×
17.01.2020
220.017.f657

Результат интеллектуальной деятельности: Способ получения хлорида никеля

Вид РИД

Изобретение

Аннотация: Изобретение относится к гидрометаллургии цветных металлов, преимущественно к получению солей никеля и может быть использовано для переработки металлических никельсодержащих отходов. Осуществляют обработку измельченных отходов производства катодного никеля железосодержащим раствором хлорида никеля с концентрацией 2-5 г/л железа(III) и 50-230 г/л никеля при температуре 40-90°C с получением раствора хлорида никеля. Обработку ведут при подаче газообразного хлора и поддержании окислительно-восстановительного потенциала в пределах 550-800 мВ до обеспечения плотности раствора 1,52-1,61 г/дм. Затем проводят очистку раствора хлорида никеля от примесных компонентов путем его нейтрализации карбонатом или гидроксидом никеля до рН=2,5-3,5 при температуре 60-80°C с получением очищенного раствора хлорида никеля и гидратного железистого кека, который растворяют в соляной кислоте с получением раствора хлорного железа. Способ позволяет повысить чистоту получаемого хлорида никеля при снижении энергоемкости, уменьшении числа операций и повышении безопасности. 7 з.п. ф-лы, 5 пр.

Изобретение относится к гидрометаллургии цветных металлов, преимущественно к получению солей никеля и может быть использовано для переработки отходов цветных металлов, таких как обрезь никелевых или кобальтовых электродов или остатков от их растворения. Соли цветных металлов находят все более широкое применение в различных отраслях промышленности и, в первую очередь, в качестве прекурсоров электродных материалов.

В настоящее время более 5% никеля и кобальта, получаемых методом электроэкстракции, уходит в обрезь в виде металлического лома и реализуется по низкой цене. Поэтому обрезь катодов является доступным и относительно дешевым сырьем для получения солей цветных металлов. При получении чистых солей часто используют методы, основанные на растворении стружки товарных металлов в азотной кислоте, с последующим осаждением карбонатов или гидроксидов никеля, которые далее растворяют в соляной кислоте с получением раствора хлорида металла и последующим выделением из него товарной соли. Однако существующие способы производства хлорида никеля являются малопроизводительными и энергозатратными, что обуславливает высокую стоимость получаемых солей. Кроме того, большинство способов сопровождается выделением водорода, что делает процесс производства взрывоопасным.

Известен способ получения хлорида никеля (см. пат. 16403 Казахстан, МПК7 C01G 53/09, 2005), включающий электрохимическое растворение металлических никелевых электродов в солянокислом растворе, содержащем 1-5 моль/л HCl при воздействии переменного тока промышленной частоты плотностью 500-1500 А/м2 с последующим выделением из раствора хлоридной соли никеля.

Недостатком данного способа является высокая энергоемкость, обусловленная повышенной плотностью тока, и интенсивное выделение водорода на катоде из кислого раствора, что делает способ взрывоопасным. Кроме того, способ не обеспечивает полноту перевода никеля в хлоридный раствор вследствие образования осыпи никелевого анода на конечной стадии электрохимического растворения, а использование никелевых электродов в качестве исходного сырья повышает стоимость производства хлорида никеля.

Известен также принятый в качестве прототипа способ получения хлорида никеля (см. пат. США 5853692, МПК6 C01G 53/09, 1998), включающий предварительную обработку отработанного никелевого анода в виде металлической стружки раствором 3-7% соляной кислоты для удаления поверхностных примесей, измельчение анода до крупности от 50 мкм до 5 мм и его растворение в 10-35% растворе соляной кислоты в течение 24 часов при соотношении соляной кислоты и никеля 1 или более и температуре 20-80°C с образованием кислого водного раствора хлорида никеля с концентрацией 190,7 г/л, содержащего свободную соляную кислоту. Для удаления свободной кислоты ее нейтрализуют добавлением КОН или отгоняют при высокой температуре. Полученный раствор фильтруют для удаления нерастворимых компонентов, пропускают воздух через фильтрат и при величине рН 2-5, который поддерживают путем добавления KOH, осаждают из раствора гидроксиды железа и хрома и отделяют их фильтрованием. Затем в полученный раствор хлорида никеля добавляют порошок Ni в количестве 0,1-2 г/л для удаления ионов тяжелых металлов с отделением очищенного раствора хлорида никеля. После удаления примесей очищенный раствор упаривают с последующим охлаждением и кристаллизацией хлоридных солей никеля.

К недостаткам известного способа следует отнести наличие в очищенном от железа растворе высокого содержания калия, который переходит в хлоридную никелевую соль при ее кристаллизации, а также повышенную энергоемкость, так как при переработке получают растворы, которые требуют дополнительного упаривания для кристаллизации хлоридных солей никеля. Способ предусматривает отгонку избыточной кислоты, что требует дополнительных энергозатрат и усложняет процесс получения хлорида никеля. Кроме того, способ является длительным, а в процессе выщелачивания имеет место выделение водорода, который образует с воздухом взрывоопасные смеси.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении чистоты получаемого хлорида никеля, снижении энергоемкости способа и уменьшении числа операций. Технический результат заключается также в повышении безопасности способа.

Технический результат достигается тем, что в способе получения хлорида никеля, включающем обработку при повышенной температуре измельченных металлических никельсодержащих отходов хлоридным раствором с получением раствора хлорида никеля, очистку раствора от примесных компонентов и кристаллизацию хлорида никеля при охлаждении очищенного раствора, согласно изобретению, обработку отходов ведут железосодержащим раствором хлорида никеля с концентрацией 2-5 г/л железа(III) при подаче газообразного хлора и поддержании окислительно-восстановительного потенциала (ОВП) в пределах 550-800 мВ до обеспечения плотности раствора 1,52-1,61 г/дм3.

Достижению технического результата способствует то, что в качестве металлических никельсодержащих отходов используют отходы производства катодного никеля.

Достижению технического результата способствует также то, что обработку отходов ведут железосодержащим раствором хлорида никеля с концентрацией 50-230 г/л никеля при температуре 40-90°С.

Достижению технического результата способствует также и то, что очистку раствора хлорида никеля ведут путем его нейтрализации карбонатом или гидроксидом никеля до рН=2,5-3,5 при температуре 60-80°C с получением гидратного железистого кека и очищенного раствора хлорида никеля.

Достижению технического результата способствует и то, что гидратный железистый кек растворяют в соляной кислоте с получением раствора хлорного железа.

На достижение технического результата направлено то, что очистку раствора ведут путем жидкостной экстракции органической смесью на основе трибутилфосфата или третичного амина при температуре 40-70°C с получением рафината в виде очищенного раствора хлорида никеля и экстракта, который подвергают водной реэкстракции с получением реэкстракта в виде раствора хлорного железа.

На достижение технического результата направлено также то, что раствор хлорного железа используют на стадии обработки металлических никельсодержащих отходов.

На достижение технического результата направлено и то, что кристаллизацию хлорида никеля ведут при охлаждении очищенного раствора до 10-20°С.

Сущность изобретения заключается в следующем.

Обработка металлических никельсодержащих отходов, осуществляется путем подачи их в раствор хлорида никеля, содержащий ионы железа(III), при поддержании ОВП в пределах 550-800 мВ по реакции:

Подача хлора позволяет проводить регенерацию окислителя согласно реакции:

и получить концентрированный раствор хлорида никеля, содержащий ионы железа(III).

Очистка раствора хлорида никеля от железа(III) перед кристаллизацией проводится путем нейтрализации раствора карбонатом или гидроксидом никеля до рН 2,5-3,5. Железистый кек отфильтровывают, а очищенный раствор подвергают охлаждению с кристаллизацией хлорида никеля. Далее кек растворяют в соляной кислоте и используют полученный раствор в качестве добавки к железосодержащему раствору хлорида никеля на стадии обработки отходов.

По другому варианту очистку раствора хлорида никеля от железа проводят путем жидкостной экстракции с получением очищенного рафината и экстракта. Железо из экстракта извлекают путем водной реэкстракции с получением раствора хлорида железа(III), который может быть использован на стадии обработки отходов.

Существенные признаки заявленного изобретения, определяющие объем испрашиваемой правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Обработка отходов железосодержащим раствором хлорида никеля с концентрацией 2-5 г/л железа(III) позволяет проводить растворение никеля при заданной величине ОВП с достаточно большой скоростью и без поступления в атмосферу газообразного хлора. При концентрации железа(III) менее 2 г/л скорость растворения существенно снижается, а содержание железа(III) более 5 г/л не ведет к увеличению скорости растворения никеля, но требует дополнительных затрат на его последующее извлечение из никелевого раствора.

Обработка отходов при подаче газообразного хлора и поддержании ОВП в пределах 550-800 мВ обеспечивает присутствие большей части железа в растворе в высокой (+3) степени окисления. При ОВП менее 550 мВ большая часть железа находится в восстановленной форме, и поэтому оно не обеспечивает растворение никеля. Поддержание ОВП более 800 мВ нецелесообразно из-за перерасхода окислителя и возможного выделения газообразного хлора в атмосферу.

Обработка отходов железосодержащим раствором хлорида никеля до обеспечения плотности раствора 1,52-1,61 г/дм3 позволяет получить концентрированный по никелю раствор, который пригоден после охлаждения для кристаллизации хлорида никеля без дополнительного упаривания. При плотности раствора менее 1,52 г/дм3 получается недостаточно концентрированный по никелю раствор, который требует упаривания, а при плотности раствора более 1,61 г/дм3 возможна неконтролируемая кристаллизация хлорида никеля при выщелачивании или при очистке раствора от железа.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении чистоты получаемого хлорида никеля, снижении энергоемкости и уменьшении числа операций, а также в повышении безопасности способа.

В частных случаях осуществления изобретения предпочтительны следующие операции и режимные параметры.

Использование металлических отходов производства катодного никеля в качестве исходного сырья позволяет снизить затраты на получение товарного хлорида никеля.

Обработка отходов железосодержащим раствором хлорида никеля с концентрацией 50-230 г/л никеля позволяет проводить растворение никеля с достаточно большой скоростью и получать растворы, пригодные для последующей кристаллизации. При концентрации никеля менее 50 г/л скорость растворения существенно снижается, а содержание никеля в растворе более 230 г/л требует использования значительных объемов исходного раствора выщелачивания.

Проведение обработки отходов при температуре 40-90°С способствует повышению скорости растворения никеля и обеспечивает возможность получения достаточно концентрированных растворов хлорида никеля, не требующих дополнительного упаривания. Проведение обработки отходов при температуре менее 40°С может привести к началу кристаллизации соли при последующей очистке раствора, а проведение обработки при температуре более 90°С нецелесообразно из-за высоких энергозатрат на нагрев раствора.

Очистка раствора хлорида никеля путем его нейтрализации карбонатом или гидроксидом никеля до рН=2,5-3,5 при температуре 60-80°С позволяет проводить глубокую очистку раствора от железа без введения дополнительных примесей в виде щелочных металлов. Нейтрализация до рН менее 2,5 не обеспечивает полноту извлечения железа из раствора, а при нейтрализации до рН более 3,5 происходит значительное соосаждение никеля в гидратный железистый кек и требует повышенного расхода нейтрализующего реагента. Проведение очистки раствора при температуре менее 60°С приводит к снижению скорости фильтрования гидратного железистого кека, а очистка при температуре более 80°С нецелесообразна из-за высоких энергозатрат на нагрев и последующее охлаждение раствора.

Растворение гидратного железистого кека в соляной кислоте обеспечивает полный перевод железа(III) в раствор хлорного железа.

Очистка раствора хлорида никеля путем жидкостной экстракции органической смесью на основе трибутилфосфата или третичного амина при температуре 40-70°C с получением рафината в виде очищенного раствора хлорида никеля и экстракта, который подвергают водной реэкстракции с получением реэкстракта в виде раствора хлорного железа, позволяет наиболее полно извлечь железо(III) из раствора и дополнительно очистить раствор от микропримесей меди и кобальта. Проведение экстракции железа(III) при температуре менее 40°С приводит к образованию вязких растворов и третьей фазы, что затрудняет проведение очистки, а при температуре более 70°С увеличивается растворимость экстрагента и снижается безопасность процесса.

Использование раствора хлорного железа на стадии обработки металлических никельсодержащих отходов железосодержащим раствором хлорида никеля позволяет использовать железо в обороте, что снижает затраты на реагенты, повышая эффективность способа.

Проведение кристаллизации хлорида никеля при температуре очищенного раствора 10-20°С обеспечивает высокий выход кристаллического хлорида никеля из очищенного раствора. Проведение кристаллизации при температуре раствора менее 10°С требует дополнительных энергозатрат на охлаждение раствора, а при температуре более 20°С будет иметь место пониженный выход кристаллического хлорида никеля.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения повышения чистоты получаемого хлорида никеля, снижения энергоемкости и уменьшения числа операций при повышении безопасности способа.

Сущность предлагаемого способа и достигаемые результаты более наглядно могут быть проиллюстрированы следующими Примерами.

Пример 1. Берут 1 кг измельченных отходов производства катодного никеля в виде стружки, содержащих 99,9 мас. % Ni и загружают в 5 л железосодержащего раствора хлорида никеля с концентрацией 50 г/л Ni и 5 г/л Fe(III). Обработку отходов ведут в течение 4 часов при температуре 90°С и подаче газообразного хлора, поддерживая в растворе ОВП в пределах 550-750 мВ, до достижения плотности получаемого раствора хлорида никеля 1,52.

Затем осуществляют очистку раствора хлорида никеля при температуре 80°С путем его нейтрализации карбонатом никеля до рН=2,5 с получением 0,06 кг гидратного железистого кека (на сухой вес) состава, мас. %: 44,4 Fe, 3,0 Ni, 0,003 Со, 0,006 Cu. Очищенный раствор охлаждают при перемешивании до температуры 10°C с кристаллизацией хлорида никеля. Получают 3,8 кг хлорида никеля NiCl2⋅6H2O состава, мас. %: 24,1 Ni, 0,003 Fe, 0,005 Со, 0,004 Cu, и 1,8 л маточного раствора состава, г/л: 188 Ni, 0,002 Fe, 0,016 Со, 0,001 Cu.

Пример 2. Берут 1 кг отходов производства катодного никеля по Примеру 1 и загружают в 10 л железосодержащего раствора хлорида никеля с концентрацией 200 г/л Ni и 3 г/л Fe(III). Обработку отходов ведут в течение 4,5 часов при температуре 80°С и подаче газообразного хлора, поддерживая в растворе ОВП в пределах 650-800 мВ, до достижения плотности получаемого раствора хлорида никеля 1,55 г/дм3.

Затем осуществляют очистку раствора хлорида никеля при температуре 70°С путем его нейтрализации карбонатом никеля до рН=3,0 с получением 0,08 кг гидратного железистого кека (на сухой вес) состава, мас. %: 40,4 Fe, 3.6 Ni, 0,003 Со, 0,006 Cu. Очищенный раствор охлаждают при перемешивании до температуры 18°C с кристаллизацией хлорида никеля. Получают 8,8 кг хлорида никеля NiCl2⋅6H2O состава, мас. %: 24,2 Ni, 0,001 Fe, 0,006 Со, 0,003 Cu, и 3,9 л маточного раствора состава, г/л: 230 Ni, 0,002 Fe, 0,016 Со, 0,001 Cu.

Пример 3. Берут 1 кг отходов производства катодного никеля по Примеру 1 и загружают в 5 л железосодержащего раствора хлорида никеля с концентрацией 100 г/л Ni и 4 г/л Fe(III), для получения которого используют маточный раствор, образовавшийся при кристаллизации, и раствор хлорного железа, полученный при растворении железистого кека в соляной кислоте. Обработку отходов ведут в течение 4,5 часов при температуре 70°С и подаче газообразного хлора, поддерживая в растворе ОВП в пределах 600-800 мВ, до достижения плотности получаемого раствора хлорида никеля 1,57.

Затем осуществляют очистку раствора хлорида никеля при температуре 70°С путем его нейтрализации гидроксидом никеля(П) до рН=3,5 с получением 0,06 кг гидратного железистого кека (на сухой вес) состава, мас. %: 36,4 Fe, 5,8 Ni, 0,002 Со, 0,002 Cu. Гидратный кек растворяют в соляной кислоте с получением 0,25 л раствора, содержащего 80 г/л железа и 12,7 г/л никеля, который присоединяют к маточному раствору, и добавляют воду до объема 5 л, после чего используют на стадии обработки отходов производства катодного никеля. Очищенный раствор охлаждают при перемешивании до температуры 15°C с кристаллизацией хлорида никеля. Получают 4,1 кг хлорида никеля NiCl2-6H20 состава, мас. %: 24,1 Ni, 0,0001 Fe, 0,005 Со, 0,003 Cu, и 2,2 л маточного раствора состава, г/л: 218 Ni, 0,001 Fe, 0,016 Со, 0,001 Cu.

Пример 4. Берут 1 кг отходов производства катодного никеля по Примеру 1 и загружают в 12 л железосодержащего раствора хлорида никеля с концентрацией 230 г/л Ni и 5 г/л Fe(III). Обработку отходов ведут в течение 5 часов при температуре 70°С и подаче газообразного хлора, поддерживая в растворе ОВП в пределах 650-800 мВ, до достижения плотности получаемого раствора хлорида никеля 1,58 г/дм3.

Затем осуществляют очистку раствора хлорида никеля путем жидкостной экстракции органической смесью состава, об. %: 30 - триизооктиламин, 20 - октанол и 50 - инертный разбавитель (Эскайд) при температуре 70°С и O : В = 1:1 в течение 2 минут. Получают рафинат в виде очищенного раствора хлорида никеля, который направляют на кристаллизацию, и экстракт, содержащий хлорное железо. Очищенный раствор охлаждают при перемешивании до температуры 20°C с кристаллизацией хлорида никеля. Получают 10,4 кг хлорида никеля NiCl2⋅6H2O состава, мас. %: 24,1 Ni, 0,002 Fe, 0.0001 Со, 0,0001 Cu, и 5 л маточного раствора состава, г/л: 244 Ni, 0,001 Fe, 0,001 Со, 0,001 Cu. Экстракт направляют на водную реэкстракцию, которую проводят при O : В = 1:0,8 на трех ступенях противоточной реэкстракции в течение 5 минут с получением 10,6 л раствора хлорного железа состава, г/л: 6,2 Fe, 0,13 Ni, 0,06 Со, 0,011 Cu.

Пример 5. Берут 1 кг отходов производства катодного никеля по Примеру 1 и загружают в 5 л железосодержащего раствора хлорида никеля с концентрацией 120 г/л Ni и 2 г/л Fe(III), который получают путем смешения маточного раствора, образовавшегося при кристаллизации, и раствора хлорного железа, полученного при реэкстракции. Обработку отходов ведут в течение 5 часов при температуре 40°С и подаче газообразного хлора, поддерживая в растворе ОВП в пределах 650-800 мВ до достижения плотности получаемого раствора хлорида никеля 1,61 г/дм3.

Затем осуществляют очистку раствора хлорида никеля путем жидкостной экстракции органической смесью состава, об. %: 80 - трибутилфосфат, 20 - разбавитель (Solvesso 150) при температуре 40°С и O : В = 1:1 в течение 2 минут с получением рафината в виде очищенного раствора хлорида никеля, который направляют на кристаллизацию, и экстракта, содержащего хлорное железо. Экстракт направляют на водную реэкстракцию, которую проводят на 2 ступенях при O : В = 3:1 с получением 1,8 л реэкстракта в виде раствора хлорного железа состава: 5,8 г/л Fe, 0,62 г/л Ni, 0,043 г/л Со, 0,014 г/л Cu, который используют на стадии обработки металлических никельсодержащих отходов. Очищенный раствор охлаждают при перемешивании до температуры 20°C с кристаллизацией хлорида никеля. Получают 4,2 кг хлорида никеля NiCl2⋅6H2O состава, мас. %: 24,3 Ni, 0,0001 Fe, 0,0007 Со, 0,0001 Cu, и 2,4 л маточного раствора состава, г/л: 244 Ni, 0,001 Fe, 0,0021 Со, 0,005 Cu. Маточный раствор смешивают с реэкстрактом, добавляют воду до объема 5 л и подают на стадию обработки отходов производства катодного никеля.

Из вышеприведенных Примеров видно, что предложенный способ по сравнению с прототипом обеспечивает получение более чистого хлорида никеля. В способе отсутствует энергоемкая операция упаривания для кристаллизации хлоридных солей никеля и не происходит выделения водорода, который образует с воздухом взрывоопасные смеси. Способ согласно изобретению может быть реализован с применением стандартного оборудования и использован для эффективной переработки отходов металлического никеля.

Источник поступления информации: Роспатент

Showing 1-10 of 34 items.
10.05.2018
№218.016.3bae

Способ получения фосфата титана

Изобретение может быть использовано при получении сорбента для очистки водно-солевых промышленных стоков от радионуклидов и токсичных катионов металлов. Для получения фосфата титана смешивают твердый титанилсульфат аммония с фосфорной кислотой. Полученную смесь выдерживают с формированием и...
Тип: Изобретение
Номер охранного документа: 0002647304
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.414c

Способ получения порошка вентильного металла

Изобретение относится к получению порошка вентильного металла. Способ включает восстановление порошка оксидного соединения вентильного металла парами магния или кальция при нагреве в инертной атмосфере, термообработку продуктов восстановления при температуре 1000-1500°С в течение 0,5-2 часов,...
Тип: Изобретение
Номер охранного документа: 0002649099
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.431e

Способ переработки эвдиалитового концентрата

Изобретение относится к способам переработки эвдиалитового концентрата и может быть использовано для получения соединений циркония, редкоземельных элементов (РЗЭ) и диоксида кремния. Способ включает разложение концентрата серной кислотой, отделение остатка от цирконийсодержащего раствора, его...
Тип: Изобретение
Номер охранного документа: 0002649606
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4e68

Способ переработки фторсодержащего апатитового концентрата

Изобретение может быть использовано в химической промышленности для получения фосфорной кислоты, концентрата редкоземельных элементов (РЗЭ), карбонатов щелочноземельных металлов и соединений фтора. Фторсодержащий апатитовый концентрат обрабатывают фосфорнокислым раствором в присутствии...
Тип: Изобретение
Номер охранного документа: 0002650923
Дата охранного документа: 18.04.2018
18.05.2018
№218.016.508e

Способ переработки жидких отходов аэс с борным регулированием

Изобретение относится к комплексной переработке сложных по составу жидких борсодержащих отходов АЭС. Способ переработки жидких отходов АЭС с борным регулированием, содержащих соли натрия и калия, включает введение нитрата кальция в боратный раствор с осаждением бората кальция и его отделением...
Тип: Изобретение
Номер охранного документа: 0002652978
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.57e2

Способ извлечения палладия из кислого медьсодержащего раствора

Изобретение относится к извлечению палладия из кислых медьсодержащих растворов. Проводят обработку исходного раствора экстрагентом оксимного типа в виде 20-40 об. % раствора экстракционного реагента на основе кетоксима, альдоксима или их смеси в разбавителе при рН 0,2-2,5 и отношении O:В=1-5:1....
Тип: Изобретение
Номер охранного документа: 0002654818
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5a59

Способ получения порошка сплава молибдена и вольфрама

Изобретение относится к получению порошка сплава молибдена и вольфрама. Способ включает металлотермическое восстановление их кислородных соединений с образованием реакционной массы, содержащей порошок сплава молибдена и вольфрама, выделение порошка сплава из реакционной массы и водную промывку...
Тип: Изобретение
Номер охранного документа: 0002655560
Дата охранного документа: 28.05.2018
11.06.2018
№218.016.60c0

Способ получения агломерированного танталового порошка

Изобретение относится к получению агломерированного конденсаторного танталового порошка, который может быть использован в производстве различных типов танталовых конденсаторов. Проводят нагрев металлического тантала, его гидрирование в атмосфере водорода в процессе охлаждения со средней...
Тип: Изобретение
Номер охранного документа: 0002657257
Дата охранного документа: 09.06.2018
05.09.2018
№218.016.831b

Способ переработки сфенового концентрата

Изобретение может быть использовано в производстве сорбентов для очистки жидких стоков от тяжелых металлов и радионуклидов, наполнителя для лакокрасочных и строительных материалов. Способ переработки сфенового концентрата включает его измельчение и разложение разбавленной серной кислотой при...
Тип: Изобретение
Номер охранного документа: 0002665759
Дата охранного документа: 04.09.2018
11.10.2018
№218.016.907d

Способ обработки фосфатного концентрата редкоземельных элементов

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку...
Тип: Изобретение
Номер охранного документа: 0002669031
Дата охранного документа: 05.10.2018
Showing 1-10 of 29 items.
20.06.2013
№216.012.4c98

Способ переработки никелевого штейна

Изобретение относится к способу переработки никелевого штейна. Способ включает выщелачивание штейна сернокислым никелевым раствором при повышенных давлении и температуре с получением раствора сульфата никеля. Раствор сульфата никеля очищают от примесей железа, меди и кобальта и извлекают никель...
Тип: Изобретение
Номер охранного документа: 0002485190
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5d49

Способ конверсии хлорида металла в его сульфат

Изобретение относится к гидрометаллургии и может быть использовано для получения сульфатов металлов из растворов их хлоридов, образующихся при гидрохлоридной переработке природного или вторичного сырья, в частности к способу конверсии хлорида металла в его сульфат. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002489502
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.67ef

Способ извлечения ванадия из кислых растворов

Изобретение относится к способам извлечения ванадия из кислых растворов и может быть использовано для экстракционного извлечения ванадия из сернокислых, солянокислых и азотнокислых растворов, образующихся при переработке различных видов ванадийсодержащего сырья и при рафинировании солей...
Тип: Изобретение
Номер охранного документа: 0002492254
Дата охранного документа: 10.09.2013
27.11.2014
№216.013.0b63

Способ получения металлического кобальта

Изобретение относится к металлургии. В токе сухого инертного газа производят высокотемпературную обработку хлорида кобальта при температуре 600-700°C с очисткой от примесей. Затем производят водородное восстановление очищенного хлорида кобальта при температуре 600-720°C с образованием...
Тип: Изобретение
Номер охранного документа: 0002534323
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0f0a

Способ очистки хлоридного никелевого раствора от марганца

Изобретение относится к очистке от марганца хлоридных никелевых растворов, используемых в процессе электролиза никеля. В хлоридном никелевом растворе повышают содержание хлор-иона до 8,2-9,0 М путем введения хлорида никеля с концентрацией 190-210 г/л никеля или соляной кислоты с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002535267
Дата охранного документа: 10.12.2014
20.02.2015
№216.013.29e4

Способ извлечения золота из солянокислого раствора

Изобретение относится к гидрометаллургии благородных металлов и может быть использовано для экстракционного извлечения золота(III) из солянокислых растворов от выщелачивания золотосодержащих промпродуктов и концентратов. Экстракцию ведут из солянокислого раствора с концентрацией 1-5 моль/л HCl....
Тип: Изобретение
Номер охранного документа: 0002542181
Дата охранного документа: 20.02.2015
20.11.2015
№216.013.913c

Способ вскрытия шлака

Изобретение относится к области металлургии цветных металлов и может быть наиболее эффективно использовано при переработке вскрытием шлаков, содержащих тяжелые цветные металлы, железо, кремний и серу. Способ включает выщелачивание шлака при повышенной температуре путем равномерной загрузки...
Тип: Изобретение
Номер охранного документа: 0002568796
Дата охранного документа: 20.11.2015
27.12.2016
№216.013.9d52

Способ переработки титансодержащего материала

Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора...
Тип: Изобретение
Номер охранного документа: 0002571904
Дата охранного документа: 27.12.2015
13.01.2017
№217.015.7b1e

Способ извлечения свинца из никельсодержащего хлоридного раствора

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для извлечения свинца из многокомпонентных водных растворов солей цветных металлов и железа при гидрометаллургической переработке никелевого сырья. Хлоридный раствор с концентрацией 5,5-8,0 моль/л хлора и...
Тип: Изобретение
Номер охранного документа: 0002600041
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.b34e

Способ получения концентрата драгоценных металлов из медно-никелевого файнштейна

Изобретение относится к способу переработки файнштейна с выделением металлизированной фракции. Способ включает окислительное гидрохлоридное выщелачивание путем постепенной подачи металлизированной фракции в хлоридный раствор при ОВП 400-450 мВ с переводом в раствор основной части цветных...
Тип: Изобретение
Номер охранного документа: 0002613823
Дата охранного документа: 21.03.2017
+ добавить свой РИД