×
25.08.2017
217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо в условиях различной относительной влажности с учетом вклада контактного сопротивления на границе образец/электрод. Для реализации способа образец помещают в ячейку с электродами в количестве 6÷8 единиц, измеряют четырехконтактным методом не менее трех значений сопротивления образца между электродами, расположенными на разном расстоянии друг от друга. Затем строят график зависимости ионного сопротивления (R) образца от расстояния между электродами (L) и находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле: где S - площадь сечения образца. Изобретение позволяет повысить достоверность определения электропроводности за счет учета вклада контактного сопротивления на границе образец/электрод и использования четырехконтактного метода определения электропроводности. 2 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей.

К ионпроводящим пленкам относятся твердополимерные ионообменные мембраны. Ионообменные мембраны используются в различных устройствах, в том числе в топливных элементах. Эффективность топливных элементов зависит от электропроводности ионообменных мембран, которая сильно понижается с уменьшением относительной влажности окружающей среды. В топливных элементах ионообменная мембрана находится в контакте с газообразной средой. Поэтому определение ее удельной электропроводности в таких условиях при различной относительной влажности является важной задачей.

Известен способ определения электропроводности ионообменных мембран (Т. Soboleva et al. / Journal of Electroanalytical Chemistry. 2008. 622, 145-152), заключающийся в определении сопротивления (R) между двумя электродами, расположенными на фиксированном расстоянии друг от друга (L), и расчете удельной электропроводности по формуле:

,

где σ - удельная электропроводность, S - площадь образца, L -расстояние между потенциальными электродами.

Недостатком такого способа является то, что при расчете удельной электропроводности не учитывается вклад контактного сопротивления на границе образец/электрод.

Известен способ определения удельной электропроводности ионообменных мембран (Ind. Eng. Chem. Res. 2005, 44, 7617-7626), заключающийся в определении электросопротивления образцов с помощью четырех электродов. Преимуществом данного способа является повышение достоверности определения электропроводности за счет уменьшения влияния индуктивности и емкости ячейки для определения электропроводности.

Недостатком такого способа является то, что вклад контактного сопротивления на границе образец/электрод не учитывается.

Известен способ определения удельной электропроводности ионообменных мембран, называемый методом с подвижным электродом (Электрохимия. 2000, 36, 365-368), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Данный способ заключается в учете вклада контактного сопротивления на границе образец/электрод. Контактное сопротивление (Rконт.) определяют путем экстраполяции зависимости сопротивления (R) от расстояния между электродами (L) в точку L=0. Удельную электропроводность (σ) рассчитывают по формуле:

.

где σ - удельная электропроводность, Sсеч - площадь сечения образца, L - расстояние между электродами, R - сопротивление, Rконт. - контактное сопротивление.

Недостатками этого прототипа является его использование для определения электропроводности ионообменных мембран только в контакте с жидкой средой и определение электропроводности двухконтактным способом, что не дает возможности определения из годографов импеданса значения сопротивления образца в контакте с газообразной средой.

Настоящее изобретение направлено на увеличение достоверности определения удельной электропроводности ионпроводящих пленок и тканей.

Технический результат достигается тем, что предложен способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо в условиях различной относительной влажности с учетом вклада контактного сопротивления на границе образец/электрод, заключающийся в том, образец помещают в ячейку с электродами в количестве 6÷8 единиц, измеряют четырехконтактным методом не менее трех значений сопротивления образца между электродами, расположенными на разном расстоянии друг от друга, строят график зависимости ионного сопротивления (R) образца от расстояния между электродами (L) и находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле:

,

где Sсеч - площадь сечения образца.

Количество электродов в ячейке определяется тем, что для описания графика зависимости ионного сопротивления от расстояния между электродами достаточно 6 электродов, дальнейшее увеличение количества электродов до 8 не приводит к заметному увеличению достоверности определения.

Сущность изобретения заключается в том, что характер зависимости сопротивления образца от расстояния между электродами позволяет учитывать вклад контактного сопротивления на границе образец/электрод, а использование четырехконтактного метода определения удельной электропроводности дает возможность определять значения сопротивления образца в контакте с газообразной средой из годографов импеданса, а значит, увеличить достоверность определения удельной электропроводности ионпроводящих материалов.

Изобретение проиллюстрировано на Фиг. 1, Фиг. 2 и в Таблице.

На Фиг. 1 «Схема ячейки для определения удельной электропроводности с восемью электродами» представлена схема ячейки, где

1-8 - медные электроды;

9 - подложка, на которую наносятся электроды;

10 - прижимная часть ячейки, обеспечивающая контакт между образцом и электродами.

На Фиг. 2 «Зависимость ионного сопротивления мембраны Nafion 117 от расстояния между потенциальными электродами» представлен характер зависимости, учитывающий вклад контактного сопротивления (Rконт.).

В Таблице «Удельная электропроводность мембраны Nafion 117 при различной относительной влажности окружающей среды при температуре t=22°C» приведены экспериментально полученные значения удельной электропроводности.

Заявленный в качестве изобретения способ определения удельной электропроводности материала осуществляют следующим образом. Измеряют толщину (h) и ширину (w) образца с точностью 0.001 мм и 0.1 мм соответственно и рассчитывают его площадь сечения по формуле:

.

Образец помещают в ячейку между электродами в количестве от 6 до 8 единиц и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряют последовательно от трех до пяти спектров импеданса образца четырехэлектродным методом на переменном токе на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключают к электродам 1, 8, а потенциальные провода - к электродам 2, 7; или токовые к 1, 7, потенциальные - к 2, 6; или токовые к 1, 6, потенциальные - к 2, 5; или токовые к 1, 5, потенциальные - к 2, 4; или токовые к 1, 4, потенциальные - к 2, 3.

Строят график зависимости значений ионного сопротивления (R), полученного из спектров импеданса, от расстояния между электродами (L), характер зависимости (Фиг. 2) может быть описан формулой:

,

где учитывается Rконт - контактное сопротивление системы, равное свободному члену линейной регрессии. Находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле:

,

где Sсеч - площадь сечения образца.

Ниже приведены примеры конкретного осуществления способа определения удельной электропроводности ионпроводящего материала. Примеры иллюстрируют, но не ограничивают предложенный способ.

Пример 1.

Электропроводность ионообменной мембраны Nafion 117 определяли при относительной влажности RH=20% на воздухе при температуре 22°С. Прямоугольный образец шириной 1 см и длиной 2 см предварительно выдерживали в заданных условиях. Перед экспериментом определяли ширину образца (w) с точностью 0.1 мм, затем его толщину в 5 точках с точностью 0.001 мм, рассчитывали среднее значение толщины (h) и рассчитывали площадь сечения (S=h⋅w).

Образец помещали в ячейку между шестью электродами и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряли последовательно три спектра импеданса четырехэлектродным методом в диапазоне частот 106-1 Гц на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключали к электродам 1, 6, потенциальные провода - к 2, 5 (спектр 1); затем токовые к 1, 5, потенциальные - к 2, 4 (спектр 2); затем токовые к 1, 4, потенциальные - к 2, 3 (спектр 3).

Строили график зависимости ионного сопротивления от расстояния между электродами, описывали его линейной регрессией с помощью метода наименьших квадратов и определяли свободный член линейной регрессии, равный значению контактного сопротивления образца, и тангенс угла наклона графика зависимости.

Из тангенса угла наклона рассчитывали значение удельной электропроводности, которое составило 1.5⋅10-3 Ом-1 см-1. Контактное сопротивление в данном случае равнялось 2667 Ом, что составляет 40% от измеряемого между ближайшими электродами сопротивления.

Пример 2.

Электропроводность ионообменной мембраны Nafion 117 определяли в контакте с водой при температуре 22°С. Прямоугольный образец шириной 1 см и длиной 2 см предварительно выдерживали в воде при заданной температуре. Перед экспериментом определяли ширину образца (w) с точностью 0.1 мм, затем его толщину в 5 точках с точностью 0.001 мм, рассчитывали среднее значение толщины (h) и рассчитывали площадь сечения (S=h⋅w).

Образец помещали в ячейку между восемью электродами и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряли последовательно пять спектров импеданса четырехэлектродным методом в диапазоне частот 106-1 Гц на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключали к электродам 1, 8, потенциальные провода - к 2, 7 (спектр 1); затем токовые к 1, 7, потенциальные - к 2, 6 (спектр 2); затем токовые к 1, 6, потенциальные - к 2, 5 (спектр 3); затем токовые к 1, 5, потенциальные - к 2, 4 (спектр 4); затем токовые к 1, 4, потенциальные - к 2, 3 (спектр 5).

Строили график зависимости ионного сопротивления от расстояния между электродами, описывали его линейной регрессией с помощью метода наименьших квадратов и определяли свободный член линейной регрессии, равный значению контактного сопротивления образца, и тангенс угла наклона графика зависимости.

Из тангенса угла наклона рассчитывали значение электропроводности, которое составило 0.112 Ом-1см-1. Контактное сопротивление в данном случае равнялось 22.7 Ом, что составляет 33% от измеряемого между ближайшими электродами сопротивления.

Удовлетворение изобретения критерию «промышленная применимость» подтверждается следующим примером.

Пример 3.

По Примеру 1 определяли удельную электропроводность мембраны Nafion 117 при различной относительной влажности окружающей среды при температуре t=22°C.

Результаты определения представлены в Таблице.

Как следует из Таблицы, удельная электропроводность мембраны Nafion 117 на 3 порядка возрастает с увеличением влажности, что согласуется с имеющимися литературными данными.

Заявляемый в качестве изобретения способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо при различной относительной влажности позволяет повысить достоверность определения электропроводности за счет учета вклада контактного сопротивления на границе образец/электрод и использования четырехконтактного метода определения электропроводности.


Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Источник поступления информации: Роспатент

Showing 21-30 of 50 items.
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e058

Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до...
Тип: Изобретение
Номер охранного документа: 0002625388
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ba

Экстракционный способ получения наноразмерных кристаллов оксидов металлов

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему...
Тип: Изобретение
Номер охранного документа: 0002625877
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f4e7

Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов

Изобретение относится к области процессов разделения веществ. Предложен рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов в устройстве с многократным контактом первой и второй жидких фаз. Смесь подают в устройство с первой жидкой фазой, которую до достижения...
Тип: Изобретение
Номер охранного документа: 0002637960
Дата охранного документа: 08.12.2017
20.01.2018
№218.016.0fa4

Магниточувствительный композит

Изобретение может быть использовано при создании магниточувствительных диодных структур, магнитных переключателей и сенсоров магнитных полей на основе ферромагнитного композита. Магниточувствительный композит состоит из индия, сурьмы и марганца и представляет собой двухфазную систему,...
Тип: Изобретение
Номер охранного документа: 0002633538
Дата охранного документа: 13.10.2017
Showing 21-30 of 36 items.
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e058

Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до...
Тип: Изобретение
Номер охранного документа: 0002625388
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ba

Экстракционный способ получения наноразмерных кристаллов оксидов металлов

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему...
Тип: Изобретение
Номер охранного документа: 0002625877
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f4e7

Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов

Изобретение относится к области процессов разделения веществ. Предложен рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов в устройстве с многократным контактом первой и второй жидких фаз. Смесь подают в устройство с первой жидкой фазой, которую до достижения...
Тип: Изобретение
Номер охранного документа: 0002637960
Дата охранного документа: 08.12.2017
20.01.2018
№218.016.0fa4

Магниточувствительный композит

Изобретение может быть использовано при создании магниточувствительных диодных структур, магнитных переключателей и сенсоров магнитных полей на основе ферромагнитного композита. Магниточувствительный композит состоит из индия, сурьмы и марганца и представляет собой двухфазную систему,...
Тип: Изобретение
Номер охранного документа: 0002633538
Дата охранного документа: 13.10.2017
+ добавить свой РИД