×
25.08.2017
217.015.cf78

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ И СОСТАВ МАСЛА ИЗ СЕМЯН ДЫНИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к пищевой промышленности. Масло из семян дыни, полученное обработкой семян дыни, собранных в сентябре, методом сверхкритической флюидной экстракции диоксидом углерода. При этом используют высушенные семена дыни сорта «Лада», измельченные до частиц размером 1,0-2,0 мм, а экстракцию проводят в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин. Изобретение позволяет получить масло из семян дыни, включающее линолевую кислоту с более высоким выходом с одновременным извлечением 10 других жирных кислот. 2 н. и 1 з.п. ф-лы, 1 ил., 9 табл., 27 пр.

Изобретение относится к пищевой промышленности и касается способа получения масла из семян дыни, содержащего в качестве основного компонента линолевую кислоту с помощью сверхкритической флюидной экстракции.

Наиболее близким примером к заявляемому способу получения масла является способ получения тыквенного масла прессованием с предварительной влаготепловой обработкой измельченных семян при температуре 80-90°C и последующим фильтрованием масла [А.Н. Шиков, В.Г. Макаров, В.Е. Рыженков. Растительные масла и масляные экстракты: технология, стандартизация, свойства. М.: Русский врач. 2004, С. 120-121].

Недостатком этого метода является то, что он не позволяет получать масло с извлечением других жирных кислот (количество извлекаемых жирных кислот 6).

Известен способ получения экстракта из семян тыквы [патент РФ №2051596], включающий экстракцию семян тыквы растительным маслом в соотношении 1:2 на водяной бане в течение 1,5 ч с последующим центрифугированием и отделением целевого продукта.

Недостаток этого метода заключается в том, что он не позволяет получать чистое масло семян тыквы.

Известен способ получения масла из семян тыквы [патент РФ №2197977], включающий следующие этапы: стерилизация семян горячим воздухом при температуре 100-120°C в течение 2,5-3,5 минут с последующим понижением температуры растительного сырья до окружающей среды и механический отжим семян при 60°C.

Известен способ получения масла из семян тыквы [патент РФ №2170027], предусматривающий сортировку и сушку семян сначала при 20-22°C, а затем при 60-80°C и последующее прессование.

Известен способ получения масла из семян тыквы [патент РФ №2064485], заключающийся в сортировке семян, их сушке при 50-60°C в течение 15-20 минут и прессовании при 70°C, с последующей фильтрацией при 40°C.

Известен способ получения масла из семян тыквы [патент РФ №2018514], предусматривающий измельчение семян до муки грубого помола, термическую обработку при температуре не выше 60°C и прессование.

Известен способ получения масла из семян тыквы [патент РФ №2441664], предусматривающий сортировку сырья, измельчение, обработку семян паром в течение 2-5 минут и их холодное прессование.

Известен способ получения масла из семян тыквы [патент РФ №2445111], который сводится к следующим этапам: обеззараживание семян, очистка от шелухи и примесей, пропаривание семян и их прессование сначала при 70-75°C, затем при 20-25°C и фильтрация масла.

Недостаток этих методов заключаются в том, что термическая обработка семян на начальном этапе процесса может способствовать деструкции части ценных веществ, входящих в состав масла тыквы.

Известен способ получения масла из семян арбуза [патент РФ №2542758], основанный на измельчении биологического материала и последующей обработкой его сверхкритическим углекислым газом.

Однако перечисленные выше способы получения масел не могут являться аналогами, так как получены из других растений.

Нами было найдено, что измельчение высушенного при 30-35°C в течение 1,0-1,5 часов растительного сырья семян дыни сорта «Лада» (Cucumis meld) до размера частиц 1,0-2,0 мм, приводит к увеличению выхода масла, при проведении экстракции диоксидом углерода в течение 50 минут (таблица 2), при давлении 300 атмосфер (таблица 4), температуре 40°C (таблица 5) и скорости потока диоксида углерода 40 г/мин (таблица 6). При этом увеличивается одновременно извлечение других компонентов. При более длительной экстракции происходит уменьшение выхода ценных компонентов, в частности линолевой кислоты и других жирных кислот (таблица 3).

Уменьшение количества жирных кислот является недостатком способа получения масла из семян дыни в течение более длительной экстракции.

Задачей, решаемой предлагаемым изобретением, является получение масла из семян дыни, включающей линолевую кислоту, с более высоким выходом масла и одновременным извлечением кроме линолевой кислоты 10 других компонентов (чертеж). Поставленная задача решается с помощью масла из растительного сырья, представляющего семена дыни, включающего линолевую кислоту. Масло получено методом сверхкритической флюидной экстракцией диоксидом углерода высушенных при 30-35°C в течение 1,0-1,5 часов семян дыни сорта «Лада», измельченных до частиц размером 1,0-2,0 мм с последующей экстракцией в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин. Предпочтительно используют семена дыни, собранные в сентябре, так как выход масла из семян в этот период максимален (таблица 7). Измельчение сырья семян дыни до размера частиц 1,0-2,0 мм приводит к повышению выхода масла из семян дыни. Одновременно с линолевой кислотой извлекаются и другие ценные жирные кислоты, которые при других условиях экстракции не извлекаются в таком количестве. Измельчение сырья до размера частиц менее 1,0 мм (0,7 мм) привело к понижению выхода масла с 62,63% до 62,25% (таблица 2, пример 9). Сырье, измельченное до размера частиц 1,0-2,0 мм с последующей экстракцией в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин позволяет получать масло из семян дыни с более высоким содержанием и количеством активных компонентов, не нарушая их структуры. При более длительном времени экстракции, более 50 минут (таблица 3, пример 14), или более высоком давлении, более 300 атмосфер (таблица 4, пример 17), или более высокой температуре, более 40°C (таблица 5, пример 20), или при более высокой скорости потока диоксида углерода, более 40 г/мин (таблица 6, пример 24) могут происходить нежелательные процессы, что приводит к уменьшению выхода линолевой кислоты и ряда других жирных кислот (таблица 3, пример 14).

При измельчении сырья до частиц размером 10 мм не достигается высокий выход масла (таблица 2, выход масла составляет 15,5%). При степени измельченности сырья 0,7 мм уменьшается количество линолевой кислоты с 62,54% (таблица 2, пример 7) до 62,25% (таблица 2, пример 9).

Ниже показано содержание компонентов в полученном масле по заявляемому способу.

Отличием предлагаемого изобретения от ранее известных способов получения масел заключается в том, что в качестве сырья используют высушенные при 30-35°C в течение 1,0-1,5 часов семена дыни сорта «Лада», собранные в сентябре и измельченные до частиц размером 1,0-2,0 мм с последующей экстракцией диоксидом углерода в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока углекислого газа 40 г/мин. Техническим результатом предлагаемого решения является получение масла из семян дыни, включающего линолевую кислоту, с более высоким выходом с одновременным извлечением 10 других жирных кислот (таблица 8). Соотношение ненасыщенных и насыщенных кислот масла из семян дыни приведено в таблице 9.

Способ получения масла из семян дыни заключается в следующем.

Высушенные при 30-35°C в течение 1,0-1,5 часов и измельченные до размера частиц 1,0-2,0 мм семена дыни сорта «Лада», собранные предпочтительно в сентябре, массой 65 г засыпают в сепаратор объемом 200 мл сверхкритического экстрактора марки SFE-500 M1 (фирма THAR). Растительное сырье обрабатывают в среде сверхкритического диоксида углерода в течение 50 минут, давлении 300 атмосфер, при температуре 40°C и скорости потока диоксида углерода 40 г/мин с последующим отделением масла.

Химический состав полученных образцов масла из семян дыни исследовали методом хромато-масс-спектрометрии на приборе Agilent с библиотекой 40 тыс. химических соединений, количественное определение компонентов масла проводили методом газожидкостной хроматографии на хроматографе Shimadzu QP 2010 с масс-селективным детектором после превращения жирных кислот в соответствующие метиловые эфиры при обработке диазометаном. Эфирный раствор диазометана получали из N-нитрозо-N-метилмочевины по известной методике [Г. Беккер, Г. Домшке, Э. Фангхенель. Органикум: в 2 т. Т. 2. М.: 1979. С. 248]. Для идентификации использовали библиотеку масс-спектров NIST 02. Хроматографирование осуществляли на колонке MDN-1 (метилсиликон, твердосвязанный) 30 м, диаметр - 0,25 мм. Режим хроматографирования: инжектор - 180°C; детектор - 200°C; интерфейс - 210°C; газ-носитель - гелий 1 мл/мин. при делении потока 20:1; термостат 60°C - 1 мин, 2 град/мин - до 70°C, 5 град/мин - до 90°C, 10 град/мин - до 180°C, 20 град/мин - до 280°C, далее изотерма - 1 мин. Содержание компонентов масла из семян дыни приведено в масс. %.

Пример 1.

Точную навеску сырья (65 г) семян дыни высушенных при 30-35°C в течение 1,0-1,5 часов и измельченных до размера частиц 10 мм, помещают в сепаратор объемом 200 мл сверхкритического экстрактора марки SFE-500 M1 (фирма THAR) и проводят экстракцию в среде сверхкритического диоксида углерода в течение 20 минут, давлении 300 атмосфер, при температуре 40°C и скорости потока диоксида углерода 40 г/мин. Давление сбрасывают до атмосферного, а масло собирается в приемнике, оно представляет собой жидкость желтого цвета, показатель преломления изменялся в незначительных пределах и равен 1,4735-1,5015. Относительная плотность изменялась в пределах d420 0,9153-0,9420. Выход и состав основных компонентов масла приведены в таблице 1.

Пример 2.

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 30 минут (выход и состав приведены в таблице 1).

Пример 3.

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 40 минут (выход и состав приведены в таблице 1).

Пример 4.

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 50 минут (выход и состав приведены в таблице 1).

Пример 5.

Сырье (семена дыни), измельченных до частиц размером 10 мм. Экстракцию масла в сверхкритическом экстракторе проводили 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 2).

Пример 6.

Точную навеску сырья (65 г) семян дыни, измельченных до частиц размером 7 мм, помещают в сверхкритический экстрактор. Экстракцию проводят 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 2).

Пример 7.

Аналогичен примеру 5, только навеску сырья (65 г) семян дыни измельчают до частиц размером 2 мм (выход и состав приведены в таблице 2).

Пример 8.

Аналогичен примеру 5, только навеску сырья (65 г) семян дыни измельчают до частиц размером 1 мм (выход и состав приведены в таблице 2).

Пример 9.

Аналогичен примеру 5, только навеску сырья (65 г) семян дыни измельчают до частиц размером 0,7 мм (выход и состав приведены в таблице 2).

Пример 10.

Аналогичен примеру 5, только навеску сырья (65 г) семян дыни измельчают до частиц размером 1 мм. Экстракцию масла в сверхкритическом экстракторе проводили 20 минут (выход и состав приведены в таблице 3).

Пример 11.

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 30 минут (выход и состав приведены в таблице 3).

Пример 12.

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 40 минут (выход и состав приведены в таблице 3).

Пример 13.

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 3).

Пример 14.

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 60 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 3).

Пример 15.

Аналогичен примеру 13, только экстракцию проводили при давлении 200 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 16.

Аналогичен примеру 13, только экстракцию проводили при давлении 300 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 17.

Аналогичен примеру 13, только экстракцию проводили при давлении 400 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 18.

Аналогичен примеру 13, только экстракцию проводили при температуре 32°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 19.

Аналогичен примеру 18, только экстракцию проводили при температуре 40°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 20.

Аналогичен примеру 18, только экстракцию проводили при температуре 45°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 21.

Аналогичен примеру 19, только экстракцию проводили при скорости потока диоксида углерода 20 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 22.

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 30 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 23.

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 40 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 24.

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 50 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 25.

Аналогичен примеру 13, только сбор сырья семян дыни производили в августе месяце (выход масла приведен в таблице 7).

Пример 26.

Аналогичен примеру 13, только сбор сырья семян дыни производили в сентябре месяце (выход масла приведен в таблице 7).

Пример 27.

Аналогичен примеру 13, только сбор сырья семян дыни производили в октябре месяце (выход масла приведен в таблице 7).

Таким образом, в процессе поиска оптимальной степени измельченности сырья из семян дыни сорта «Лада», собранных преимущественно в сентябре, содержащей линолевую кислоту, установлено, что оптимальным для достижения поставленной задачи является использование частиц размером 1,0-2,0 мм с последующей экстракцией диоксидом углерода в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока углекислого газа 40 г/мин, так как при данных технологических условиях более высокий выход масла сочетается с более высоким содержанием линолевой кислоты и других жирных кислот (таблица 2).

Приложения.

Таблица 1
Выход масла из сырья семян дыни, измельченного до размера частиц 10 мм и содержания в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от продолжительности экстракции
№ примера Продолжительность экстракции, минут Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
1 20 15,4 58,3 16,8 7,7
2 30 16,5 60,1 17,5 8,2
3 40 17,1 60,7 18,1 8,6
4 50 17,5 61.2 18,8 9,1

Таблица 2
Выход масла из сырья семян дыни и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от степени измельченности (продолжительности экстракции 50 минут)
№ примера Степень измельченности, мм Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
5 10 15,5 61,35 18,06 8,93
6 7 16,7 61,76 18,58 9,12
7 2 18,2 62,54 19,21 9,83
8 1 18,3 62,63 19,34 9,91
9 0,7 17,1 62,25 19,03 9,87

Таблица 3
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от продолжительности экстракции
№ примера Продолжительность экстракции, минут Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
10 20 15,7 59,78 16,76 8,11
11 30 16,9 61,46 17,25 8,74
12 40 17,2 62,15 18,54 9,35
13 50 18,3 62,63 19,34 9,91
14 60 17,5 62,34 19,02 9,15

Таблица 4
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, времени экстракции 50 минут и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от величины давления
№ примера Величина давления, атмосфер Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
15 200 16,5 58,03 18,65 8,86
16 300 18,3 62,63 19,34 9,91
17 400 17,2 61,14 18,67 9,05

Таблица 5
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, времени экстракции 50 минут и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от температуры
№ примера Температура, °С Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
18 32 16,9 60,85 18,16 8,72
19 40 18,3 62,63 19,34 9,91
20 45 17,8 61,09 18,92 9,35

Таблица 6
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, времени экстракции 50 минут и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от скорости потока диоксида углерода
№ примера Скорость потока диоксида углерода, г/минута Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
21 20 15,2 58,28 17,06 8,65
22 30 17,6 61,35 18,54 9,27
23 40 18,3 62,63 19,34 9,91
24 50 17,8 61,23 19,02 9,54

Таблица 7
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, времени экстракции 50 минут в зависимости от времени сбора
№ примера Месяц Выход масла (в % от сухого сырья)
25 август 15,6
26 сентябрь 18,3
27 октябрь 17,2

Таблица 8
Количественный состав масла из семян дыни по данным газовой хроматографии
№ пика Время выхода, мин Содержание, % Идентифицированное соединение
1 4,48 0,11 Додекановая кислота
2 5,54 0,06 Тетрадекановая кислота
3 6,48 0,03 Пентадекановая кислота
4 7,24 0,16 Пальмитоолеиновая кислота
5 7,42 9,91 Пальмитиновая кислота
6 8,48 0,09 Маргариновая кислота
7 9,32 62,63 Линолевая кислота
8 9,54 19,34 Олеиновая кислота
9 9,57 0,92 6-Октадеценовая кислота
10 10,18 5,74 Стеариновая кислота
11 12,27 1,01 7,10,13-Эйкозатриеновая кислота

Таблица 9
Соотношение ненасыщенных и насыщенных кислот масла семян дыни
Ненасыщенные кислоты Насыщенные кислоты
Пальмитолеиновая кислота Додекановая кислота
Линолевая кислота Тетрадекановая кислота
Олеиновая кислота Пентадекановая кислота
6-Октадеценовая кислота Пальмитиновая кислота
7,10,13-Эйкозатриеновая кислота Маргариновая кислота
Стеариновая кислота
5,27 1


СПОСОБ ПОЛУЧЕНИЯ И СОСТАВ МАСЛА ИЗ СЕМЯН ДЫНИ
Источник поступления информации: Роспатент

Showing 21-30 of 44 items.
25.08.2017
№217.015.a70d

Ротационный мелиоративный рыхлитель

Изобретение относится к области сельскохозяйственного машиностроения, в частности к ротационным почвообрабатывающим орудиям для рыхления почвы с одновременным внесением в почву мелиорантов и удобрений. Ротационный мелиоративный рыхлитель содержит установленные посредством поводков блоки дисков...
Тип: Изобретение
Номер охранного документа: 0002608067
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.cf08

Способ коррекции плосковальгусной деформации стоп и устройство для его осуществления

Группа изобретений относится к медицине, а именно к травматологии и ортопедии, и может быть использована для коррекции походки у детей с диагнозом плосковальгусная деформация стоп. Система захвата и анализа движения в виде инструментально-диагностического комплекса состоит из компьютера с...
Тип: Изобретение
Номер охранного документа: 0002621120
Дата охранного документа: 31.05.2017
25.08.2017
№217.015.cf40

Способ получения масла из семян робинии псевдоакации и его состав

Изобретение относится к эфиромасличной промышленности. Масло семян робинии псевдоакации получено обработкой семян робинии псевдоакации, собранных в октябре, методом сверхкритической флюидной экстракции диоксидом углерода, при этом используют семена робинии псевдоакации, измельченные до частиц...
Тип: Изобретение
Номер охранного документа: 0002621022
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.cf5e

Устройство для уничтожения молоди саранчи

Изобретение относится к области сельского хозяйства. Устройство для уничтожения саранчи представляет собой металлическую раму. На раме находится не менее трех быстровращающихся валов. На каждом валу вдоль диаметра на равном расстоянии закреплены отрезки лески. Для привлечения саранчи...
Тип: Изобретение
Номер охранного документа: 0002621027
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.e45f

Кормовая гранулированная смесь на основе тростника южного для молодняка крупного рогатого скота

Изобретение относится к кормопроизводству, в частности к кормовой смеси на основе тростника южного для молодняка крупного рогатого скота. Смесь содержит сечку наземной части тростника южного, мел, соль поваренную, премикс ПКР-1 при следующем соотношении компонентов, мас.%: сечка тростника...
Тип: Изобретение
Номер охранного документа: 0002626607
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f15b

Манганит с колоссальным магнитосопротивлением в области температур 190 - 300 к

Изобретение относится к получению керамических перовскитоподобных манганитов и может быть использовано в электротехнике, магнитной и спиновой электронике. Поликристаллический материал на основе лантан-стронциевого манганита имеет состав LaSrMn(ZnGe)O, где x принимает значения от 0,148 до 0,152....
Тип: Изобретение
Номер охранного документа: 0002638983
Дата охранного документа: 19.12.2017
19.01.2018
№218.016.0898

Способ оценки полиморфизма генов фолатного цикла методом пцр и набор для его осуществления

Изобретение относится к области медицины и биотехнологии. Заявлен набор для оценки полиморфизма генов фолатного цикла методом ПЦР, включающий компоненты для выделения ДНК, видоспецифичные олигонуклеотидные пары праймеров для проведения одностадийной экспресс-идентификации нескольких...
Тип: Изобретение
Номер охранного документа: 0002631926
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.0c49

Роботизированные шахматы "робошах"

Изобретение относится к области игр на досках с небольшими игральными предметами, передвигаемыми как вручную, так и автоматически, используя электрические и механические средства. Роботизированные шахматы содержат механизм передвижения фигурок, систему определения положения фигурок на игровом...
Тип: Изобретение
Номер охранного документа: 0002632655
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0c4f

Метод качественного и количественного определения пиридоксина

Изобретение относится к аналитической химии и может быть использовано для качественного и количественного определения пиридоксина, в условиях контрольно-аналитических лабораторий. Способ качественного и количественного определения пиридоксина, основанный на сорбционном концентрировании...
Тип: Изобретение
Номер охранного документа: 0002632629
Дата охранного документа: 06.10.2017
20.01.2018
№218.016.1643

Способ получения 4-арил-2,7,9-триазаспиро[4.5]декан-6,8,10-трионов

Изобретение относится к способу получения новых 4-арил-2,7,9-триазаспиро[4.5]декан-6,8,10-трионов общей формулы I, которые могут быть использованы в качестве потенциальных седативных, антидепрессантных или ноотропных средств. В общей формуле I R=CH, R=H (Ia); R=CH, R=СНО (Iб); R=CH, R=(СН)N...
Тип: Изобретение
Номер охранного документа: 0002635105
Дата охранного документа: 09.11.2017
Showing 21-30 of 33 items.
25.08.2017
№217.015.a70d

Ротационный мелиоративный рыхлитель

Изобретение относится к области сельскохозяйственного машиностроения, в частности к ротационным почвообрабатывающим орудиям для рыхления почвы с одновременным внесением в почву мелиорантов и удобрений. Ротационный мелиоративный рыхлитель содержит установленные посредством поводков блоки дисков...
Тип: Изобретение
Номер охранного документа: 0002608067
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.cf08

Способ коррекции плосковальгусной деформации стоп и устройство для его осуществления

Группа изобретений относится к медицине, а именно к травматологии и ортопедии, и может быть использована для коррекции походки у детей с диагнозом плосковальгусная деформация стоп. Система захвата и анализа движения в виде инструментально-диагностического комплекса состоит из компьютера с...
Тип: Изобретение
Номер охранного документа: 0002621120
Дата охранного документа: 31.05.2017
25.08.2017
№217.015.cf40

Способ получения масла из семян робинии псевдоакации и его состав

Изобретение относится к эфиромасличной промышленности. Масло семян робинии псевдоакации получено обработкой семян робинии псевдоакации, собранных в октябре, методом сверхкритической флюидной экстракции диоксидом углерода, при этом используют семена робинии псевдоакации, измельченные до частиц...
Тип: Изобретение
Номер охранного документа: 0002621022
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.cf5e

Устройство для уничтожения молоди саранчи

Изобретение относится к области сельского хозяйства. Устройство для уничтожения саранчи представляет собой металлическую раму. На раме находится не менее трех быстровращающихся валов. На каждом валу вдоль диаметра на равном расстоянии закреплены отрезки лески. Для привлечения саранчи...
Тип: Изобретение
Номер охранного документа: 0002621027
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.e45f

Кормовая гранулированная смесь на основе тростника южного для молодняка крупного рогатого скота

Изобретение относится к кормопроизводству, в частности к кормовой смеси на основе тростника южного для молодняка крупного рогатого скота. Смесь содержит сечку наземной части тростника южного, мел, соль поваренную, премикс ПКР-1 при следующем соотношении компонентов, мас.%: сечка тростника...
Тип: Изобретение
Номер охранного документа: 0002626607
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f15b

Манганит с колоссальным магнитосопротивлением в области температур 190 - 300 к

Изобретение относится к получению керамических перовскитоподобных манганитов и может быть использовано в электротехнике, магнитной и спиновой электронике. Поликристаллический материал на основе лантан-стронциевого манганита имеет состав LaSrMn(ZnGe)O, где x принимает значения от 0,148 до 0,152....
Тип: Изобретение
Номер охранного документа: 0002638983
Дата охранного документа: 19.12.2017
19.01.2018
№218.016.0898

Способ оценки полиморфизма генов фолатного цикла методом пцр и набор для его осуществления

Изобретение относится к области медицины и биотехнологии. Заявлен набор для оценки полиморфизма генов фолатного цикла методом ПЦР, включающий компоненты для выделения ДНК, видоспецифичные олигонуклеотидные пары праймеров для проведения одностадийной экспресс-идентификации нескольких...
Тип: Изобретение
Номер охранного документа: 0002631926
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.0c49

Роботизированные шахматы "робошах"

Изобретение относится к области игр на досках с небольшими игральными предметами, передвигаемыми как вручную, так и автоматически, используя электрические и механические средства. Роботизированные шахматы содержат механизм передвижения фигурок, систему определения положения фигурок на игровом...
Тип: Изобретение
Номер охранного документа: 0002632655
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0c4f

Метод качественного и количественного определения пиридоксина

Изобретение относится к аналитической химии и может быть использовано для качественного и количественного определения пиридоксина, в условиях контрольно-аналитических лабораторий. Способ качественного и количественного определения пиридоксина, основанный на сорбционном концентрировании...
Тип: Изобретение
Номер охранного документа: 0002632629
Дата охранного документа: 06.10.2017
20.01.2018
№218.016.1643

Способ получения 4-арил-2,7,9-триазаспиро[4.5]декан-6,8,10-трионов

Изобретение относится к способу получения новых 4-арил-2,7,9-триазаспиро[4.5]декан-6,8,10-трионов общей формулы I, которые могут быть использованы в качестве потенциальных седативных, антидепрессантных или ноотропных средств. В общей формуле I R=CH, R=H (Ia); R=CH, R=СНО (Iб); R=CH, R=(СН)N...
Тип: Изобретение
Номер охранного документа: 0002635105
Дата охранного документа: 09.11.2017
+ добавить свой РИД