×
25.08.2017
217.015.b688

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ЭЛЕМЕНТОВ И ИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа. Перерабатываемый материал подают в виде грубодисперсного порошка с размером частиц не менее 1 мм. Для его испарения используют поток энергии СВЧ электромагнитного излучения с частотой в диапазоне 20-1200 ГГц, сфокусированный до размера длины волны используемого излучения. Газодисперсный поток с образовавшимися в результате конденсации паров перерабатываемого материала наноразмерными частицами охлаждают в теплообменнике и фильтруют для выделения частиц. Устройство для получения наноразмерных порошков элементов и их неорганических соединений содержит источник высококонцентрированного потока энергии, узел испарения - конденсации, теплообменник для охлаждения газодисперсного потока и фильтр для выделения наноразмерного порошка. Устройство включает гиротрон как источник энергии и квазиоптическое устройство фокусирования СВЧ-излучения. Изобретение позволяет повысить производительность процесса получения наноразмерных порошков, исключив радиационную опасность. 2 н.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к области нанотехнологий, в частности к технологиям получения наноразмерных порошков оксидов элементов.

Наноразмерные порошки элементов и их неорганических соединений с размером частиц менее 100 нм находят широкое применение в различных приложениях - создании наноструктурных материалов и покрытий с особыми свойствами, в биологии и медицине для селективного воздействия на клетки тканей и направленного транспорта лекарственных средств, для защиты окружающей среды от токсичных соединений и др.

В настоящее время известно порядка сотни методов и их модификаций для получения наночастиц элементов, их соединений и композиций со свойствами, которые могут варьироваться за счет изменения параметров процесса и его аппаратурного оформления. Одно из ведущих мест в получении наночастиц занимают процессы «испарения - конденсации», в которых формирование наночастиц происходит при конденсации пересыщенного пара целевого продукта, предварительно образовавшегося в результате испарения исходного сырья и последующего охлаждения пара. К наиболее универсальному варианту проведения процесса «испарения - конденсации» может быть отнесено испарение объема материала под воздействием концентрированного потока энергии (электрическая дуга, излучение лазера, поток электронов) с последующей конденсацией в потоке инертного или химически активного газа.

Подвод энергии к испаряемому материалу осуществляется с использованием:

- электрической дуги (Takayuki Watanabe, Manabu Tanaka. Thermal plasma processing for functional nanoparticle synthesis. 16 ASEAN Regional Symp. on Chemical Engineering. Dec. 1-2, 2009. Manila Hotel, Philippines. Technical keynote, p. 47-50. http://www.chem-eng.kyushu-u.ac.jp/lab5/Media/PDF-conf/RSCE09.pdf.);

- излучения лазера (Иванов М.Г., Котов Ю.А., Комаров В., Саматов О.М., Сухов А.В. Синтез нанопорошков мощным излучением волоконно-иттербиевого лазера. Фотоника, 2009, №3, с. 18-20);

- потока ускоренных электронов (Бардаханов С.П., Кончагин А.И., Куксанов А.И. Получение нанопорошков испарением исходных веществ на ускорителе электронов при атмосферном давлении, Доклады Академии наук, 2006, т. 409, №3, с. 320-323).

Электродуговой процесс может быть реализован при мощности до сотен киловатт, что обеспечивает максимальные значения производительности и энергетического кпд в рассматриваемой группе процессов. Однако недостатком данного способа является наличие эрозии электродов, что не позволяет получать высокочистый целевой продукт.

Лазерное испарение характеризуется низкой производительностью и очень высокими затратами электроэнергии.

Известные к настоящему времени способы получения нанопорошков элементов и их неорганических соединений методом «испарения - конденсации» характеризуются серьезными недостатками, к числу которых прежде всего относятся низкие производительность и энергоэффективность. Для создания высокопроизводительного, ресурсо- и энергоэффективного процесса получения нанопорошков необходим поиск принципиального новых подходов к решению данной проблемы.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ и устройство получения ультрадисперсных порошков диоксида кремния (патент РФ №2067077, 1996 г.). Способ предусматривает нагрев исходного минерала - диоксида кремния релятивистским пучком электронов при атмосферном давлении, обеспечивающем образование паров диоксида кремния и их последующую конденсацию с образованием ультрадисперсных частиц при смешении с вводимым потоком воздуха. Далее газодисперсный поток охлаждается и осуществляется выделение из него ультрадисперсного порошка диоксида кремния.

Устройство для получения порошка содержит ускоритель электронов высокой удельной мощности, установленный соосно над испарительной камерой, выполненной в виде огнеупорного тигля, связанного с питателем для подачи диоксида кремния и содержащей набор щелевых отверстий в верхней части боковой стенки для создания направленного газодисперсного потока, содержащего испаренный диоксид кремния. Испарительная камера посредством осевого канала соединена с расширительной камерой, теплообменником и вихревым пылеуловителем.

Использование потока электронов предопределяет существенные недостатки рассматриваемого способа и устройства - сложность конструкции, использующей ускоритель электронов, высокие энергозатраты и ограниченную производительность процесса, кроме того, электронные пучки обладают радиационной опасностью.

Техническая задача, решаемая предлагаемым изобретением, предусматривает использование генераторов сверхвысокочастотного (СВЧ) электромагнитного поля миллиметрового диапазона длин волн - гиротронов - для нагрева и испарения исходного материала в процессах получения наноразмерных порошков методом «испарения - конденсации».

В настоящее время созданы и эксплуатируются СВЧ-генераторы миллиметрового диапазона длин волн - гиротроны, работающие на частотах в диапазоне 24-1000 ГГц мощностью 5-1000 кВт и коэффициенте полезного действия до 60% (Запевалов В.Е. Эволюция гиротронов. Изв. ВУЗов, Радиофизика, 2011, т. 54, №8-9, с. 559-572. Генерация и усиление сигналов терагерцового диапазона. Под ред. А.Е. Храмова, А.Г. Баланова, В.Д. и др. Саратов, СГТУ, 2016, 460 с. Гиротронные комплексы - разработка и применение. Непрерывные гиротроны. ЗАО НПП "Гиком". http://www.gycom.ru/products/pr7.html). Увеличение частоты электромагнитного поля при переходе в миллиметровый диапазон длин волн обеспечивает повышение эффективности нагрева материала в процессах их получения и обработки вследствие возрастания коэффициента поглощения СВЧ-энергии. Кроме того, увеличение частоты и, соответственно, уменьшение длины волны излучения обеспечивает возможность его фокусировки до пятна с характерным размером порядка миллиметров и достижения высоких плотностей потока энергии, воздействующего на материал. С использованием сфокусированных потоков СВЧ-излучения с высокой плотностью мощности может быть осуществлен локальный нагрев материала до температур испарения и, соответственно, реализованы процессы получения нанопорошков методом «испарения - конденсации».

Использование гиротронов, непрерывная мощность которых, как указано выше, достигает 1000 кВт при коэффициенте полезного действия до 60%, обеспечит возможность создания высокопроизводительных и энергоэффективных процессов получения наноразмерных порошков оксидов элементов.

Технический результат достигается тем, что получение наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа под воздействием потока энергии на перерабатываемый материал осуществляется при подаче материал в виде грубодисперсного порошка с размером частиц не менее 1 мм и для его испарения используется поток энергии СВЧ электромагнитного излучения с частотой в диапазоне 20-1200 ГГц, сфокусированный до размера длины волны используемого излучения, и газодисперсный поток с образовавшимися в результате конденсации паров перерабатываемого материала наноразмерными частицами охлаждают в теплообменнике и фильтруют для выделения частиц.

Устройство для получения наноразмерных порошков элементов и их неорганических соединений содержит источник высококонцентрированного потока энергии, узел испарения - конденсации, теплообменник для охлаждения газодисперсного потока и фильтр для выделения наноразмерного порошка, при этом в устройстве используется гиротрон как источник энергии и квазиоптическое устройство фокусирования СВЧ-излучения, которое обеспечивает формирование пятна с размером длины волны, т.е. 15-0.25 мм.

Указанный диапазон частот соответствует используемому в существующих конструкциях гиротронов, при этом следует учитывать, что с повышением частоты уменьшается размер пятна сфокусированного СВЧ-излучения и при постоянной мощности возрастает плотность потока энергии и, соответственно, температура в зоне пятна. Поэтому для испарения материалов с высокой температурой кипения следует использовать более высокие частоты СВЧ-излучения.

Существующие гиротронные комплексы мощностью 5-1000 кВт, оснащенные фокусирующим устройством, в непрерывном режиме работы обеспечивают плотность потока энергии к обрабатываему материалу от 3 до порядка 105 кВт/см2 в указанном выше диапазоне частот, при этом кпд гиротрона достигает 60%. Достигаемые плотности потока СВЧ-энергии позволяют обеспечить испарение любых материалов, быстрое охлаждение паров которых, например, при смешении с холодным газом будет приводить к образованию наноразмерных частиц.

Схема установки для получения наноразмерных порошков оксидов элементов методом «испарение - конденсация», использующей испарение исходного сырья при воздействии сфокусированного СВЧ-излучения миллиметрового диапазона длины волны, представлена на рис. 1.

В гиротронном комплексе (1), являющемся источником высококонцентрированного потока энергии, генерируется электромагнитное излучение миллиметрового диапазона длин волн, которое по волноводному тракту (2) направляется в технологический блок. Волноводный тракт включает фильтр мод, преобразователь мод, СВЧ-окно, преобразователь моды в гауссов пучок. Фильтр мод предназначен для исключения попадания отраженной мощности в гиротрон, что может привести к его повреждению. Преобразователь мод обеспечивает дальнейшее преобразование излучения в гауссов пучок. После преобразователя мод в подводящем тракте СВЧ-излучения установлено охлаждаемое СВЧ-окно. Окно необходимо для отсечения технологического блока от волноводного тракта и предотвращения попадания в него порошков.

В технологическом блоке (3) размещено фокусирующее зеркало (4), которое фокусирует СВЧ-излучение на поверхности перерабатываемого материала, находящегося в вертикально расположенном гарниссажном тигле (4). Использование тигля с гарниссажем из перерабатываемого материала исключает загрязнение получаемого продукта соединениями, присутствующими в материале тигля. Подача перерабатываемого материала в тигель осуществляется питателем (5). Над тиглем расположено кварцевое окно, через которое проходит СВЧ-излучение к поверхности перерабатываемого материала. Непосредственно под окном расположены каналы ввода холодного газа (6) к поверхности испарения, при смешении которого с парами перерабатываемого материала происходит формирование наноразмерных частиц. Тигель вместе с кварцевым окном и каналами ввода холодного газа образуют узел испарения - конденсации. Теплообменник (7) обеспечивает охлаждение газодисперсного потока, содержащего наноразмерные частицы. Для выделения частиц из потока используется фильтр (8).

Предлагаемый способ получения наноразмерных порошков реализуется следующим образом.

Перерабатываемый материал, которым могут быть индивидуальные или сложные оксиды элементов, а также их смеси в виде грубодисперсного порошка с размером частиц не менее 1 мм, подается в гарниссажный тигель дозирующим устройством. Использование порошка с указанным размером частиц предотвращает их вынос газовым потоком и попадание в получаемый наноразмерный порошок. На горизонтально расположенную поверхность материала по нормали направляется сфокусированный поток СВЧ-излучения.

В области фокального пятна происходит нагрев, плавление и испарение перерабатываемого материала. Поверхность материала обдувается потоком газа кислородсодержащего газа (воздух или другие кислородно-азотные смеси) при смешении с которым происходит конденсация паров с образованием наноразмерных частиц. Изменение расхода газа и скорости его течения может использоваться для управления размером формирующихся наночастиц. Далее газодисперсный поток охлаждается в теплообменнике и поступает на фильтр, где происходит выделение наноразмерных частиц.

Пример 1

На уплотненный слой порошка оксида вольфрама WO3 с размером частиц 1-4 мм воздействует сфокусированный поток СВЧ-излучения, генерируемого в гиротроне. Выходная мощность гиротрона, работающего в непрерывном режиме, составляет 1 кВт, рабочая частота - 263 ГГц. Диаметр сфокусированного пятна СВЧ-излучения на поверхности материала 1.2 мм. Поверхность оксида вольфрама обдувается по нормали потоком воздуха с расходом 12 м3/ч. Процесс осуществляется при давлении, близком к атмосферному.

Полученный порошок является оксидом вольфрама WO3 состоит из частиц, размеры которых находятся в диапазоне от 20 нм до 1 мкм, удельная поверхность порошка - 4.1 м2/г. Частицы имеют различную форму - близкую к сферической, а также форму октаэдров.

Производительность процесса составила 0.4 кг/ч, затраты электроэнергии - 2.5 кВтч/кг WO3.

Пример 2

На уплотненный слой порошка оксида олова SnO2 воздействует сфокусированный поток СВЧ-излучения, генерируемого в гиротроне. Выходная мощность гиротрона, работающего в непрерывном режиме, составляет 5.3-6,5 кВт, рабочая частота - 24 ГГц. Диаметр сфокусированного пятна СВЧ-излучения на поверхности материала 12 мм. Поверхность оксида вольфрама обдувается по нормали потоком воздуха с расходом 10 м3/ч. Процесс осуществляется при давлении, близком к атмосферному.

Полученный порошок оксида олова состоит из частиц с размерами 20-200 нм, преимущественно с равноосной формой и имеющих огранку, удельная поверхность порошка составляет 10.4 м2/г, что соответствует среднему размеру d32=85 нм.

Производительность процесса составила 0.09 кг/ч, затраты электроэнергии - 65 кВтч/кг SnO2.

Пример 3

На уплотненный слой порошка оксида цинка ZnO со средним размером частиц 1 мм воздействует сфокусированный поток СВЧ-излучения, генерируемого в гиротроне, работающем в непрерывном режиме на частоте 263 ГГц. Выходная мощность гиротрона составляет 1 кВт. Диаметр сфокусированного пятна СВЧ-излучения на поверхности материала 1.2 мм. Поверхность слоя порошка обдувается по нормали потоком аргона с расходом 6 м3/ч. Процесс осуществляется при давлении, близком к атмосферному.

Полученный порошок является оксидом цинка ZnO, имеет сложную морфологию и состоит в основном из двух видов частиц - ограненных стержней длиной до 200-300 нм и поперечным размером около 60 нм, а также нановискеров (нанонитей) приблизительно такой же длины, но с поперечным размером не более 20 нм, при этом в порошке присутствуют нановискеры, исходящие из общего ядра, - тетраподы. Производительность процесса составила 0.03 кг/ч, затраты электроэнергии - 33 кВтч/кг.

Пример 4

На порошок оксида олова SnO2 со средним размером частиц 2 мм воздействует сфокусированный поток СВЧ-излучения, генерируемого в гиротроне, работающем в непрерывном режиме на частоте 0.95 ГГц. Выходная мощность гиротрона составляет 0.9 кВт. Диаметр сфокусированного пятна СВЧ-излучения на поверхности материала 0.32 мм. Поверхность слоя порошка обдувается по нормали потоком воздуха с расходом 5 м3/ч. Процесс осуществляется при давлении, близком к атмосферному.

Полученный порошок является оксида олова SnO2 и состоит из частиц с размерами в диапазоне 20-150 нм, преимущественно с равноосной формой, удельная поверхность порошка составляет 13 м2/г, что соответствует среднему размеру d32=67 нм.

Производительность процесса составила 0.04 кг/ч, затраты электроэнергии - 22.5 кВтч/кг SnO2.


СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ЭЛЕМЕНТОВ И ИХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 118 items.
27.11.2014
№216.013.0bfd

Способ получения нанопорошков

Изобретение относится к порошковой металлургии, в частности к получению нанопорошка. Порошкообразное сырье в виде микрогранул с размером 20-60 мкм, состоящих из частиц сырья с размером 0,1-3 мкм и связующего компонента, имеющего температуру испарения не более 300°C, в количестве 5-25 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002534477
Дата охранного документа: 27.11.2014
20.02.2015
№216.013.2ae6

Способ получения пористого керамического матрикса на основе карбоната кальция для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для пластической реконструкции поврежденных костных тканей. Описан способ пропитки пористых полимерных матриц жидким шликером на основе порошка карбоната кальция, содержащим спекающие добавки карбоната или карбонатов...
Тип: Изобретение
Номер охранного документа: 0002542439
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.46d6

Состав жидкости для получения пористых керамических образцов на основе фосфатов кальция для костной инженерии при 3d формовании и/или 3d печати

Изобретение относится к материалам, пригодным для метода 3D формования и/или 3D печати, и может быть использовано для получения формованных изделий на основе фосфатов кальция, применяемых в медицине для костной инженерии в качестве матриксов, обладающих биологической совместимостью и...
Тип: Изобретение
Номер охранного документа: 0002549638
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4c40

Способ получения оксида кобальта соо для производства твердых сплавов

Изобретение относится к гидрометаллургии цветных металлов, а именно к получению оксида кобальта CoO для производства твердых сплавов типа WC-Co. Оксид кобальта осаждают из азотнокислого раствора кобальтсодержащего сырья путем обработки в автоклаве гидроксидом аммония (NHOH) при температуре...
Тип: Изобретение
Номер охранного документа: 0002551034
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.5adf

Способ получения композиционного материала на основе фосфата кальция

Изобретение относится к области медицины и представляет собой способ получения композиционного материала на основе фосфата кальция, заключающийся в том, что получают частицы фосфата кальция в хитозановой матрице путем их осаждения in situ в растворе, содержащем высокомолекулярный хитозан и...
Тип: Изобретение
Номер охранного документа: 0002554804
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5ae6

Способ получения пористых хитозановых губок, содержащих фосфаты кальция, для заполнения костных дефектов

Изобретение относится к медицине. Описан способ получения композиционного материала на основе хитозана, содержащего аспарагиновую или глутаминовую аминокислоты в количестве от 2 до 5% мас., а также фосфаты кальция с соотношением Ca/P от 1,0 до 1,67. Способ заключается в барботировании через...
Тип: Изобретение
Номер охранного документа: 0002554811
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cff

Способ получения пористых керамических гранул на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для реконструктивно-пластических операций при поврежденных костных тканях. Описаны материалы на основе системы карбонат кальция - гидроксиапатит и/или каронатгидроксиапатит, содержащие от 20 до 80 масс. % карбоната...
Тип: Изобретение
Номер охранного документа: 0002555348
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.66bb

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес.%

Изобретение относится к области металлургии, в частности к термической обработке магнитотвердых сплавов системы железо-хром-кобальт, используемых при производстве постоянных магнитов. Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес. %...
Тип: Изобретение
Номер охранного документа: 0002557852
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67c9

Способ получения смешанного коагулянта из минерального сырья

Изобретение относится к химической промышленности. Смешанный коагулянт из минерального сырья получают путем растворения бемит-каолинитового боксита в автоклаве соляной кислотой концентрацией 220 г/л при соотношении Т:Ж=1:6 в течение 1-3 часов в интервале температур 150-180°C. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002558122
Дата охранного документа: 27.07.2015
20.11.2015
№216.013.9278

Композиционный керамический материал и способ его получения

Изобретение относится к композиционным керамическим материалам конструкционного назначения и способу его получения. Материал может быть использован для изготовления высокопрочных изделий, преимущественно в медицинской области в качестве эндопротезов суставов. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002569113
Дата охранного документа: 20.11.2015
Showing 21-30 of 74 items.
20.02.2015
№216.013.2ae6

Способ получения пористого керамического матрикса на основе карбоната кальция для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для пластической реконструкции поврежденных костных тканей. Описан способ пропитки пористых полимерных матриц жидким шликером на основе порошка карбоната кальция, содержащим спекающие добавки карбоната или карбонатов...
Тип: Изобретение
Номер охранного документа: 0002542439
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.46d6

Состав жидкости для получения пористых керамических образцов на основе фосфатов кальция для костной инженерии при 3d формовании и/или 3d печати

Изобретение относится к материалам, пригодным для метода 3D формования и/или 3D печати, и может быть использовано для получения формованных изделий на основе фосфатов кальция, применяемых в медицине для костной инженерии в качестве матриксов, обладающих биологической совместимостью и...
Тип: Изобретение
Номер охранного документа: 0002549638
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4c40

Способ получения оксида кобальта соо для производства твердых сплавов

Изобретение относится к гидрометаллургии цветных металлов, а именно к получению оксида кобальта CoO для производства твердых сплавов типа WC-Co. Оксид кобальта осаждают из азотнокислого раствора кобальтсодержащего сырья путем обработки в автоклаве гидроксидом аммония (NHOH) при температуре...
Тип: Изобретение
Номер охранного документа: 0002551034
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.5adf

Способ получения композиционного материала на основе фосфата кальция

Изобретение относится к области медицины и представляет собой способ получения композиционного материала на основе фосфата кальция, заключающийся в том, что получают частицы фосфата кальция в хитозановой матрице путем их осаждения in situ в растворе, содержащем высокомолекулярный хитозан и...
Тип: Изобретение
Номер охранного документа: 0002554804
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5ae6

Способ получения пористых хитозановых губок, содержащих фосфаты кальция, для заполнения костных дефектов

Изобретение относится к медицине. Описан способ получения композиционного материала на основе хитозана, содержащего аспарагиновую или глутаминовую аминокислоты в количестве от 2 до 5% мас., а также фосфаты кальция с соотношением Ca/P от 1,0 до 1,67. Способ заключается в барботировании через...
Тип: Изобретение
Номер охранного документа: 0002554811
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cff

Способ получения пористых керамических гранул на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для реконструктивно-пластических операций при поврежденных костных тканях. Описаны материалы на основе системы карбонат кальция - гидроксиапатит и/или каронатгидроксиапатит, содержащие от 20 до 80 масс. % карбоната...
Тип: Изобретение
Номер охранного документа: 0002555348
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.66bb

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес.%

Изобретение относится к области металлургии, в частности к термической обработке магнитотвердых сплавов системы железо-хром-кобальт, используемых при производстве постоянных магнитов. Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес. %...
Тип: Изобретение
Номер охранного документа: 0002557852
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67c9

Способ получения смешанного коагулянта из минерального сырья

Изобретение относится к химической промышленности. Смешанный коагулянт из минерального сырья получают путем растворения бемит-каолинитового боксита в автоклаве соляной кислотой концентрацией 220 г/л при соотношении Т:Ж=1:6 в течение 1-3 часов в интервале температур 150-180°C. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002558122
Дата охранного документа: 27.07.2015
20.11.2015
№216.013.9278

Композиционный керамический материал и способ его получения

Изобретение относится к композиционным керамическим материалам конструкционного назначения и способу его получения. Материал может быть использован для изготовления высокопрочных изделий, преимущественно в медицинской области в качестве эндопротезов суставов. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002569113
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.98a2

Керамический материал с низкой температурой спекания на основе кубического диоксида циркония

Изобретение относится к области получения высокоплотной керамики на основе кубического диоксида циркония и может быть использовано в качестве износостойких изделий, а также в качестве твёрдого электролита. Керамический материал на основе кубического диоксида циркония, стабилизированного 8 мол.%...
Тип: Изобретение
Номер охранного документа: 0002570694
Дата охранного документа: 10.12.2015
+ добавить свой РИД