×
25.08.2017
217.015.d152

Результат интеллектуальной деятельности: КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения алюмохромового катализатора для процессов дегидрирования парафиновых углеводородов до соответствующих непредельных углеводородов, к катализатору и к способу дегидрирования. Описан катализатор, содержащий в своём составе оксиды хрома, калий и/или натрий, церий и/или цирконий, нанесённые на композитный носитель, включающий оксид алюминия и алюминий. Носитель содержит 2-5% алюминия, причём носитель получен гидротермальной обработкой порошкообразного металлического алюминия с размером частиц 10÷500 нм в одну стадию в массовом соотношении Al:HO=1:17 при относительно низких температурах (20÷100°°С) и атмосферном давлении в течение 15 мин (без предварительной подготовки материалов и без использования автоклавного оборудования) с последующей термической обработкой при температуре 95-700°С. Способ получения катализатора включает пропитку носителя водным раствором, содержащим растворимые соединения хрома, калия и/или натрия, церия и/или циркония с последующей сушкой при 95-120°C и прокалкой при 400-800°C в течение 4 ч. Описан процесс дегидрирования парафиновых углеводородов в стационарном слое с использованием упомянутого выше алюмохромового катализатора. Технический эффект – получение гранулированного алюмохромового катализатора цилиндрической формы с высокой механической прочностью и каталитической активностью в дегидрировании парафиновых углеводородов в соответствующие непредельные углеводороды. 3 н.п. ф-лы, 2 табл., 7 пр.

Изобретение относится к области химической технологии и каталитической химии, в частности к способам получения алюмохромовых катализаторов для процессов дегидрирования парафиновых углеводородов до соответствующих непредельных углеводородов, и может найти применение в химической и нефтехимической промышленности.

Известен способ получения алюмооксидного носителя и способ получения катализатора дегидрирования С35 парафиновых углеводородов на этом носителе состава, мас.%: Cr2O3 – 10,0-20,0; K2O – 0,1-5; промотор – 0,1-5; алюмооксидный носитель – остальное [Патент РФ № 2350594, МПК С07С 5/333, B01J 23/26, B01J 21/04, B01J 23/04, B01J 37/02, опубл. 27.03.2009]. В качестве носителя катализатора используют микросферические гранулы оксида алюминия бемитной морфологии, полученные высокотемпературной обработкой гидраргиллита путем нагревания в камере автоклава в атмосфере инертного газа и/или аммиака, и/или углекислого газа в диапазоне температур от 100 до 300°°С и давлении до 150 кгс/см2. Недостатком данного способа является технологическая усложненность, заключающаяся в длительной обработке гидраргиллита (от 0,1 до 20 ч), а также регулировании температуры (не менее 100°С и не более 300°С) и давления. Катализатор имеет недостаточно высокую активность и стабильность.

Известен способ получения алюмохромового катализатора путем смешивания алюминиевого носителя с суспензией, имеющей концентрацию 28-37 мас.% по глинистому минералу и с водными растворами хромовой кислоты и калиевой щелочи состава, вес.%: Cr2O3 – 12,0-16,0; SiO2 – 8,0-13,0; K2O и Na2O или только K2O – 2,0-3,6; Al2O3 – остальное [Патент РФ № 2546646, МПК B01J 21/12, B01J 23/26, B01J 21/16, B01J 37/04, С07С 5/333, опубл. 10.04.2015]. Алюминиевый носитель имеет относительно низкую удельную поверхность (~50 м2/г), крупные частицы и большой разброс по размеру частиц (частицы размером 45 мкм (30 мас.%), частицы размером 20 мкм (10 мас.%), частицы размером более 140 мкм (1,0 мас.%)). Недостатками получаемого катализатора является низкая активность и селективность, а также сложность и многостадийность процесса получения катализатора.

Известен способ получения алюмохромового катализатора для дегидрирования парафиновых углеводородов в олефиновые путем смешивания технической окиси алюминия и глинистого минерала с растворами хромовой кислоты и калиевой щелочи с последующим формованием, сушкой и прокаливанием следующего состава, вес.%: 72-76 – Al2O3, 12-15 – Cr2O3, 7-12 –SiO2 и 2,0-3,5 – K2O [Авторское свидетельство № 675670, МПК B01J 37/04, B01J 23/26, B01J 21/16, опубл. 10.06.2001]. В качестве глинистого минерала используют галлуазит с частицами диаметром 0,05-0,2 мкм и длиной 0,1-1 мкм. Способ получения алюмохромового катализатора отличается сложностью и многостадийностью.

Известен способ получения катализатора состава, мас.%: Cr2O3 – 10,0-20,0; K2O – 0,1-5,0; CuO и/или ZnO и/или ZrO2 и/или MnO2 – 0.1-5; Al2O3 – остальное [Патент РФ №2325227, МПК B01J 37/02, B01J 32/00, B01J 21/04, B01J 23/72, B01J 23/78, B01J 23/80, С07С 5/333, опубл. 27.05.2008]. Недостатком данного способа является технологическая усложненность, а также недостаточно высокая активность и селективность.

Наиболее близким техническим решением к предлагаемому способу является способ приготовления катализатора, содержащего оксид хрома, оксид алюминия, включающий обработку носителя раствором соединений хрома и раствором натрия или натрия и церия [Патент РФ №2256499, МПК B01J 23/26, B01J 23/04, B01J 21/04, B01J 37/02, С07С 5/333, опубл. 20.07.2005]. Способ приготовления носителя на основе оксида алюминия и алюминия включает формирование заготовки из порошка алюминия и неорганической добавки, окисление и последующее спекание, где в качестве неорганической добавки используют продукт термохимической активации гидраргиллита, который представляет собой аморфное соединение Al2O3·nH2O. Катализатор готовят путем пропитки гранул носителя водным раствором CrO3 по влагоемкости носителя. Одновременно с хромовой кислотой в пропиточный раствор вводят растворимые соли добавок натрия и церия в пересчете на оксиды в количестве, мас.%: 0,2-1,0 Na2O, 0.1-2.0 CeO2. После пропитки катализатор сушат на воздухе (ступенчато в течение 18 ч), а затем прокаливают (ступенчато в течение 4-6 ч).

Недостатками данного способа являются многостадийность, сложность технологии и получение носителя неоднородного фазового состава, состоящего из оксида алюминия гамма-, эта-, тэта- и других модификаций, включая стадию гидротермальной обработки при высоких температурах (100-200°С) и давлениях с использованием автоклавного оборудования. Кроме того, при синтезе шихты, содержащей продукт термохимической активации и порошкообразный алюминий в соотношениях ТХА:Al=0÷20:100÷80 (мас.%), при общем объеме пор 0,10-0,26 см3/г образцы имеют относительно низкую удельную поверхность 28,6-51,2 м2/г.

Основной технической задачей предложенного изобретения является создание технологически упрощенного способа получения алюмохромового катализатора с высокими значениями удельной поверхности, механической прочности и каталитической активности.

Техническая задача достигается тем, что катализатор синтезируют пропиткой водным раствором CrO3 алюминий-алюмооксидного носителя, полученного путем гидротермальной обработки порошкообразного металлического алюминия с размером частиц 10–500 нм с последующей термической обработкой при 50-700 С, причем процесс гидротермальной обработки алюминия проводят в одну стадию в массовом соотношении Al:H2O=1:8÷40, при относительно низких температурах (20÷100°С), при атмосферном давлении в течение менее 20 мин без предварительной подготовки материалов и без использования автоклавного оборудования. Микроструктура носителей и катализаторов на их основе характеризуется сформировавшейся пористой ячеистой структурой с открытыми порами. Носители характеризуются удельной поверхностью 178–355 м2/г, средним размером пор (измеренным методом низкотемпературной адсорбции азота) 7,2–13,7 нм, а катализаторы на их основе – 95-137 м2/г и средним размером пор от 9,2 до 13,3 нм. Свойства полученных носителей и катализаторов приведены в таблице 1.

Алюмохромовый катализатор готовят путем пропитки носителя водным раствором CrO3. Концентрацию хромовой кислоты в растворе рассчитывают на содержание в готовом катализаторе 15-23 мас.% Cr2O3. Вместе с хромовой кислотой в раствор для пропитки вводят растворимые соли модифицирующих добавок: калия и/или натрия, церия и/или циркония. Содержание добавок в пересчете на оксиды составляет, мас.%: 0-4 K2O и/или Na2O, 0-4 CeO2 и/или ZrO2. Алюмохромовые катализаторы сушат при температуре 95-120°С и прокаливают в атмосфере воздуха при 400-800°С в течение 4 ч. Алюмохромовый катализатор получают в виде цилиндров с диаметром 2,5-3,0 мм с высокой механической прочностью на раздавливание по образующей.

Полученный алюмохромовый катализатор испытывают в реакции дегидрирования н-бутана и изобутана при температуре 540 и 590°С. Процесс проводят в проточном кварцевом реакторе в стационарном слое алюмохромового катализатора с размером фракции 1-2 мм. Алюмохромовый катализатор смешивают с кварцевым стеклом такой же фракции в соотношении кварц:катализатор=1:1. Испытания проводят при атмосферном давлении в смеси н-бутана либо изобутана (600 ч-1) и азота с объемной скоростью подачи смеси 2670 ч-1. Процесс проводят циклами в последовательности: дегидрирование – 12 мин, продувка инертным газом – не менее 5 мин, регенерация воздухом – 15 мин, продувка инертным газом – не менее 5 мин, затем цикл повторяют. Степень превращения, выход и селективность непредельных углеводородов оценивают методом газовой хроматографии при отборе пробы на десятой минуте после начала дегидрирования.

Примеры конкретного выполнения.

Пример 1.

Алюмохромовый катализатор, полученный пропиткой носителя водным раствором CrO3, дополнительно содержащим растворимые соли калия и/или натрия, церия и/или циркония, с последующей сушкой при 95-120°С и прокалкой при 750°С в течение 4 ч, отличающийся тем, что в качестве носителя используют алюминий-алюмооксидный носитель, полученный при гидротермальной обработке порошкообразного металлического алюминия с дистиллированной водой в соотношении Al:H2O=1:17 в течение 15 мин при температуре 60-95°С с последующей термообработкой при температуре 95°С 6 ч.

Пример 2.

Алюмохромовый катализатор, аналогичный п. 1, отличающийся тем, что при получении катализатора дополнительно добавляют порообразователь органической природы в количестве 2 мас.% от массы катализатора.

Пример 3.

Алюмохромовый катализатор, аналогичный п. 1, отличающийся тем, что носитель подвергается термообработке при температуре 400°С 6 ч.

Пример 4.

Алюмохромовый катализатор, аналогичный п. 3, отличающийся тем, что при получении катализатора дополнительно добавляют порообразователь органической природы в количестве 2 мас.% от массы катализатора.

Пример 5.

Алюмохромовый катализатор, аналогичный п. 1, отличающийся тем, что носитель подвергается термообработке при температуре 700°С 6 ч.

Пример 6.

Алюмохромовый катализатор, аналогичный п. 5, отличающийся тем, что при получении катализатора дополнительно добавляют порообразователь органической природы в количестве 2 мас.% от массы катализатора.

Пример 7.

Способ дегидрирования парафиновых углеводородов в стационарном слое, отличающийся тем, что используют катализатор по пп.1-6.

В таблице 1 приведены характеристики носителя и алюмохромовых катализаторов на их основе в сравнении с прототипом. Из представленных данных видно, что алюминий-алюмооксидные носители превосходят носитель, используемый для получения прототипа, по величине удельной поверхности и объему пор. Катализаторы по примеру 1-6 характеризуются высокими значениями удельной поверхности от 95 до 137 м2/г при объеме пор 0,22-0,42 см3/г, при этом гранулы катализатора имеют более высокую прочность на раздавливание 6,4-10,0 МПа, по сравнению с 4,8 МПа для прототипа.

В таблице 2 приведены каталитические характеристики полученных катализаторов в сравнении с катализатором-прототипом в реакции дегидрирования н-бутана и изобутана при температурах 540 и 590°С. Из представленных данных видно, что катализаторы по примеру 1-6 превосходят катализаторы-прототипы по степени превращения н-бутана и изобутана и выходу соответствующих непредельных углеводородов.

Таким образом, предложенные по примерам 1-6 алюмохромовые катализаторы на основе алюминий-алюмооксидного носителя, полученные упрощенным способом, имеют высокие значениями удельной поверхности и механической прочности, обладают высокой каталитической активностью в реакции дегидрирования парафиновых углеводородов, в частности н-бутана и изобутана, в соответствующие непредельные углеводороды.

Таблица 1 - Характеристики носителей и катализаторов

Таблица 2 - Каталитические характеристики катализаторов в реакции дегидрирования н-бутана и изобутана при 540/590°С

* Пример 2 из патента-прототипа, поскольку в патенте активность в дегидрировании н-бутана приведена только для этого примера

Источник поступления информации: Роспатент

Showing 161-170 of 176 items.
13.12.2019
№219.017.ed20

Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках

Изобретение относится к электронной технике и предназначено для создания дискретных полупроводниковых приборов и интегральных схем с использованием трехмерной 3D-интеграции посредством электрического соединения их металлических конструктивных элементов сквозными металлизированными отверстиями с...
Тип: Изобретение
Номер охранного документа: 0002708677
Дата охранного документа: 11.12.2019
21.12.2019
№219.017.efff

Апоптозиндуцирующие средства и способ их получения

Изобретение относится к способу получения аддуктов пиколиновой либо никотиновой кислоты с аскорбиновой кислотой, характеризующийся тем, что к водному раствору аскорбиновой кислоты добавляют пиколиновую кислоту либо никотиновую кислоту (предварительно обработанную микроволновым излучением) в...
Тип: Изобретение
Номер охранного документа: 0002709498
Дата охранного документа: 18.12.2019
22.12.2019
№219.017.f0d2

Способ измерения параметров магнитного поля

Изобретение относится к измерению направления или напряженности магнитных полей. Способ измерения постоянного магнитного поля путем измерения параметра, возникающего на обкладках конденсатора из диэлектрического материала, снабженного двумя токопроводящими пластинами с выводами, установленными...
Тип: Изобретение
Номер охранного документа: 0002709703
Дата охранного документа: 19.12.2019
16.01.2020
№220.017.f522

Цифровой интегратор

Изобретение относится к областям радиотехники. Технический результат направлен на повышение точности цифрового интегрирования сигнала по выборке отсчетов заданного объема. Цифровой интегратор, содержащий аналого-цифровой преобразователь (АЦП), вход которого является входом интегратора,...
Тип: Изобретение
Номер охранного документа: 0002710990
Дата охранного документа: 14.01.2020
17.01.2020
№220.017.f648

Способ определения массы нефтезагрязнений на единицу площади донных отложений водных объектов

Изобретение относится к области охраны окружающей среды, в частности к аналитическому контролю содержания нефтезагрязнений в минеральных, органогенных и смешанных донных отложениях. Способ может использоваться при экологическом мониторинге загрязненных водных объектов, для оценки ущерба,...
Тип: Изобретение
Номер охранного документа: 0002711119
Дата охранного документа: 15.01.2020
22.01.2020
№220.017.f7e1

Аминопластичные смолы для слоистых пластиков

Изобретение относится к области высокомолекулярных соединений, а именно к конденсационным полимерам альдегидов или кетонов с двумя или более прочими мономерами, и может быть использовано в качестве конструкционного материала как самостоятельно, так и в составе композитов. Аминопластичная смола...
Тип: Изобретение
Номер охранного документа: 0002711592
Дата охранного документа: 17.01.2020
22.01.2020
№220.017.f83e

Способ повышения продуктивности растений картофеля в оптимальных и стрессовых условиях выращивания

Изобретение относится к биотехнологии и может быть использовано в сельском хозяйстве для увеличения выхода оздоровленных миниклубней картофеля в гидропонных условиях или на торфе. Способ включает обработку растений раствором биологически активных веществ. При этом в процессе адаптации к жидкой...
Тип: Изобретение
Номер охранного документа: 0002711577
Дата охранного документа: 17.01.2020
22.01.2020
№220.017.f8a3

Способ лечения кистоза придатка яичка

Изобретение относится к медицине и медицинской техники, а именно к андрологии, и может быть использовано для лечения кистоза придатка яичка. Удаление кисты осуществляют аппликацией охлажденного в жидком азоте с контактными элементами инструмента из проницаемо-пористого никелида титана на место...
Тип: Изобретение
Номер охранного документа: 0002711622
Дата охранного документа: 17.01.2020
19.03.2020
№220.018.0de3

Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (plga)

Изобретение относится к аналитической химии, а именно к способам количественного определения токсичных компонентов в имплантатах на основе полилактид-гликолида (PLGA) методом газовой хроматографии. Способ одновременного определения в одной пробе количественного определения токсичных компонентов...
Тип: Изобретение
Номер охранного документа: 0002716831
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0e9b

Комплекс распределенного управления интеллектуальными роботами для борьбы с малогабаритными беспилотными летательными аппаратами

Комплекс распределенного управления интеллектуальными роботами для борьбы с малогабаритными беспилотными летательными аппаратами (БПЛА) содержит БПЛА-охотник, блок поиска БПЛА-нарушителя, средства захвата или ликвидации БПЛА-нарушителя, комплект мобильных наземных роботов высокой проходимости,...
Тип: Изобретение
Номер охранного документа: 0002717047
Дата охранного документа: 18.03.2020
Showing 101-103 of 103 items.
04.04.2018
№218.016.30d0

Способ обработки заготовок ванадиевых сплавов

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002644832
Дата охранного документа: 14.02.2018
18.06.2020
№220.018.2778

Способ получения кускового силикагеля

Изобретение относится к способам получения технического кускового силикагеля. Способ получения кускового силикагеля включает смешивание раствора жидкого стекла с раствором серной кислоты при 15-25°C, гелирование раствора при температуре 15-30°C в течение 20-40 часов, измельчение, отмывку и...
Тип: Изобретение
Номер охранного документа: 0002723623
Дата охранного документа: 16.06.2020
24.07.2020
№220.018.36de

Высокопористый материал на основе диатомита и способ его получения

Изобретение относится к способам получения из диатомита высокопористого сорбента на основе диоксида кремния с величиной удельной поверхности свыше 350 м/г и иерархической пористой структурой. Полученный продукт имеет исходную макропористую структуру диатомита и вторичную структуру узких мезопор...
Тип: Изобретение
Номер охранного документа: 0002727393
Дата охранного документа: 21.07.2020
+ добавить свой РИД