к оконному проему, а нижней и верхней сторонами к бронированным накладкам, жестко...
Тип: Изобретение
Номер охранного документа: 0002658222
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.65e7

Устройство отключения аккумулятора на автомобиле при аварийном режиме потребления тока

Изобретение относится к электрооборудованию транспортных средств. Устройство отключения аккумулятора на автомобиле при аварийном режиме потребления тока содержит устройство фиксации включения и отключения контактной группы, кнопку ручного включения/отключения "массы", электромагнит и кнопку...
Тип: Изобретение
Номер охранного документа: 0002658533
Дата охранного документа: 21.06.2018
01.07.2018
№218.016.6999

Способ монтажа эстакады на винтовых сваях

Изобретение относится к области строительства и может быть использовано при монтаже инвентарных эстакад с опорами на винтовых сваях с совмещенным железнодорожным и автопроездом. Технической задачей является уменьшение трудозатрат, сокращение номенклатуры технических средств и повышение темпа...
Тип: Изобретение
Номер охранного документа: 0002659287
Дата охранного документа: 29.06.2018
03.07.2018
№218.016.69da

Способ стрельбы из автоматического оружия боевой машины

Способ стрельбы из автоматического оружия боевой машины относится к вооружению и военной технике (ВВТ) и может быть использован на объектах ВВТ, имеющих автоматические пушки или крупнокалиберные пулеметы с различными темпами стрельбы. Способ стрельбы из автоматического оружия боевой машины...
Тип: Изобретение
Номер охранного документа: 0002659464
Дата охранного документа: 02.07.2018
13.07.2018
№218.016.70cc

Безопасное колесо транспортного средства

Изобретение относится к автомобильному транспорту, в частности к колесам транспортных средств, позволяющим продолжить движение при повреждении шин и снижении внутреннего давления воздуха в них ниже минимально допустимого или при разрушении шины. Колесо состоит из разъемного герметичного обода и...
Тип: Изобретение
Номер охранного документа: 0002661189
Дата охранного документа: 12.07.2018
13.07.2018
№218.016.70da

Полноприводное модульное транспортное средство

Изобретение относится к колесным транспортным средствам. Полноприводное модульное транспортное средство содержит раму с установленными на ней двигателем, коробкой передач, раздаточной коробкой, кабиной, передним, средним, и задним ведущими мостами с подвесками и мостовыми модулями. Мосты...
Тип: Изобретение
Номер охранного документа: 0002661185
Дата охранного документа: 12.07.2018
28.07.2018
№218.016.76ae

Способ определения средней скорости движения транспортного средства

Изобретение относится к испытаниям транспортных средств. Способ определения средней скорости движения транспортного средства заключается в перемещении транспортного средства по поверхности в неустановившемся режиме движения, определенном профилем и несущей способностью опорной поверхности с...
Тип: Изобретение
Номер охранного документа: 0002662592
Дата охранного документа: 26.07.2018
22.08.2018
№218.016.7e52

Управляемый артиллерийский снаряд

Устройство управляемого артиллерийского снаряда (УАС) предназначено для снаряжения артиллерийских орудий, входящих в состав комплекса контрбатарейной борьбы с подразделениями ствольной и реактивной артиллерии, а также с подразделениями минометов противника, находящихся на огневых позициях и...
Тип: Изобретение
Номер охранного документа: 0002664529
Дата охранного документа: 20.08.2018
Showing 61-70 of 74 items.
22.01.2019
№219.016.b28e

Способ обнаружения и сопровождения воздушных целей радиолокационным комплексом

Изобретение относится к радиолокации и может быть использовано в радиолокационных комплексах (РЛК) для контроля воздушного пространства и управления воздушным движением. Техническим результатом изобретения является повышение защищенности РЛК от пассивных помех. Указанный результат достигается...
Тип: Изобретение
Номер охранного документа: 0002677680
Дата охранного документа: 21.01.2019
21.02.2019
№219.016.c53d

Способ определения дальности до движущегося воздушного объекта методом пассивной локации

Изобретение относится к области измерения расстояний. Способ определения дальности до движущегося воздушного объекта методом пассивной локации включает получение оптического изображения движущегося воздушного объекта; преобразование полученного изображение в цифровое; распознавание изображения...
Тип: Изобретение
Номер охранного документа: 0002680265
Дата охранного документа: 19.02.2019
11.03.2019
№219.016.d80e

Многодиапазонный радиолокационный комплекс

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах управления воздушным движением и контроля воздушно-космического пространства. Достигаемым техническим результатом изобретения является расширение функциональных возможностей радиолокационного...
Тип: Изобретение
Номер охранного документа: 0002346291
Дата охранного документа: 10.02.2009
19.06.2019
№219.017.87e7

Устройство первичной обработки сигналов радиолокационной станции, использующей две последовательности зондирующих импульсов

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС). Техническим результатом предлагаемого изобретения является устранение "слепых" зон при обнаружении целей РЛС, использующей две последовательности зондирующих импульсов. Для этого...
Тип: Изобретение
Номер охранного документа: 0002305853
Дата охранного документа: 10.09.2007
19.06.2019
№219.017.87e8

Амплитудный одноканальный многочастотный пеленгатор шумовых активных помех

Предлагаемое изобретение относится к радиолокации и служит целям определения угловых координат постановщиков шумовых активных помех (ПШАП) и оценки частотного распределения мощности шумовых активных помех (ШАП) в диапазоне рабочих частот пеленгатора. Техническим результатом предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002305850
Дата охранного документа: 10.09.2007
23.07.2019
№219.017.b6cd

Мобильная антенная установка

Изобретение относится к антенной технике, в частности к мобильным антенным установкам с фазированными антенными решетками (ФАР), и может быть использовано в мобильных радиолокационных станциях (РЛС) дальнего обнаружения и точного сопровождения воздушных целей. Мобильная антенная установка...
Тип: Изобретение
Номер охранного документа: 0002695040
Дата охранного документа: 18.07.2019
02.10.2019
№219.017.cba8

Оптико-электронный комплекс для оптического обнаружения, сопровождения и распознавания наземных и воздушных объектов

Изобретение относится к области пассивной локации. Оптико-электронный комплекс (ОЭК) включает обзорный тепловизор (ОТ) 1 для пассивного обнаружения наземных и воздушных объектов (НВОБ) и телевизионно-оптическую систему (ТОС) 2 для автозахвата на сопровождение и идентификации типа НВОБ. ОТ 1...
Тип: Изобретение
Номер охранного документа: 0002701177
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cbb7

Разведывательно-боевая машина

Изобретение относится к военной технике. Разведывательно-боевая машина состоит из корпуса, силовой установки с коробкой передач и системой охлаждения, колесного шасси с рычагами и амортизаторами, сидений, тормозной системы с педалями и рычагом управления, системы питания и электрооборудования....
Тип: Изобретение
Номер охранного документа: 0002701280
Дата охранного документа: 25.09.2019
08.12.2019
№219.017.eb3e

Способ идентификации типа самолета средствами пассивной оптической локации и устройство для его осуществления

Изобретение относится к способам пассивной дистанционной телевизионной идентификации типа самолета средствами пассивной оптической локации и устройствам для его осуществления. Технический результат заключается в повышении достоверности идентификации типа самолета независимо от ракурса его...
Тип: Изобретение
Номер охранного документа: 0002708346
Дата охранного документа: 05.12.2019
23.02.2020
№220.018.04e9

Способ определения курса объекта на линейной траектории с использованием измерений его радиальной скорости

Изобретение относится к области радиолокации и предназначено для определения курса неманеврирующих объектов. Технический результатом изобретения заключается в повышении точности определения курса неманеврирующего объекта. Указанный результат достигается за счет использования выборки...
Тип: Изобретение
Номер охранного документа: 0002714884
Дата охранного документа: 20.02.2020
+ добавить свой РИД