×
25.08.2017
217.015.be86

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРОННОГО ПРИБОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к электровакуумной технике, к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. В способе изготовления фотоэлектронного прибора, включающем изготовление корпуса прибора, катодного узла, коллектора электронов, монтаж внутренних деталей и узлов, сварку узлов прибора, загрузку всех узлов в высоковакуумную установку финишной сборки, откачку всей системы, термическое обезгаживание всех узлов в вакууме, электронное обезгаживание МКП и коллектора электронов в вакууме, изготовление фотокатода на катодном узле, герметизацию прибора, выгрузку ФЭП из установки финишной сборки, после загрузки в высоковакуумную установку финишной сборки катодного узла, корпуса с микроканальными пластинами и коллектора электронов осуществляют откачку всей системы до давления не более 10 Па, термическое обезгаживание всех узлов в вакууме в течение не менее 4 ч при температуре от 300 до 400°С, электронное обезгаживание МКП и коллектора электронов, для чего в течение не менее 30 сек при температуре от 0 до 400°С направляют электронный поток от входа к выходу МКП и далее на коллектор электронов, после чего корпус с МКП при помощи манипулятора переворачивают и направляют электронный поток от выхода к входу МКП и далее на коллектор электронов, синхронно меняя полярность напряжения питания между входом и выходом МКП, выдерживают в течение не менее 30 сек, снова переворачивают корпус с МКП, меняя полярность напряжения, и повторяют так в течение не менее 2 ч до полного обезгаживания МКП, постепенно увеличивая напряжение на МКП и выходной ток МКП до значений, не ухудшающих параметры МКП, после чего формируют фотокатод на катодном узле и далее корпус с МКП устанавливают на коллектор электронов, а катодный узел на корпус и выполняют герметизацию прибора. 2 ил.

Область техники

Изобретение относится к электровакуумной технике, в частности к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП).

Уровень техники

Фотоэлектронный прибор представляет собой электровакуумное устройство, содержащее корпус, фотокатод, эмитирующий электроны под действием оптического излучения, умножительную систему на основе микроканальных пластин и коллектор электронов, в качестве которого может быть использован анод, содержащий один или несколько выходов, люминесцентный экран или электронно-чувствительная матрица. К фотоэлектронным приборам относятся электронно-оптические преобразователи (ЭОП), фотоэлектронные умножители (ФЭУ), многоанодные ФЭУ, координатно-чувствительные детекторы (КЧД).

Основная причина выхода из строя фотоэлектронных приборов с микроканальными пластинами связана с изменением свойств фотокатода под воздействием ионной бомбардировки, возникающей в результате образования ионов в процессе электронно-стимулированной десорбции при ударе электрона о стенку канала микроканальной пластины. Бомбардировка фотокатода и стенок каналов МКП ионами приводит, с одной стороны, к эмиссии вторичных электронов и появлению паразитного сигнала, с другой - к резкому снижению чувствительности фотокатода. Сочетание большого количества сорбированного МКП газа с малым внутренним объемом фотоэлектронного прибора приводит к значительному газовыделению, ухудшению вакуума и отравлению фотокатода в работающем приборе при прохождении электронного потока через МКП. Все эти явления приводят к значительному снижению срока службы.

Самым распространенным решением устранения указанных недостатков является нанесение на входную поверхность МКП специальной тонкой пленки, прозрачной для электронов, но не прозрачной для ионов. Такая ионно-барьерная пленка, изготавливаемая главным образом из окиси алюминия, позволяет создавать фотоэлектронные приборы с долговечностью до 10000 ч. Однако использование ионно-барьерной пленки приводит к снижению эффективности сбора фотоэлектронов с ~60% (в случае без ионно-барьерной пленки) до ~35% [Т. Jinno, et al. Lifetime-extended MCP-PMT. Nuclear Instruments and Methods in Physics Research A 629 (2011) 111-117]. Также при работе электронно-оптических преобразователей III поколения с ионно-барьерными пленками возникли затруднения в распознавании объектов с ярко светящимися элементами, вокруг которых возникает широкий слепящий ореол [С.В. Куклев, Д.С. Соколов, И.Н. Зайдель. Электронно-оптические преобразователи. - М.: Машиностроение, 2004]. Поэтому возникла проблема создания фотоэлектронных приборов без ионно-барьерной пленки на входной поверхности МКП и одновременно с долговечностью, не уступающей долговечности приборов с ионно-барьерной пленкой.

Для устранения паразитных явлений, вызванных процессом электронно-стимулированной десорбции, применяются и другие различные конструктивные и технологические решения.

Известен фотоэлектронный умножитель [патент США №2014361683 МПК H01J 43/04. Electrostatic suppression of ion feedback in a microchannel plate photomultiplier. Опубл. 11.12.2014], содержащий дополнительный электрод, представляющий собой тонкую сетку, между фотокатодом и микроканальной пластиной. ФЭУ также содержит источник питания, обеспечивающий подачу напряжения на электроды, причем на сетку подается потенциал, равный или больше, чем потенциал на входе МКП, обеспечивая тем самым потенциальный барьер для движения ионов от МКП к фотокатоду. Недостатками данного технического решения являются невысокий динамический диапазон, поскольку барьерная сетка задерживает до 20-30% фотоэлектронов; большое временное разрешение вследствие значительного расстояния между фотокатодом и входом МКП и наличием потенциального барьера между сеткой и входом МКП, вызывающего торможение фотоэлектронов; низкая вибрационная прочность прибора из-за наличия тонкой сетки.

Известен способ изготовления ЭОП с МКП без ионно-барьерной пленки [патент РФ №2372684 МПК H01J 31/50. Способ изготовления электронно-оптического преобразователя и устройство для его реализации. Опубл. 10.11.2009], принятый за прототип, в котором после изготовления МКП по стандартной технологии на ее входную и выходную поверхности наносят изоляционный или полупроводниковый слой, проводящий слой и второй изоляционный или полупроводниковый слой, далее после проведения первого электронного обезгаживания МКП и экрана в корпусе ЭОП формируют индивидуальные газопоглотители в каналах МКП в виде покрытия на стенках каналов МКП со стороны входа, выхода МКП или с обеих сторон из вещества, обладающего высокой сорбционной способностью и коэффициентом вторичной эмиссии больше единицы, а также формируют индивидуальные газопоглотители между каналами МКП на входной, выходной поверхностях МКП или с обеих сторон и на экране в виде покрытия из вещества, обладающего высокой сорбционной способностью, после этого проводят второе электронное обезгаживание МКП и экрана в корпусе ЭОП. Недостатком данного технического решения является недостаточно высокий срок службы ЭОП без ионно-барьерной пленки.

Техническим результатом предлагаемого технического решения является увеличение срока службы ЭОП без ионно-барьерной пленки.

Раскрытие изобретения

Указанный технический результат достигается тем, что в способе изготовления фотоэлектронного прибора, включающем изготовление корпуса прибора, катодного узла, коллектора электронов, монтаж внутренних деталей и узлов, сварку узлов прибора, загрузку всех узлов в высоковакуумную установку финишной сборки, откачку всей системы, термическое обезгаживание всех узлов в вакууме, электронное обезгаживание МКП и коллектора электронов в вакууме, изготовление фотокатода на катодном узле, герметизацию прибора, выгрузку ФЭП из установки финишной сборки, после загрузки в высоковакуумную установку финишной сборки катодного узла, корпуса с микроканальными пластинами и коллектора электронов, осуществляют откачку всей системы до давления не более 10-8 Па, термическое обезгаживание всех узлов в вакууме в течение не менее 4 ч при температуре от 300 до 400°С, электронное обезгаживание МКП и коллектора электронов, для чего в течение не менее 30 сек при температуре от 0 до 400°С направляют электронный поток от входа к выходу МКП и далее на коллектор электронов, после чего корпус с МКП при помощи манипулятора переворачивают и направляют электронный поток от выхода к входу МКП и далее на коллектор электронов, синхронно меняя полярность напряжения питания между входом и выходом МКП, выдерживают в течение не менее 30 сек, снова переворачивают корпус с МКП, меняя полярность напряжения, и повторяют так в течение не менее 2 ч до полного обезгаживания МКП, постепенно увеличивая напряжение на МКП и выходной ток МКП до значений, не ухудшающих параметры МКП, после чего формируют фотокатод на катодном узле и далее корпус с МКП устанавливают на коллектор электронов, а катодный узел на корпус и выполняют герметизацию прибора.

Краткое описание чертежей

Сущность предлагаемого способа изготовления фотоэлектронного прибора поясняется фиг. 1, на которой схематично изображена высоковакуумная установка для выполнения финишной сборки ФЭП с загруженными в нее сборочными единицами, и фиг. 2, на которой показано выполнение электронного обезгаживания МКП и коллектора электронов в высоковакуумной установке, где 1 - основной отсек для формирования фотокатода, 2 - модуль для электронного обезгаживания и герметизации, 3 - катодный узел, 4 - корпус прибора с МКП, 5 - коллектор электронов, 6 - электронная пушка для обезгаживания коллектора электронов, 7 и 8 - манипулятор.

Осуществление изобретения

Предлагаемый способ изготовления фотоэлектронного прибора реализован следующим образом.

В модуль 2 для электронного обезгаживания и герметизации высоковакуумной установки финишной сборки загружают катодный узел 3, корпус 4 с МКП (общим числом от одной до трех) и коллектор 5 электронов (фиг. 1). Обычно используют корпуса с микроканальными платанами общим числом от одной до трех, но могут использовать корпуса и с большим числом микроканальных платан. После загрузки при помощи манипулятора 7 катодный узел 3 перемещают в основной отсек 1, а корпус 4 с МКП и коллектор 5 электронов остается напротив электронной пушки 6 (фиг. 2). После этого вакуумную камеру откачивают до давления не более 10-8 Па, опускают печь и модуль 2 прогревают при температуре 390°С (допустимо от 300 до 400°С) в течение не менее 4 ч (обычно 10-12 ч). После завершения термического обезгаживания температуру в камере снижают до 25°С и выполняют электронное обезгаживание коллектора 5 электронов и МКП. Допускается выполнять электронное обезгаживание при температуре от 0 до 400°С. Повышение температуры, при которой выполняется электронное обезгаживание коллектора электронов и МКП, способствует повышению интенсивности газовыделения, при этом общее время электронного обезгаживания дополнительно сокращается до 50%. На МКП подают напряжение, постепенно увеличивая в течение всего процесса электронного обезгаживания от 400 до 900 В для одной МКП (возможно дальнейшее увеличение напряжения до значения, не ухудшающего параметры МКП). Также отрицательное напряжение (до 200 В) относительно входа МКП подают на электронную пушку 6. В течение заданного времени (от 30 сек до нескольких часов) электронный поток облучает входную поверхность МКП, при этом выполняется контроль выходного тока (постепенно увеличивая его в течение всего процесса электронного обезгаживания от 2 до 7 мкА, возможно дальнейшее увеличение тока до значения, не ухудшающего параметры МКП). С выхода МКП поток электронов попадает на коллектор 5 электронов, находящийся под более высоким потенциалом, тем самым выполняя его обезгаживание. Далее при помощи манипулятора 8 корпус 4 с МКП переворачивают так, чтобы поток электронов с электронной пушки 6 облучал выходную поверхность МКП, и одновременно меняют полярность потенциалов на входе и выходе МКП. Таким образом, меняя поверхность МКП относительно падающего потока электронов, выполняют двустороннее обезгаживание МКП. Далее эти операции повторяют в течение не менее 2 ч до тех пор, пока микроканальная пластина не будет полностью обезгажена. По окончании обезгаживания МКП и коллектора 5 электронов начинается процесс формирования фотокатода на катодном узле 3. После этого манипулятором 7 катодный узел 3 переносят на корпус 4 с МКП и выполняют герметизацию корпуса 4 с МКП с коллектором электронов 5 и катодным узлом 3. Время, затраченное на электронное обезгаживание МКП, при использовании данного способа сокращается на 25-40%, при этом остаточное газовыделение МКП существенно ниже (примерно в 2,4 раза), чем при стандартном одностороннем обезгаживании МКП.

Использование предлагаемого способа изготовления фотоэлектронного прибора по сравнению с прототипом позволит существенно снизить остаточное газосодержание в начальной части каналов МКП за счет более тщательного двустороннего электронного обезгаживания МКП по сравнению с односторонним обезгаживанием, что позволит существенно снизить скорость деградации фотокатода и увеличить срок службы фотоэлектронных приборов без ионно-барьерной пленки, снизив при этом трудоемкость изготовления прибора.

Способ изготовления фотоэлектронного прибора, включающий изготовление корпуса прибора, катодного узла, коллектора электронов, монтаж внутренних деталей и узлов, сварку узлов прибора, загрузку всех узлов в высоковакуумную установку финишной сборки, откачку всей системы, термическое обезгаживание всех узлов в вакууме, электронное обезгаживание МКП и коллектора электронов в вакууме, изготовление фотокатода на катодном узле, герметизацию прибора, выгрузку ФЭП из установки финишной сборки, отличающийся тем, что после загрузки в высоковакуумную установку финишной сборки катодного узла, корпуса с микроканальными пластинами и коллектора электронов осуществляют откачку всей системы до давления не более 10 Па, термическое обезгаживание всех узлов в вакууме в течение не менее 4 ч при температуре от 300 до 400°C, электронное обезгаживание МКП и коллектора электронов, для чего в течение не менее 30 сек при температуре от 0 до 400°C направляют электронный поток от входа к выходу МКП и далее на коллектор электронов, после чего корпус с МКП при помощи манипулятора переворачивают и направляют электронный поток от выхода к входу МКП и далее на коллектор электронов, синхронно меняя полярность напряжения питания между входом и выходом МКП, выдерживают в течение не менее 30 сек, снова переворачивают корпус с МКП, меняя полярность напряжения, и повторяют так в течение не менее 2 ч до полного обезгаживания МКП, постепенно увеличивая напряжение на МКП и выходной ток МКП до значений, не ухудшающих параметры МКП, после чего формируют фотокатод на катодном узле и далее корпус с МКП устанавливают на коллектор электронов, а катодный узел на корпус и выполняют герметизацию прибора.
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРОННОГО ПРИБОРА
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРОННОГО ПРИБОРА
Источник поступления информации: Роспатент

Showing 571-580 of 726 items.
09.06.2018
№218.016.5c0f

Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты)

Изобретение относится к способу определения толщины и контроля скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок. В изобретении предусмотрено изготовление и помещение в плазменную установку мишеней из легкого и/или тяжелого элемента (например,...
Тип: Изобретение
Номер охранного документа: 0002655666
Дата охранного документа: 29.05.2018
11.06.2018
№218.016.607b

Самодиагностируемая бортовая вычислительная система с резервированием замещением

Изобретение относится к вычислительной технике и может быть использовано в системах различного назначения, где требуется высокая надежность и радиационная стойкость. Техническим результатом является сокращение времени задействования резервной системы, находящейся в выключенном состоянии, при...
Тип: Изобретение
Номер охранного документа: 0002657166
Дата охранного документа: 08.06.2018
25.06.2018
№218.016.6682

Формирователь кода

Изобретение относится к кодирующим устройствам помехоустойчивого кода, обеспечивающего восстановление передаваемой по каналу связи информации после ее искажений под действием помех. Технический результат – повышение помехоустойчивости и уменьшение времени передачи многобитных посылок....
Тип: Изобретение
Номер охранного документа: 0002658809
Дата охранного документа: 22.06.2018
21.07.2018
№218.016.72f7

Устройство контроля работы генератора

Изобретение относится к импульсной технике и может быть использовано для повышения надежности цифровых систем транспортных устройств в условиях воздействия механических ударов. Устройство контроля работы генератора содержит основной и резервный генераторы, первый и второй логические элементы,...
Тип: Изобретение
Номер охранного документа: 0002661354
Дата охранного документа: 16.07.2018
09.08.2018
№218.016.7a37

Позиционно чувствительный детектор излучений

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании позиционно чувствительных детекторов. Сущность изобретения заключается в том, что позиционно чувствительный детектор излучений содержит сцинтиллятор, при этом сцинтиллятор выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002663307
Дата охранного документа: 07.08.2018
25.08.2018
№218.016.7ec8

Способ балансировки магниторезистивного датчика

Изобретение относится к датчикам для измерения угла поворота, основанным на анизотропном магниторезистивном эффекте в тонких магнитных пленках, и может быть использовано в системах управления подвижными объектами. Технический результат – балансировка углового магниторезистивного датчика. Способ...
Тип: Изобретение
Номер охранного документа: 0002664868
Дата охранного документа: 23.08.2018
29.08.2018
№218.016.807a

Формирователь меток времени

Изобретение относится к измерительной технике и автоматике. Технический результат заключается в увеличении информационной емкости кода номера меток времени. Технический результат достигается за счет формирователя меток времени, который содержит выходную шину, первый генератор, первый счетчик...
Тип: Изобретение
Номер охранного документа: 0002665283
Дата охранного документа: 28.08.2018
29.08.2018
№218.016.8096

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники. Технический результат – повышение точности дифференциального измерительного преобразователя за счет введения блока коррекции, осуществляющего корректировку выходной характеристики преобразования. Дифференциальный измерительный...
Тип: Изобретение
Номер охранного документа: 0002665219
Дата охранного документа: 28.08.2018
05.09.2018
№218.016.8347

Гидропривод

Гидропривод предназначен для грузоподъемных машин. Гидропривод содержит два трехпозиционных крана управления, гидроцилиндр, цилиндр, поршень, шток, трубу, которая закреплена со стороны поршневой полости в торце цилиндра и соединена с левой гидролинией от первого трехпозиционного крана,...
Тип: Изобретение
Номер охранного документа: 0002665762
Дата охранного документа: 04.09.2018
14.09.2018
№218.016.87fe

Устройство для перемотки ленточного сверхпроводника

Изобретение относится к устройствам, специально предназначенным для изготовления сверхпроводников или обработки приборов с использованием сверхпроводимости. Устройство для перемотки ленточного сверхпроводника содержит корпус, внутри которого установлена труба для намотки ленты, катушку для...
Тип: Изобретение
Номер охранного документа: 0002666900
Дата охранного документа: 13.09.2018
Showing 551-559 of 559 items.
04.04.2018
№218.016.342b

Способ иммобилизации жидких высокосолевых радиоактивных отходов

Изобретение относится к области ядерной энергетики, в частности к обращению с жидкими радиоактивными отходами (ЖРО) с целью их последующего длительного хранения и/или захоронения. Способ иммобилизации ЖРО в фосфатном компаунде включает регулирование уровня рН отходов, введение в полученный...
Тип: Изобретение
Номер охранного документа: 0002645737
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.363b

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в расчете условия...
Тип: Изобретение
Номер охранного документа: 0002646177
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
30.03.2019
№219.016.f9ef

Способ получения раствора хлорного железа

Изобретение относится к гидрометаллургии и может быть использовано для получения растворов хлорного железа из концентрированных хлоридных солевых растворов, образующихся при гидрохлоридной переработке никельсодержащего сырья. Осуществляют экстракционную обработку хлоридного никелевого раствора...
Тип: Изобретение
Номер охранного документа: 0002683405
Дата охранного документа: 28.03.2019
17.01.2020
№220.017.f657

Способ получения хлорида никеля

Изобретение относится к гидрометаллургии цветных металлов, преимущественно к получению солей никеля и может быть использовано для переработки металлических никельсодержащих отходов. Осуществляют обработку измельченных отходов производства катодного никеля железосодержащим раствором хлорида...
Тип: Изобретение
Номер охранного документа: 0002711068
Дата охранного документа: 15.01.2020
04.07.2020
№220.018.2ef5

Способ очистки хлоридного раствора от железа

Изобретение относится к гидрометаллургии и может быть использовано для очистки от железа хлоридных растворов, образующихся при переработке медно-никелевого сырья и при солянокислотном выщелачивании полиметаллического сырья. Осуществляют обработку хлоридного раствора, содержащего не менее 200...
Тип: Изобретение
Номер охранного документа: 0002725322
Дата охранного документа: 02.07.2020
16.05.2023
№223.018.5fb5

Сверхвысоковакуумное термостойкое смотровое окно

Изобретение относится к вакуумной технике, в частности к элементам конструкции вакуумных камер, а именно к термостойкому смотровому окну, и может быть использовано в условиях высокой температуры и сверхвысокого вакуума. В окне для герметичного соединения оправы с прозрачным для излучения...
Тип: Изобретение
Номер охранного документа: 0002742506
Дата охранного документа: 08.02.2021
16.05.2023
№223.018.5fb7

Сверхвысоковакуумное термостойкое смотровое окно

Изобретение относится к вакуумной технике, в частности к элементам конструкции вакуумных камер, а именно к термостойкому смотровому окну, и может быть использовано в условиях высокой температуры и сверхвысокого вакуума. В окне для герметичного соединения оправы с прозрачным для излучения...
Тип: Изобретение
Номер охранного документа: 0002742506
Дата охранного документа: 08.02.2021
02.06.2023
№223.018.75bc

Способ извлечения хлорида железа(iii) из хлоридного раствора

Изобретение относится к гидрометаллургии. Берут хлоридный раствор, содержащий хлорид железа(II) и примесные элементы. Проводят окисление кислородом воздуха, взятым с избытком по отношению к железу(II), при температуре 50-80°С в течение 0,6-6,0 ч в присутствии экстрагента с температурой вспышки...
Тип: Изобретение
Номер охранного документа: 0002796484
Дата охранного документа: 24.05.2023
+ добавить свой РИД