×
25.08.2017
217.015.caf8

Результат интеллектуальной деятельности: АДСОРБЕНТ ДЛЯ СЕРОВОДОРОДА

Вид РИД

Изобретение

№ охранного документа
0002620116
Дата охранного документа
23.05.2017
Аннотация: Изобретение относится к адсорбентам для улавливания, концентрирования и хранения сероводорода. Адсорбент содержит носитель - мезопористый силикат МСМ-41 с удельной поверхностью около 1300 м/г, на который нанесён гидроксид натрия. Количество нанесенного гидроксида натрия составляет 20-30 вес. % от общей массы адсорбента. Получен продукт с улучшенными сорбционными характеристиками. 2 пр.

Область техники

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, и может быть использовано в металлургической, химической и других отраслях промышленности, в частности к адсорбентам для улавливания и поглощения H2S в составе отходящих газов химических и металлургических производств, в биогазе, природном или попутных нефтяных газах.

Уровень техники

Адсорбенты, используемые в системах очистки от сероводорода, должны иметь большую адсорбционную способность даже при небольших концентрациях H2S в газовых смесях, обладать высокой селективностью, иметь высокую механическую прочность, обладать способностью к регенерации и иметь низкую стоимость.

На практике нашли применение следующие адсорбенты: активированные угли, силикагели, алюмогели и цеолиты.

Решение проблемы улавливания H2S поставлено в ряд наиболее приоритетных задач в связи с проблемой глобального загрязнения воздуха и охраны окружающей среды. Решение этой проблемы предусматривает значительное снижение техногенных выбросов.

Известен адсорбент (оксид алюминия) для очистки отходящих газов (Современный сухой способ очистки газов / Шулепов И.М. и др. - "Экология и пром-ть России", 1999, №6, с. 4-9). Недостатком использования Аl2О3 в качестве адсорбента является низкая эффективность очистки газов от газообразных вредных компонентов, а также высокая себестоимость процесса.

Также известно применение карбоната кальция в качестве адсорбента для очистки газов, содержащих фториды (Пат. РФ №2088314, МПК6 В01D 53/68, 1977).

Однако использование этих материалов в качестве адсорбентов для очистки газов от H2S сопряжено с рядом недостатков, заключающихся в низкой эффективности, сложности проведения процессов регенерации, что снижает эффективность процесса очистки газов и повышает его себестоимость.

Известен адсорбент для улавливания кислых газов, состоящий из носителя, с нанесенными на него олигомерами, содержащими аминогруппы, в котором в качестве носителя применена металлорганическая каркасная структура типа MOF-5, имеющая инкапсулированные олигомеры, содержащие полиэтиленамины -CH2-CH(NH2)n- типа PEPA, где значение n находится в пределах от 5 до 10 (RU 2420352, кл. B01J 20/22, опубл. 10.06.2011). Однако у этого адсорбента имеется два существенных недостатка: малая насыпная плотность (около 0,35-0,4 г/см3) и низкие стабильность и термостабильность в присутствии паров воды. В результате при достаточно высокой весовой емкости по кислым газам объемные характеристики поглотителя оказываются невелики вследствие малой насыпной плотности.

Известен мезопористый оксид магния [S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2 (2009) 796]. Однако процедура приготовления этого материала весьма сложна, поскольку для процесса нужен органический темплат и токсичный органический растворитель, и многостадийный синтез требует значительного времени [D.M. D'Alessandro, В. Smit, J.R. Long, Angew. Chem. Int. Ed. 49 (2010) 2; Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4 (2011) 42; J. Roggenbuck, M. Tiemann, J. Am. Chem. Soc. 127 (2005) 1096; J. Roggenbuck, G. Koch, M. Tiemann, Chem. Mater. 18 (2006) 4151]. Адсорбционная емкость подобных систем по кислым газам не превышает 10 вес. %.

Мезопористый MgO, модифицированный нитратом калия [А.-Т. Vu et al. Mesoporous MgO sorbent promoted with KNO3 for CO2 capture at intermediate temperatures/ Chemical Engineering Journal 258 (2014) 254-264] имеет емкость по кислым газам около 13.9 вес. %.

Известны адсорбенты на основе оксида магния, нанесенного на оксидные или углеродные носители. Оксид магния на углеродном носителе был получен карбонизацией композита, состоящего из оксида кремния, обработанного серной кислотой, триблоксополимера, сахарозы и нитрата магния [M. Bhagiyalakshmi et al. A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture/ Fuel 90 (2011) 1662-1667]. Этот адсорбент показал емкость по кислым газам на уровне 9 вес. %.

Известен мезопористый силикат типа SBA-15, модифицированный 3-аминопропил-триметоксисиланом [A. Zukal, J. Jagiello, J. Mayerov, J. Cejka, Thermodynamics of CO2 adsorption on functionalized SBA-15 silica. NLDFT analysis of surface energetic heterogeneity // Phys. Chem. Chem. Phys. 13 (2011) 15468]. Лучшая емкость по кислым газам составила 3,54 вес. % для адсорбента, содержащего наибольшее количество 3-аминопропил-триметоксисилана, а именно в количестве 2,6 ммоль на 1 г адсорбента.

Наиболее близким по существенным признакам к предлагаемому адсорбенту является адсорбент для улавливания кислых газов, представляющий собой 4 вес. % MgO на мезопористых неорганических цеолитоподобных носителях типа Al-SBA-15 [A. Zukal et al. MgO-modifîed mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption/ Microporous and Mesoporous Materials 167 (2013) 44-50], который демонстрирует хорошие адсорбционные свойства по отношению к кислым газам. Температура полной десорбции кислых газов составляла 300°С. Дополнительная модификация такой системы карбонатом калия (5 вес. %) приводит к увеличению адсорбционной емкости, которая, однако, не превышает 5 вес. % (25 см3/г).

Недостатком указанного адсорбента (мезопористого силиката типа MgO/Al-SBA-15) является низкая емкость по кислым газам. Еще одним недостатком указанных систем является достаточно высокая температура десорбции кислых газов - 300°С (стадия регенерации адсорбента).

Раскрытие изобретения

Задачей настоящего изобретения является получение адсорбента для сероводорода, обладающего увеличенной адсорбционной емкостью при одновременном снижении температуры десорбции (регенерации).

Поставленная задача решается адсорбентом для сероводорода, представляющим собой носитель, в качестве которого используется мезопористый силикат МСМ-41 с удельной поверхностью 1300 м2/г с допустимой величиной погрешности до 10% с нанесенным гидроксидом натрия, при этом количество нанесенного гидроксида натрия составляет 20-30 вес. % от общей массы адсорбента.

Техническим результатом является то, что полученный адсорбент обладает увеличенной адсорбционной емкостью, составляющей 14-18 вес. %, при этом адсорбент обладает свойством десорбции (регенерации) при температуре 100-150°С.

Таким образом, полученный адсорбент для сероводорода обладает улучшенными свойствами по улавливанию, концентрированию и хранению сероводорода.

Для увеличения адсорбционной способности предлагается адсорбент на основе МСМ-41 и гидроксида натрия, нанесенного путем влажной пропитки матрицы водным раствором гидроксида натрия. Нанесение раствора гидроксида натрия осуществляют в несколько приемов с промежуточными сушками таким образом, чтобы количество нанесенного гидроксида составляло 20-30 вес. % NaOH от общей массы адсорбента.

Осуществление изобретения

Для получения адсорбента согласно настоящему изобретению используют носитель - мезопористый силикат МСМ-41 с удельной поверхностью около 1300 м2/г и с объемом пор 1,1 см3/г с допустимой величиной погрешности до 10% от указанных параметров. (R. Schmidt, Ε. Hansen, D. Akporiaye, O.H. Ellestad, Microporous Materials, Vol.3, no. 4-5, 1995, P. 443-448). Затем носитель пропитывают водным раствором гидроксида натрия, при этом для достижения лучшего распределения раствора на носителе пропитку осуществляют в несколько приемов с промежуточными сушками. Для достижения наилучшего результата носитель пропитывают водным раствором гидроксида натрия с концентрацией от 10 до 20 вес. % в течение 15-20 мин и высушивают при комнатной температуре (20-25°С) в течение 5-6 часов до достижения состояния сухого порошка. При этом нанесение раствора осуществляют в несколько приемов с промежуточными сушками таким образом, чтобы количество нанесенного гидроксида составляло 20-30 вес. % от общей массы адсорбента. Для достижения указанного количества (до поглощения носителем всего раствора гидроксида натрия) нанесенного гидроксида натрия достаточно проведения 2-5 этапов (чередование пропитки и сушки). Количество нанесенного гидроксида натрия определяют весовым методом. После последнего высушивания полученный адсорбент нагревают в потоке инертного газа до 150°С и выдерживают до постоянного веса, приблизительно в течение 2-3 ч.

Поскольку адсорбент предназначен для улавливания, концентрирования и хранения H2S в составе отходящих газов химических и металлургических производств, в биогазе, природном или попутных нефтяных газах, для проверки адсорбционной емкости адсорбент насыщали H2S при температуре 20-30°С в течение 1 ч, продували Не и взвешивали. Количество поглощенного H2S также можно определить методом термодесорбции при 100-150°С (10 град/мин, скорость Не - 40 мл/мин ±10%) с улавливанием H2S в ловушке, охлаждаемой жидким азотом. Емкость полученного адсорбента составляет от 14 до 18 вес. % при этом адсорбент обладает свойством десорбции (регенерации) при температуре 100-150°С.

Используемый мезопористый силикат МСМ-41 с удельной поверхностью около 1300 м2/г и с объемом пор 1,1 см3/г с нанесенным гидроксидом натрия имеет достаточную площадь поверхности пор и достаточное количество нанесенного вещества для адсорбции сероводорода. Указанные параметры поверхности, объема пор и наносимого компонента действуют совместно на достижение технического результата. Количество нанесенного компонента свыше 30 вес. % от общей массы адсорбента нецелесообразно, т.к. большая часть пор будет заполнена гидроксидом натрия, что в свою очередь повлияет на адсорбционную емкость адсорбента. Нанесение гидроксида натрия в количестве менее 20 вес. % от общей массы адсорбента не позволит добиться заявленной адсорбционной емкости.

Достижение технического результата предлагаемым в настоящем изобретении адсорбентом иллюстрируется примерами.

Пример 1.

1 г воздушно-сухого адсорбента - мезопористого силиката МСМ-41 с удельной поверхностью около 1300 м2/г и с объемом пор 1,1 см3/г пропитывали 1 M водным раствором гидроксида натрия в 3 приема с промежуточными сушками таким образом, что количество нанесенного гидроксида составляло 20 вес. % NaOH, т.е. 0,2 г NaOH + 0,8 г носителя. После пропитки полученный адсорбент нагревали в потоке инертного газа до 150°С и выдерживали 2 ч (до постоянного веса). Адсорбент насыщали H2S при 30°С, продували Не и взвешивали. Количество поглощенного H2S определяли также методом термодесорбции при 100-150°С (10 град/мин, скорость Не - 40 мл/мин) с улавливанием H2S в ловушке, охлаждаемой жидким азотом. Количество поглощенного при 30°С и затем выделенного при 150°С H2S, отнесенное на 1 г сухого сорбента (0,8 г мезопористого силиката + 0,2 г NaOH) и выраженное в %, составляло 14,5 вес. %.

Пример 2.

1 г воздушно-сухого адсорбента - мезопористого силиката МСМ-41 с удельной поверхностью около 1300 м2/г и с объемом пор 1,1 см3/г пропитывали 1 M водным раствором гидроксида натрия в 4 приема с промежуточными сушками таким образом, что количество нанесенного гидроксида составляло 30 вес. % NaOH, т.е. 0,3 г NaOH + 0,7 г носителя. После пропитки полученный адсорбент нагревали в потоке инертного газа до 150°С и выдерживали 2 ч (до постоянного веса). Адсорбент насыщали H2S при 30°С, продували Не и взвешивали. Количество поглощенного H2S определяли также методом термодесорбции при 100-150°С (10 град/мин, скорость Не - 40 мл/мин) с улавливанием H2S в ловушке, охлаждаемой жидким азотом. Количество поглощенного при 30°С и затем выделенного при 150°С H2S, отнесенное на 1 г сухого сорбента (0.7 г мезопористого силиката + 0,3 г NaOH) и выраженное в %, составляло 18,2 вес. %.

Данные примеров показывают, что предлагаемый в настоящем изобретении модифицированный адсорбент в 2 раза по характеристикам емкости по H2S превосходит известные адсорбенты данного назначения и характеризуется более низкой температурой десорбции H2S.

Адсорбент для сероводорода, представляющий собой носитель с нанесенным компонентом, отличающийся тем, что в качестве носителя он содержит мезопористый силикат МСМ-41 с удельной поверхностью 1300 м/г с допустимой величиной погрешности до 10%, а в качестве нанесенного компонента - гидроксид натрия, при этом количество нанесенного гидроксида натрия составляет 20-30 вес. % от общей массы адсорбента.
Источник поступления информации: Роспатент

Showing 41-49 of 49 items.
25.08.2017
№217.015.ce7f

Адсорбент для сернистого газа

Изобретение относится к адсорбентам для улавливания, концентрирования и хранения сернистого газа. Адсорбент содержит носитель - мезопористый силикат МСМ-41 с удельной поверхностью около 1300 м/г и активный компонент - карбонат натрия в количестве 20-30 вес.% от общей массы адсорбента....
Тип: Изобретение
Номер охранного документа: 0002620793
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d3bc

Катализатор и способ получения синтез-газа из метана с его использованием

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Катализатор для получения синтез-газа из метана получен на основе керамического носителя с...
Тип: Изобретение
Номер охранного документа: 0002621689
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d52b

Способ получения катализатора и способ гидрогенизационной конверсии диоксида углерода в жидкие углеводороды с его использованием

Изобретение относится к технологии переработки газообразного углеводородного сырья, а именно к способу получения катализатора для гидрогенизационной конверсии диоксида углерода в жидкие углеводороды, который включает нанесение наночастиц металлического кобальта на поверхность пористого...
Тип: Изобретение
Номер охранного документа: 0002622293
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.ec26

Дикатионные ионные жидкости с полисилоксановым фрагментом в составе катиона в качестве теплоносителей

Изобретение относится к области жидких теплоносителей. Предложены дикатионные ионные жидкости с полисилоксановым фрагментом в составе катиона общей формулы (I), где R и R - метил или фенил, R- CH или (СН), n=3-8, в качестве теплоносителей. Технический результат – предложенные новые дикатионные...
Тип: Изобретение
Номер охранного документа: 0002627658
Дата охранного документа: 09.08.2017
29.12.2017
№217.015.f106

Способ приготовления катализатора для получения синтез-газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез-газа из метана с его использованием

Изобретение относится к технологии переработки газообразного углеводородного сырья. Описан способ приготовления катализатора для получения синтез-газа, который включает электрохимическую обработку в ионной жидкости бутилметилимидазолий ацетат BMIMAc и последующее нанесение методом...
Тип: Изобретение
Номер охранного документа: 0002638831
Дата охранного документа: 18.12.2017
19.01.2018
№218.016.00a3

Способ получения пористого координационного полимера mof-177

Изобретение относится к способу получения пористых координационных полимеров структуры MOF-177. Способ включает смешение соли - ацетата цинка и 1,3,5-трифенилбензол-p,p',p''-трикарбоновой кислоты, взятых в массовом соотношении 2,5-4,5:1, в присутствии растворителя, в количестве, достаточном для...
Тип: Изобретение
Номер охранного документа: 0002629361
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0cde

Способ получения синтез-газа из co

Изобретение относится к технологии переработки газового сырья, в частности к способу получения синтез-газа, который может быть в дальнейшем использован для процессов синтеза метанола. Способ получения синтез-газа в ходе гидрогенизационной конверсии CO включает контактирование исходного газового...
Тип: Изобретение
Номер охранного документа: 0002632701
Дата охранного документа: 09.10.2017
13.02.2018
№218.016.268e

Способ получения акриловой кислоты

Изобретение относится к одностадийному способу газофазного окисления пропана с образованием акриловой кислоты в присутствии смешанного металлоксидного катализатора в избытке кислорода воздуха по отношению к пропану. Изобретение также относится к области электротехники и может быть...
Тип: Изобретение
Номер охранного документа: 0002644158
Дата охранного документа: 08.02.2018
04.04.2018
№218.016.3108

Катализатор и способ получения ацетальдегида с его использованием

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида....
Тип: Изобретение
Номер охранного документа: 0002644770
Дата охранного документа: 14.02.2018
Showing 51-60 of 211 items.
20.01.2016
№216.013.a38a

Способ получения полимерного материала, содержащего неорганические нано- или микрочастицы

Изобретение относится к области химии высокомолекулярных соединений и нанотехнологиям и касается, в частности, способа получения полимерного материала, содержащего неорганические нано- или микрочастицы, который может найти применение в технике, например, в качестве: полимерных материалов с...
Тип: Изобретение
Номер охранного документа: 0002573508
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a399

Полимерные мембраны для топливных элементов, основанные на смесях азотсодержащих полимеров и нафиона или его аналогов

Изобретение относится к полимерным мембранам для низко- или высокотемпературных полимерных топливных элементов. Протонопроводящая полимерная мембрана на основе полиэлектролитного комплекса, состоящего из: а) азотсодержащего полимера, такого как поли-(4-винилпиридин) и его производные,...
Тип: Изобретение
Номер охранного документа: 0002573523
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.be1b

Адсорбент для улавливания, концентрирования и хранения диоксида углерода

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода (CO) в составе отходящих газов теплоэнергетических установок, химических и металлургических производств, в...
Тип: Изобретение
Номер охранного документа: 0002576632
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.bf63

Способ получения нанопористых полимерных материалов

Изобретение относится к технологии получения нанопористых полимерных материалов с открытыми порами и может быть использовано, например, при создании пористых полимерных мембран, сорбентов, газопроницаемых материалов, матриц для получения нанокомпозитов. Способ включает одноосную вытяжку...
Тип: Изобретение
Номер охранного документа: 0002576049
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c08b

Адсорбент для улавливания, концентрирования и хранения диоксида углерода

Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода Адсорбент изготовлен на основе мезопористой металлорганической каркасной структуры, выбранной из структур...
Тип: Изобретение
Номер охранного документа: 0002576634
Дата охранного документа: 10.03.2016
27.01.2016
№216.014.c322

Средство для лечения ожогов и ран на основе цитокинов и факторов роста, секретируемых мезенхимными клетками человека, способ получения средства и способ лечения ожогов и ран

Группа изобретений относится к медицине, а именно к биотехнологии, и может быть использована для лечения ожогов и ран. Для этого получают средство способом, включающим культивирование мезенхимных стромальных клеток жировой ткани (МСК ЖТ) человека 2-5 пассажа в среде роста до момента достижения...
Тип: Изобретение
Номер охранного документа: 0002574017
Дата охранного документа: 27.01.2016
27.03.2016
№216.014.c783

Способ получения пористых координационных полимеров mil-53

Изобретение относится к способу получения пористых координационных полимеров общей формулы MIL-53(X), где Х=Al или Cr. Способ включает смешение хлорида металла общей формулы XCl×6HO, где X имеет вышеуказанные значения, и 1,4-бензолдикарбоновой кислоты в присутствии растворителя, нагревание...
Тип: Изобретение
Номер охранного документа: 0002578600
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c7da

Способ визуализации областей деформации, скрытых под поверхностью твердого тела

Изобретение относится к ионной технологии и может быть использовано в металлургии, машиностроении и других областях техники для выявления напряженных участков на различных конструкциях, деталях машин, а также в криминалистике и археологии. Cпособ визуализации скрытых под поверхностью областей...
Тип: Изобретение
Номер охранного документа: 0002578124
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c884

Способ получения пористого координационного полимера nh-mil-101(al) и пористый координационный полимер nh-mil-101(al), полученный этим способом

Изобретение относится к способу получения пористого координационного полимера NH-MIL-101(Al) и к пористому координационному полимеру NH-MIL-101(Al), полученному таким способом. Способ заключается в смешении соли алюминия формулы AlCl×6HO и органической кислоты 2-амино-1,4-бензолдикарбоновой...
Тип: Изобретение
Номер охранного документа: 0002578599
Дата охранного документа: 27.03.2016
10.03.2016
№216.014.cad9

Способ получения рекомбинантного белка sav-rgd

Изобретение касается способа получения рекомбинантного белка SAV-RGD, где SAV - мономер стрептавидина, RGD - меланома-адресующий олигопептид, имеющий аминокислотную последовательность Ser-Arg-Ala-Gly-Ala-Asp-Gly-Phe-Pro-Gly-Cys-Arg-Gly-Asp-Cys-Ser-Gln-Glu. Представленный способ включает...
Тип: Изобретение
Номер охранного документа: 0002577138
Дата охранного документа: 10.03.2016
+ добавить свой РИД