×
25.08.2017
217.015.b688

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ЭЛЕМЕНТОВ И ИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа. Перерабатываемый материал подают в виде грубодисперсного порошка с размером частиц не менее 1 мм. Для его испарения используют поток энергии СВЧ электромагнитного излучения с частотой в диапазоне 20-1200 ГГц, сфокусированный до размера длины волны используемого излучения. Газодисперсный поток с образовавшимися в результате конденсации паров перерабатываемого материала наноразмерными частицами охлаждают в теплообменнике и фильтруют для выделения частиц. Устройство для получения наноразмерных порошков элементов и их неорганических соединений содержит источник высококонцентрированного потока энергии, узел испарения - конденсации, теплообменник для охлаждения газодисперсного потока и фильтр для выделения наноразмерного порошка. Устройство включает гиротрон как источник энергии и квазиоптическое устройство фокусирования СВЧ-излучения. Изобретение позволяет повысить производительность процесса получения наноразмерных порошков, исключив радиационную опасность. 2 н.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к области нанотехнологий, в частности к технологиям получения наноразмерных порошков оксидов элементов.

Наноразмерные порошки элементов и их неорганических соединений с размером частиц менее 100 нм находят широкое применение в различных приложениях - создании наноструктурных материалов и покрытий с особыми свойствами, в биологии и медицине для селективного воздействия на клетки тканей и направленного транспорта лекарственных средств, для защиты окружающей среды от токсичных соединений и др.

В настоящее время известно порядка сотни методов и их модификаций для получения наночастиц элементов, их соединений и композиций со свойствами, которые могут варьироваться за счет изменения параметров процесса и его аппаратурного оформления. Одно из ведущих мест в получении наночастиц занимают процессы «испарения - конденсации», в которых формирование наночастиц происходит при конденсации пересыщенного пара целевого продукта, предварительно образовавшегося в результате испарения исходного сырья и последующего охлаждения пара. К наиболее универсальному варианту проведения процесса «испарения - конденсации» может быть отнесено испарение объема материала под воздействием концентрированного потока энергии (электрическая дуга, излучение лазера, поток электронов) с последующей конденсацией в потоке инертного или химически активного газа.

Подвод энергии к испаряемому материалу осуществляется с использованием:

- электрической дуги (Takayuki Watanabe, Manabu Tanaka. Thermal plasma processing for functional nanoparticle synthesis. 16 ASEAN Regional Symp. on Chemical Engineering. Dec. 1-2, 2009. Manila Hotel, Philippines. Technical keynote, p. 47-50. http://www.chem-eng.kyushu-u.ac.jp/lab5/Media/PDF-conf/RSCE09.pdf.);

- излучения лазера (Иванов М.Г., Котов Ю.А., Комаров В., Саматов О.М., Сухов А.В. Синтез нанопорошков мощным излучением волоконно-иттербиевого лазера. Фотоника, 2009, №3, с. 18-20);

- потока ускоренных электронов (Бардаханов С.П., Кончагин А.И., Куксанов А.И. Получение нанопорошков испарением исходных веществ на ускорителе электронов при атмосферном давлении, Доклады Академии наук, 2006, т. 409, №3, с. 320-323).

Электродуговой процесс может быть реализован при мощности до сотен киловатт, что обеспечивает максимальные значения производительности и энергетического кпд в рассматриваемой группе процессов. Однако недостатком данного способа является наличие эрозии электродов, что не позволяет получать высокочистый целевой продукт.

Лазерное испарение характеризуется низкой производительностью и очень высокими затратами электроэнергии.

Известные к настоящему времени способы получения нанопорошков элементов и их неорганических соединений методом «испарения - конденсации» характеризуются серьезными недостатками, к числу которых прежде всего относятся низкие производительность и энергоэффективность. Для создания высокопроизводительного, ресурсо- и энергоэффективного процесса получения нанопорошков необходим поиск принципиального новых подходов к решению данной проблемы.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ и устройство получения ультрадисперсных порошков диоксида кремния (патент РФ №2067077, 1996 г.). Способ предусматривает нагрев исходного минерала - диоксида кремния релятивистским пучком электронов при атмосферном давлении, обеспечивающем образование паров диоксида кремния и их последующую конденсацию с образованием ультрадисперсных частиц при смешении с вводимым потоком воздуха. Далее газодисперсный поток охлаждается и осуществляется выделение из него ультрадисперсного порошка диоксида кремния.

Устройство для получения порошка содержит ускоритель электронов высокой удельной мощности, установленный соосно над испарительной камерой, выполненной в виде огнеупорного тигля, связанного с питателем для подачи диоксида кремния и содержащей набор щелевых отверстий в верхней части боковой стенки для создания направленного газодисперсного потока, содержащего испаренный диоксид кремния. Испарительная камера посредством осевого канала соединена с расширительной камерой, теплообменником и вихревым пылеуловителем.

Использование потока электронов предопределяет существенные недостатки рассматриваемого способа и устройства - сложность конструкции, использующей ускоритель электронов, высокие энергозатраты и ограниченную производительность процесса, кроме того, электронные пучки обладают радиационной опасностью.

Техническая задача, решаемая предлагаемым изобретением, предусматривает использование генераторов сверхвысокочастотного (СВЧ) электромагнитного поля миллиметрового диапазона длин волн - гиротронов - для нагрева и испарения исходного материала в процессах получения наноразмерных порошков методом «испарения - конденсации».

В настоящее время созданы и эксплуатируются СВЧ-генераторы миллиметрового диапазона длин волн - гиротроны, работающие на частотах в диапазоне 24-1000 ГГц мощностью 5-1000 кВт и коэффициенте полезного действия до 60% (Запевалов В.Е. Эволюция гиротронов. Изв. ВУЗов, Радиофизика, 2011, т. 54, №8-9, с. 559-572. Генерация и усиление сигналов терагерцового диапазона. Под ред. А.Е. Храмова, А.Г. Баланова, В.Д. и др. Саратов, СГТУ, 2016, 460 с. Гиротронные комплексы - разработка и применение. Непрерывные гиротроны. ЗАО НПП "Гиком". http://www.gycom.ru/products/pr7.html). Увеличение частоты электромагнитного поля при переходе в миллиметровый диапазон длин волн обеспечивает повышение эффективности нагрева материала в процессах их получения и обработки вследствие возрастания коэффициента поглощения СВЧ-энергии. Кроме того, увеличение частоты и, соответственно, уменьшение длины волны излучения обеспечивает возможность его фокусировки до пятна с характерным размером порядка миллиметров и достижения высоких плотностей потока энергии, воздействующего на материал. С использованием сфокусированных потоков СВЧ-излучения с высокой плотностью мощности может быть осуществлен локальный нагрев материала до температур испарения и, соответственно, реализованы процессы получения нанопорошков методом «испарения - конденсации».

Использование гиротронов, непрерывная мощность которых, как указано выше, достигает 1000 кВт при коэффициенте полезного действия до 60%, обеспечит возможность создания высокопроизводительных и энергоэффективных процессов получения наноразмерных порошков оксидов элементов.

Технический результат достигается тем, что получение наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа под воздействием потока энергии на перерабатываемый материал осуществляется при подаче материал в виде грубодисперсного порошка с размером частиц не менее 1 мм и для его испарения используется поток энергии СВЧ электромагнитного излучения с частотой в диапазоне 20-1200 ГГц, сфокусированный до размера длины волны используемого излучения, и газодисперсный поток с образовавшимися в результате конденсации паров перерабатываемого материала наноразмерными частицами охлаждают в теплообменнике и фильтруют для выделения частиц.

Устройство для получения наноразмерных порошков элементов и их неорганических соединений содержит источник высококонцентрированного потока энергии, узел испарения - конденсации, теплообменник для охлаждения газодисперсного потока и фильтр для выделения наноразмерного порошка, при этом в устройстве используется гиротрон как источник энергии и квазиоптическое устройство фокусирования СВЧ-излучения, которое обеспечивает формирование пятна с размером длины волны, т.е. 15-0.25 мм.

Указанный диапазон частот соответствует используемому в существующих конструкциях гиротронов, при этом следует учитывать, что с повышением частоты уменьшается размер пятна сфокусированного СВЧ-излучения и при постоянной мощности возрастает плотность потока энергии и, соответственно, температура в зоне пятна. Поэтому для испарения материалов с высокой температурой кипения следует использовать более высокие частоты СВЧ-излучения.

Существующие гиротронные комплексы мощностью 5-1000 кВт, оснащенные фокусирующим устройством, в непрерывном режиме работы обеспечивают плотность потока энергии к обрабатываему материалу от 3 до порядка 105 кВт/см2 в указанном выше диапазоне частот, при этом кпд гиротрона достигает 60%. Достигаемые плотности потока СВЧ-энергии позволяют обеспечить испарение любых материалов, быстрое охлаждение паров которых, например, при смешении с холодным газом будет приводить к образованию наноразмерных частиц.

Схема установки для получения наноразмерных порошков оксидов элементов методом «испарение - конденсация», использующей испарение исходного сырья при воздействии сфокусированного СВЧ-излучения миллиметрового диапазона длины волны, представлена на рис. 1.

В гиротронном комплексе (1), являющемся источником высококонцентрированного потока энергии, генерируется электромагнитное излучение миллиметрового диапазона длин волн, которое по волноводному тракту (2) направляется в технологический блок. Волноводный тракт включает фильтр мод, преобразователь мод, СВЧ-окно, преобразователь моды в гауссов пучок. Фильтр мод предназначен для исключения попадания отраженной мощности в гиротрон, что может привести к его повреждению. Преобразователь мод обеспечивает дальнейшее преобразование излучения в гауссов пучок. После преобразователя мод в подводящем тракте СВЧ-излучения установлено охлаждаемое СВЧ-окно. Окно необходимо для отсечения технологического блока от волноводного тракта и предотвращения попадания в него порошков.

В технологическом блоке (3) размещено фокусирующее зеркало (4), которое фокусирует СВЧ-излучение на поверхности перерабатываемого материала, находящегося в вертикально расположенном гарниссажном тигле (4). Использование тигля с гарниссажем из перерабатываемого материала исключает загрязнение получаемого продукта соединениями, присутствующими в материале тигля. Подача перерабатываемого материала в тигель осуществляется питателем (5). Над тиглем расположено кварцевое окно, через которое проходит СВЧ-излучение к поверхности перерабатываемого материала. Непосредственно под окном расположены каналы ввода холодного газа (6) к поверхности испарения, при смешении которого с парами перерабатываемого материала происходит формирование наноразмерных частиц. Тигель вместе с кварцевым окном и каналами ввода холодного газа образуют узел испарения - конденсации. Теплообменник (7) обеспечивает охлаждение газодисперсного потока, содержащего наноразмерные частицы. Для выделения частиц из потока используется фильтр (8).

Предлагаемый способ получения наноразмерных порошков реализуется следующим образом.

Перерабатываемый материал, которым могут быть индивидуальные или сложные оксиды элементов, а также их смеси в виде грубодисперсного порошка с размером частиц не менее 1 мм, подается в гарниссажный тигель дозирующим устройством. Использование порошка с указанным размером частиц предотвращает их вынос газовым потоком и попадание в получаемый наноразмерный порошок. На горизонтально расположенную поверхность материала по нормали направляется сфокусированный поток СВЧ-излучения.

В области фокального пятна происходит нагрев, плавление и испарение перерабатываемого материала. Поверхность материала обдувается потоком газа кислородсодержащего газа (воздух или другие кислородно-азотные смеси) при смешении с которым происходит конденсация паров с образованием наноразмерных частиц. Изменение расхода газа и скорости его течения может использоваться для управления размером формирующихся наночастиц. Далее газодисперсный поток охлаждается в теплообменнике и поступает на фильтр, где происходит выделение наноразмерных частиц.

Пример 1

На уплотненный слой порошка оксида вольфрама WO3 с размером частиц 1-4 мм воздействует сфокусированный поток СВЧ-излучения, генерируемого в гиротроне. Выходная мощность гиротрона, работающего в непрерывном режиме, составляет 1 кВт, рабочая частота - 263 ГГц. Диаметр сфокусированного пятна СВЧ-излучения на поверхности материала 1.2 мм. Поверхность оксида вольфрама обдувается по нормали потоком воздуха с расходом 12 м3/ч. Процесс осуществляется при давлении, близком к атмосферному.

Полученный порошок является оксидом вольфрама WO3 состоит из частиц, размеры которых находятся в диапазоне от 20 нм до 1 мкм, удельная поверхность порошка - 4.1 м2/г. Частицы имеют различную форму - близкую к сферической, а также форму октаэдров.

Производительность процесса составила 0.4 кг/ч, затраты электроэнергии - 2.5 кВтч/кг WO3.

Пример 2

На уплотненный слой порошка оксида олова SnO2 воздействует сфокусированный поток СВЧ-излучения, генерируемого в гиротроне. Выходная мощность гиротрона, работающего в непрерывном режиме, составляет 5.3-6,5 кВт, рабочая частота - 24 ГГц. Диаметр сфокусированного пятна СВЧ-излучения на поверхности материала 12 мм. Поверхность оксида вольфрама обдувается по нормали потоком воздуха с расходом 10 м3/ч. Процесс осуществляется при давлении, близком к атмосферному.

Полученный порошок оксида олова состоит из частиц с размерами 20-200 нм, преимущественно с равноосной формой и имеющих огранку, удельная поверхность порошка составляет 10.4 м2/г, что соответствует среднему размеру d32=85 нм.

Производительность процесса составила 0.09 кг/ч, затраты электроэнергии - 65 кВтч/кг SnO2.

Пример 3

На уплотненный слой порошка оксида цинка ZnO со средним размером частиц 1 мм воздействует сфокусированный поток СВЧ-излучения, генерируемого в гиротроне, работающем в непрерывном режиме на частоте 263 ГГц. Выходная мощность гиротрона составляет 1 кВт. Диаметр сфокусированного пятна СВЧ-излучения на поверхности материала 1.2 мм. Поверхность слоя порошка обдувается по нормали потоком аргона с расходом 6 м3/ч. Процесс осуществляется при давлении, близком к атмосферному.

Полученный порошок является оксидом цинка ZnO, имеет сложную морфологию и состоит в основном из двух видов частиц - ограненных стержней длиной до 200-300 нм и поперечным размером около 60 нм, а также нановискеров (нанонитей) приблизительно такой же длины, но с поперечным размером не более 20 нм, при этом в порошке присутствуют нановискеры, исходящие из общего ядра, - тетраподы. Производительность процесса составила 0.03 кг/ч, затраты электроэнергии - 33 кВтч/кг.

Пример 4

На порошок оксида олова SnO2 со средним размером частиц 2 мм воздействует сфокусированный поток СВЧ-излучения, генерируемого в гиротроне, работающем в непрерывном режиме на частоте 0.95 ГГц. Выходная мощность гиротрона составляет 0.9 кВт. Диаметр сфокусированного пятна СВЧ-излучения на поверхности материала 0.32 мм. Поверхность слоя порошка обдувается по нормали потоком воздуха с расходом 5 м3/ч. Процесс осуществляется при давлении, близком к атмосферному.

Полученный порошок является оксида олова SnO2 и состоит из частиц с размерами в диапазоне 20-150 нм, преимущественно с равноосной формой, удельная поверхность порошка составляет 13 м2/г, что соответствует среднему размеру d32=67 нм.

Производительность процесса составила 0.04 кг/ч, затраты электроэнергии - 22.5 кВтч/кг SnO2.


СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ЭЛЕМЕНТОВ И ИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 81-90 of 118 items.
20.05.2019
№219.017.5d26

Способ обескремнивания нефелинового концентрата и устройство для его осуществления

Изобретение относится к области металлургии, в частности к переработке нефелинового концентрата с получением из него синтетического боксита, содержащего до 80% AlO и до 1,5% SiO. Способ включает приготовление шихты из концентрата и углерода и карботермическую восстановительную плавку шихты в...
Тип: Изобретение
Номер охранного документа: 0002688083
Дата охранного документа: 17.05.2019
11.07.2019
№219.017.b28b

Способ изготовления тонкой проволоки из биосовместимого сплава tinbtazr

Изобретение относится к способам изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr для кава-фильтров и стентов. Способ включает выплавку заготовки и ее деформационно-термическую обработку. Возможность получения изделий повышенной прочности, пластичности и улучшенных...
Тип: Изобретение
Номер охранного документа: 0002694099
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
14.08.2019
№219.017.bf38

Борированный порошок для плазменного напыления

Изобретение относится к материалу для нанесения покрытия, в частности борированному порошку для плазменного напыления. Может использоваться для формирования износостойких покрытий. Частицы борированного порошка для плазменного напыления, состоят из ядра и борсодержащей оболочки, которая...
Тип: Изобретение
Номер охранного документа: 0002697147
Дата охранного документа: 12.08.2019
16.08.2019
№219.017.c0a8

Способ регистрации следовых количеств веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в...
Тип: Изобретение
Номер охранного документа: 0002697477
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c0ae

Способ получения биоцемента для заполнения костных дефектов на основе дикальцийфосфата дигидрата и сульфата кальция двуводного

Изобретение относится к медицине и касается получения биоцемента для заполнения костных дефектов. Для этого цементный раствор получают в результате смешения порошка трикальцийфосфата и сульфата кальция полуводного с водным раствором дигидроортофосфата магния 4-водного - раствор 50-66% соли...
Тип: Изобретение
Номер охранного документа: 0002697396
Дата охранного документа: 14.08.2019
23.08.2019
№219.017.c2d7

Способ изготовления керамики на основе композита нитрид кремния - нитрид титана

Изобретение относится к способу получения керамического композита из нитрида кремния, упрочненного нитридом титана, обладающего совокупностью физико-механических свойств, таких как высокая прочность и твердость, низкий коэффициент термического расширения, износостойкость и электрическая...
Тип: Изобретение
Номер охранного документа: 0002697987
Дата охранного документа: 21.08.2019
01.11.2019
№219.017.dc2d

Способ плазменного напыления с насадкой к плазмотрону и устройство для его осуществления

Изобретение относится к области металлургии, к напылению плазменных покрытий и может быть использовано для формирования износостойких, коррозионностойких и функциональных покрытий с минимальным содержанием оксидов, формирующихся в процессе напыления. Способ и устройство напыления покрытий при...
Тип: Изобретение
Номер охранного документа: 0002704680
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc41

Высокопрочная дисперсионно-твердеющая азотосодержащая коррозионно-стойкая аустенитная сталь

Изобретение относится к области металлургии, а именно к высокопрочным дисперсионно-твердеющим азотосодержащим коррозионно-стойким аустенитным сталям, используемым для изготовления высоконагруженных конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит...
Тип: Изобретение
Номер охранного документа: 0002704703
Дата охранного документа: 30.10.2019
04.11.2019
№219.017.de5f

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция

Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in...
Тип: Изобретение
Номер охранного документа: 0002705084
Дата охранного документа: 01.11.2019
Showing 71-74 of 74 items.
29.11.2019
№219.017.e7ff

Сферический порошок псевдосплава на основе вольфрама и способ его получения

Изобретение относится к сферическому порошку псевдосплава на основе вольфрама. Ведут гранулирование порошка наноразмерного композита, состоящего из металлических частиц с размерами менее 100 нм и полученного водородным восстановлением в термической плазме смеси порошков оксидов вольфрама с...
Тип: Изобретение
Номер охранного документа: 0002707455
Дата охранного документа: 26.11.2019
15.01.2020
№220.017.f503

Способ извлечения металлов платиновой группы из отработанных алюмооксидных каталитических нейтрализаторов выхлопных газов

Изобретение относится к получению благородных металлов и может использоваться для извлечения металлов платиновой группы из отработанных алюмооксидных каталитических нейтрализаторов выхлопных газов. Измельченную до частиц со средним размером 0,5 мм шихту в открытом тигле размещают в...
Тип: Изобретение
Номер охранного документа: 0002710755
Дата охранного документа: 13.01.2020
22.04.2023
№223.018.50e4

Способ очистки порошков титана и его сплавов от примеси кислорода

Изобретение относится к области порошковой металлургии, в частности к способам очистки порошков титана и его сплавов от примесей кислорода. Очистку порошков титана и его сплавов осуществляют путем взаимодействия с порошком магния или гидрида кальция в потоке термической плазмы инертных газов,...
Тип: Изобретение
Номер охранного документа: 0002794190
Дата охранного документа: 12.04.2023
01.06.2023
№223.018.74c7

Неадиабатическая электронная пушка для мазера на циклотронном резонансе

Изобретение относится к технике вакуумных СВЧ электронных приборов. Технический результат - повышение устойчивости и эффективности работы пушки. Неадиабатическая электронная пушка для мазера на циклотронном резонансе (МЦР) включает расположенные на спадающем участке магнитного поля основного...
Тип: Изобретение
Номер охранного документа: 0002765773
Дата охранного документа: 02.02.2022
+ добавить свой РИД