×
25.08.2017
217.015.aa05

Результат интеллектуальной деятельности: Алюмооксидный носитель и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора, включающему гидротермальную обработку порошкообразного металлического алюминия в соотношении Al:HO=1:8-40 и сушку продуктов гидротермального синтеза, при этом используют порошкообразный металлический алюминий с размером частиц 10÷500 нм, гидротермальную обработку проводят в одну стадию при низкой температуре 20÷100°C в течение не более 20 мин без предварительной подготовки материалов и без использования автоклавного оборудования. Алюмооксидный носитель содержит металлический алюминий в количестве 2-5 мас.%, имеет удельную поверхность 178-328 м/г, объем пор 0,53-0,78 см/г, средний размер пор 8,6-14,8 нм. Технический результат заключается в упрощении способа получения алюмооксидного носителя, пригодного для синтеза на его основе каталитических материалов, при минимальных трудовых и энергетических затратах. 2 н. и 1 з.п. ф-лы, 1 табл., 2 ил., 9 пр.

Изобретение относится к области химической технологии и каталитической химии, в частности к способу получения алюмооксидного носителя для катализаторов, и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности.

Основными проблемами при создании алюмооксидных носителей для гетерогенных катализаторов является сложная многостадийная технологическая цепочка их получения, сопряжённая с высокими энергозатратами, а получаемые носители имеют ряд существенных недостатков, связанных с плохой воспроизводимостью свойств носителя, в том числе нестабильным или неоднородным фазовым составом, наличием примесей (в первую очередь кремния, щелочных металлов, железа и др.), неоднородной пористой структурой и функциональными свойствами. Все это приводит к сложности получения и стабильной работы на основе этих носителей гетерогенных катализаторов. Поэтому при создании алюмооксидных носителей важным является создание упрощенной технологии получения носителя с оптимальными свойствами: однородным фазовым составом, отсутствием примесей, высокими удельной поверхностью, пористостью и механической прочностью.

Известен алюмооксидный носитель, имеющий бемитную морфологию, величину удельной поверхности от 80 до 250 м2/г, объем пор не менее 0,2 см3/г, размеры микрокристаллитов по значениям областей когерентного рассеивания от 500 до 3000 Å, содержащий межслоевую воду в количестве, соответствующем мольному отношению оксида алюминия к воде от 0,8 до 1,2 (Патент РФ № 2350594). Способ приготовления алюмооксидного носителя заключается в высокотемпературной обработке гидраргиллита путем нагревания в камере автоклава в атмосфере инертного газа и/или аммиака, и/или углекислого газа в диапазоне температур от 100 до 300°С и давлении до 150 кгс/см2.

Недостатком данного способа является технологическая усложненность, заключающаяся в длительной обработке гидраргиллита (от 0,1 до 20 ч), а также регулировании температуры (не менее 100°С и не более 300°С) и давления, так как увеличение температуры приводит к интенсивной дегидратации гидроксида и значительному возрастанию давления в камере автоклава. Кроме того, недостатком данного способа является неполное превращение гидраргиллита (до 10 мас.%), содержание в его структуре воды от 15 до 50 мас.% и формирование крупнокристаллического бемита.

Известен способ изготовления спеченных пористых изделий из алюминиевых порошков, которые могут быть использованы в качестве блочных носителей катализаторов (А.С. СССР № 1047590). Размер частиц исходного порошкообразного алюминия составляет 20-60 мкм. Полученное по известному способу изделие состоит из γ-Al2O3 (30 мас.%), металлического алюминия (70 мас.%) и имеет пористость 28-42%. Удельная поверхность, объем и размер пор не указаны.

Основным недостатком данного способа является технологическая усложненность, заключающаяся в использовании разъемной металлической емкости, которую затем помещают в автоклав, и незначительное окисление порошкообразного металлического алюминия (30 мас.%) при использовании высоких температур (180-220°С).

Известен способ получения керамических изделий из порошка алюминия, включающий формование порошка алюминия в разъемной металлической емкости, которую затем помещают в автоклав, окисление порошка алюминия в среде водяного пара при 110-150°С в течение 8,5 ч. Сформированное изделие содержит 86 мас.% AlOOH, 14 мас.% металлического алюминия, имеет пористость 19 % и удельную поверхность 180 м2/г. Изделия могут быть использованы в качестве носителей катализаторов и сорбентов (А.С. СССР № 1444080).

Недостатком данного способа является использование разъемной металлической емкости, которую затем помещают в герметичную камеру (автоклав), а также длительность синтеза при высоких температурах.

Наиболее близким техническим решением к предлагаемому способу получения алюмооксидного носителя является способ по патенту РФ № 2257261, по которому получают носитель катализатора, включающий оксид алюминия и металлический алюминий, где доля пор размером более 0,1 мкм в общем объеме открытых пор, равном 0,10-0,88 см3/г носителя, составляет 10,0-88,5%. Способ приготовления носителя на основе оксида алюминия и алюминия включает формирование заготовки из порошка алюминия и неорганической добавки, окисление и последующее спекание. В качестве неорганической добавки используют продукт термохимической активации (ТХА) гидраргиллита, который представляет собой аморфное соединение Al2O3·nH2O (способ выбран за прототип). На основе данного носителя получают катализатор для процесса дегидрирования углеводородов (Патент РФ № 2256499).

Недостатками данного способа являются многостадийность процесса, неоднородный фазовый состав получаемого носителя, состоящего из оксида алюминия гамма-, эта-, тэта- и других модификаций, сложность технологии, включая стадию гидротермальной обработки при высоких температурах (100-200°С) с использованием автоклавного оборудования. Кроме того, при синтезе шихты, содержащей продукт термохимической активации и порошкообразный алюминий в соотношениях ТХА:Al=0÷20:100÷80 (мас.%), образцы имеют сравнительно низкую удельную поверхность 28,6-51,2 м2/г при общем объеме пор 0,10-0,26 см3/г.

Основной технической задачей изобретения является создание технологически упрощенного способа получения алюмооксидного носителя при минимальных энергетических затратах с оптимальными и стабильными (воспроизводимыми) свойствами для синтеза на его основе каталитических материалов.

Цель достигается тем, что носитель получают путем гидротермальной обработки порошкообразного металлического алюминия с размером частиц 10–500 нм с последующей термической обработкой, причем процесс гидротермальной обработки проводят в одну стадию в соотношении Al:H2O=1:8÷40 при относительно низких температурах (20÷100°С) в течение не более 20 мин без предварительной подготовки материалов и без использования автоклавного оборудования. Термическую обработку продуктов проводят при температуре 50-700°С.

Физическая и химическая сущность способа заключается в том, что при гидротермальной обработке порошкообразного алюминия с достаточно малым средним размером частиц и температуре среды 50-65°С происходит достижение высоких скоростей взаимодействия алюминия с водой, сопровождающееся саморазогревом реакционной смеси до температуры 93-97°С и выделением водорода (А.Ю. Годымчук, А.П. Ильин, А.П. Астанкова. Окисление нанопорошка алюминия в жидкой среде при нагревании // Известия Томского политехнического университета. 2007. Т. 310. № 1. С. 102).

В результате гидротермальной обработки порошкообразного алюминия с размером частиц 10–500 нм (фиг. 1) основными продуктами синтеза являются рентгеноаморфный γ-AlOOH и остаточный металлический алюминий. Синтезированные продукты характеризуются сформировавшейся микропористой ячеистой структурой с открытыми порами (фиг. 2), удельной поверхностью 178–328 м2/г, средним размером пор 8,6–11,8 нм при их общем объеме 0,53-0,78 см3/г, что делает продукты перспективными для использования в качестве носителей при синтезе каталитических материалов.

Примеры конкретного выполнения способа

Пример 1. Порошкообразный металлический алюминий с достаточно малым средним размером частиц засыпают в дистиллированную воду в соотношении Al:H2O=1:17, непрерывно перемешивая, нагревают до 60°С и окисляют в течение 15-20 мин. Полученные продукты окисления сушат в сушильном шкафу в атмосфере воздуха при температуре 95°С. Свойства полученного носителя приведены в таблице 1.

Пример 2. Аналогичен примеру 1. Отличие состоит в том, что дополнительно проводят термическую обработку при температуре 150°С. Свойства полученного носителя приведены в таблице 1.

Пример 3. Аналогичен примеру 1. Отличие состоит в том, что дополнительно проводят термическую обработку при температуре 250°С. Свойства полученного носителя приведены в таблице 1.

Пример 4. Аналогичен примеру 1. Отличие состоит в том, что дополнительно проводят термическую обработку при температуре 400°С. Свойства полученного носителя приведены в таблице 1.

Пример 5. Аналогичен примеру 1. Отличие состоит в том, что дополнительно проводят термическую обработку при температуре 500°С. Свойства полученного носителя приведены в таблице 1.

Пример 6. Аналогичен примеру 1. Отличие состоит в том, что дополнительно проводят термическую обработку при температуре 600°С. Свойства полученного носителя приведены в таблице 1.

Пример 7. Аналогичен примеру 1. Отличие состоит в том, что дополнительно проводят термическую обработку при температуре 700°С. Свойства полученного носителя приведены в таблице 1.

Пример 8. Аналогичен примеру 1. Отличие состоит в том, что дополнительно проводят термическую обработку при температуре 800°С. Свойства полученного носителя приведены в таблице 1.

Пример 9. Аналогичен примеру 1. Отличие состоит в том, что после просушивания из продуктов окисления формуют цилиндрические гранулы диаметром 3 мм методом экструзии и дополнительно подвергают термической обработке при температуре 700°С. Измерение механической прочности проводили раздавливанием гранул по образующей. Свойства полученного носителя приведены в таблице 1.

В таблице 1 приведены также характеристики алюмооксидного носителя прототипа.

Из данных таблицы 1 видно, что полученные алюмооксидные носители, содержащие металлический алюминий в количестве 2-5 мас.%, имеют высокие значения величины удельной поверхности в пределах 178-328 м2/г, объём пор 0,53-0,78 см3/г, что существенно улучшает характеристики прототипа. Носитель, полученный по примеру 9 в виде цилиндрических гранул диаметром 3 мм, характеризуется более высокими значениями удельной поверхности и общего объёма пор, а также более высокой механической прочностью по сравнению с прототипом. Объёмы пор размером более 100 нм для этого носителя и прототипа сопоставимы.

Кроме того, из данных таблицы 1 видно, что, в отличие от прототипа, алюмооксидные носители получают при более низкой температуре (Т=60°С), меньшем времени гидротермальной обработки (не более 20 мин) и без использования автоклавного оборудования.

Технический результат - упрощение способа получения алюмооксидного носителя, пригодного для синтеза на его основе каталитических материалов, при минимальных трудовых и энергетических затратах.

Алюмооксидный носитель, полученный способом по изобретению, характеризуется высокой чистотой, отсутствием неконтролируемо вводимых примесей. Процесс его синтеза характеризуется одностадийностью. Использование температуры синтеза ниже 100°С позволяет отказаться от использования автоклавного оборудования и существенно расширяет технологические возможности процесса. Кроме того, наличие остаточного металлического алюминия в количестве до 5 мас.% обеспечивает достаточно высокую теплопроводность носителя.

Библиография

1 Патент РФ № 2350594, МПК С07С5/333, B01J23/26, B01J21/04, опубл. 27.03.2009.

2 А.С. СССР № 1047590, B22F 3/10, опубл. 15.10.1983.

3 А.С. СССР № 1444080, B22F 3/10, С04В 38/00, опубл. 15.12.1988.

4 Патент РФ № 2257261, МПК B01J 21/04, B01J 35/00, B01J 37/10, B22F 3/10, опубл. 27.07.2005.

5 Патент РФ № 2256499, МПК B01J 23/26, B01J 23/04, B01J 21/04, B01J 37/02, С07С 5/333, опубл. 20.07.2005.

6 А.Ю. Годымчук, А.П. Ильин, А.П. Астанкова. Окисление нанопорошка алюминия в жидкой среде при нагревании // Известия Томского политехнического университета. 2007. Т. 310. № 1. С. 102.


Алюмооксидный носитель и способ его получения
Алюмооксидный носитель и способ его получения
Источник поступления информации: Роспатент

Showing 151-160 of 176 items.
07.09.2019
№219.017.c844

Способ термической обработки монокристаллов сплава fe-ni-co-al-ti-nb, ориентированных вдоль направления [001], с двойным эффектом памяти формы

Изобретение относится к области металлургии, а именно к обработке монокристаллов сплава Fe-Ni-Co-Al-Ti-Nb, и может быть использован в машиностроении, авиационной, космической промышленности, механотронике и микросистемной технике для создания исполнительных механизмов, датчиков, актюаторов,...
Тип: Изобретение
Номер охранного документа: 0002699470
Дата охранного документа: 05.09.2019
12.09.2019
№219.017.c9e9

Способ очистки лактида

Изобретение относится к химической промышленности, а именно к способу очистки лактида, содержащего примеси мезо-лактида, молочной кислоты и низкомолекулярных олигомеров молочной кислоты, методом перекристаллизации из серии органических растворителей, отличающемуся тем, что перекристаллизация...
Тип: Изобретение
Номер охранного документа: 0002699801
Дата охранного документа: 11.09.2019
02.11.2019
№219.017.dd9a

Способ получения трехслойного материала сталь х17н2 - v-4,9ti-4,8cr - сталь х17н2

Изобретение относится к области металлургии, а именно к способам получения сплавов на основе ванадия, и может быть использовано для получения высококачественных композиций на его основе с титаном и хромом, предназначенных для атомной энергетики. Способ получения трехслойного материала сталь...
Тип: Изобретение
Номер охранного документа: 0002704945
Дата охранного документа: 31.10.2019
19.11.2019
№219.017.e3ae

Способ получения адсорбента для осушки содержащих влагу газов

Изобретение относится к способу получения адсорбента для осушки содержащих влагу газов. Для получения адсорбента продукт центробежной термической активации гидраргиллита (ЦТА ГГ) в щелочном растворе, сушат, размалывают, пептизируют и пластифицируют в растворе азотной кислоты, формуют полученную...
Тип: Изобретение
Номер охранного документа: 0002706304
Дата охранного документа: 15.11.2019
21.11.2019
№219.017.e492

Способ хирургического устранения дефектов свода черепа

Изобретение относится к медицине, а именно к нейрохирургии, и может быть использовано для хирургического лечения больных с костными дефектами свода черепа. Сверхэластичный четырехслойный сетчатый вязаный имплантат, повторяющий конфигурацию костного дефекта, выполненный из никелид-титановой нити...
Тип: Изобретение
Номер охранного документа: 0002706501
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e525

Способ получения кристаллической глиоксалевой кислоты

Изобретение относится к способу получения кристаллической глиоксалевой кислоты. Способ осуществляют путем концентрирования водного раствора глиоксалевой кислоты с массовой концентрацией 50% на ротационном испарителе при остаточном давлении 15 мбар и температуре 40°С до массовой концентрации...
Тип: Изобретение
Номер охранного документа: 0002706701
Дата охранного документа: 20.11.2019
29.11.2019
№219.017.e804

Способ изготовления высокочастотного транзистора с дополнительным активным полевым электродом

Изобретение относится к электронной технике и предназначено для создания мощных полевых транзисторов с затвором Шоттки и дополнительным активным полевым («Field plate» - FP) электродом. Может быть использовано в мощных СВЧ транзисторах на основе нитридных (GaN) гетероэпитаксиальных структур для...
Тип: Изобретение
Номер охранного документа: 0002707402
Дата охранного документа: 26.11.2019
01.12.2019
№219.017.e94d

Трубопроводный диагностический робот

Изобретение относится к устройствам автоматической и автоматизированной диагностики объектов, например газо- и нефтепроводов. Техническим результатом является расширение функциональных возможностей. Робот имеет в своем составе движимую материнскую платформу с боковыми колесами, связанную через...
Тип: Изобретение
Номер охранного документа: 0002707644
Дата охранного документа: 28.11.2019
12.12.2019
№219.017.ec0c

Способ очистки гликолурила от примеси гидантоина

Изобретение относится к способам очистки веществ от родственных трудноотделимых примесей методом кристаллизации, а именно к способу очистки гликолурила (2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-диона) от трудноотделимой примеси гидантоина (2,4-имидазолидиндиона), при котором гидантоин образуется...
Тип: Изобретение
Номер охранного документа: 0002708590
Дата охранного документа: 09.12.2019
13.12.2019
№219.017.ecdf

Способ обессеривания тяжелого нефтепродукта с применением микроволнового излучения

Изобретение относится к обессериванию тяжелого нефтепродукта путём каталитического окисления серосодержащих соединений с использованием микроволнового облучения. Способ обессеривания мазута включает каталитическое окисление содержащихся в нефтепродукте органических серосодержащих соединений...
Тип: Изобретение
Номер охранного документа: 0002708629
Дата охранного документа: 10.12.2019
Showing 101-103 of 103 items.
04.04.2018
№218.016.30d0

Способ обработки заготовок ванадиевых сплавов

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002644832
Дата охранного документа: 14.02.2018
18.06.2020
№220.018.2778

Способ получения кускового силикагеля

Изобретение относится к способам получения технического кускового силикагеля. Способ получения кускового силикагеля включает смешивание раствора жидкого стекла с раствором серной кислоты при 15-25°C, гелирование раствора при температуре 15-30°C в течение 20-40 часов, измельчение, отмывку и...
Тип: Изобретение
Номер охранного документа: 0002723623
Дата охранного документа: 16.06.2020
24.07.2020
№220.018.36de

Высокопористый материал на основе диатомита и способ его получения

Изобретение относится к способам получения из диатомита высокопористого сорбента на основе диоксида кремния с величиной удельной поверхности свыше 350 м/г и иерархической пористой структурой. Полученный продукт имеет исходную макропористую структуру диатомита и вторичную структуру узких мезопор...
Тип: Изобретение
Номер охранного документа: 0002727393
Дата охранного документа: 21.07.2020
+ добавить свой РИД