×
13.01.2017
217.015.897b

ВАКУУМНЫЙ СТЕНД ДЛЯ ОГНЕВЫХ ИСПЫТАНИЙ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД, включающем вакуумную камеру 1 со стапелем 2 для установки ЖРД 3 с соплом, имеющим радиационно-охлаждаемый насадок (РОН) 4, газодинамическую трубу 5 с эжектором 6, отсечной клапан 7 в канале газодинамической трубы (ГДТ), охлаждаемые экраны 8 на внутренних стенках вакуумной камеры 1, вакуумную систему 9, магистраль с пускоотсечным клапаном 10, сообщающую полость газодинамической трубы 5 между РОН 4 и отсечным клапаном 7 с вакуумной системой 9. На стыке среза РОН 4 с ГДТ 5 выполнен компенсатор температурного расширения в виде, состоящего из рассчитанной на радиальное температурное расширение РОН 4 тонкостенной цилиндрической или усеченно-конической мембраны 11 из жаростойкой стали, герметично соединенной посредством сварки со стенкой РОН 4 на его срезе и, с другой стороны, - через цилиндрическую стальную проставку 12 с окружающим ГДТ 5, рассчитанным на осевое температурное расширение РОН 4, тонкостенным сильфоном 13 с фланцем 14, который герметично (через уплотнение 15) соединен с фланцем 16 на охлаждаемой внешней стенке тракта охлаждения газодинамической трубы 5, при этом полость ГДТ от РОН 4 до отсечного клапана в канале ГДТ 5 подключена к системе вакуумирования 9 через пускоотсечной клапан 10. Изобретение обеспечивает повышение функциональных возможностей в части обеспечения наиболее полной имитации условий теплообмена, соответствующих объективным условиям при огневых испытаниях ЖРД и ДУ космического назначения. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к стендовому оборудованию и может быть использовано при огневых испытаниях жидкостных ракетных двигателей (ЖРД) космического назначения, связанных с определением тепловых режимов и состояния элементов конструкции ЖРД и двигательных установок (ДУ).

При стендовой отработке ЖРД и ДУ космического назначения особое место занимают огневые испытания, направленные на определение тепловых режимов агрегатов и элементов конструкции (тепловые испытания), которые существенно влияют на работоспособность ЖРД и ДУ космического объекта.

Для проведения тепловых испытаний необходимо создать штатные (соответствующие объектовым) условия внутреннего теплообмена в газодинамических трактах ЖРД (сопла камер сгорания, выхлопные системы турбин турбонасосных агрегатов), а также, что не менее важно, условия внешнего теплообмена элементов конструкции ЖРД и ДУ с окружающей средой.

Для создания условий внутреннего теплообмена используется стендовое оборудование, обеспечивающее соответствующее штатному давление на срезе сопла камеры двигателя - газоотводные устройства на основе газодинамических труб (ГДТ), газовых или паровых эжекторов; для создания внешних условий теплообмена необходимо снизить давление окружающей среды до величины менее 10-2 мм рт. ст., практически исключающий конвективную составляющую теплообмена, для чего используется вакуумная камера (барокамера), в которой при огневых испытаниях размещается ЖРД или ДУ.

Известен стенд, включающий систему вакуумирования с вакуумной камерой, в которой размещается двигатель, газоотводное устройство в виде газодинамической трубы (ГДТ) с паровым эжектором, представленный в сборнике статей «Исследование ракетного двигателя на жидком топливе»./Под ред. д.т.н. В.А. Ильинского, изд-во «Мир», 1964 г., стр. 60, фиг. 8.

В указанной конфигурации стенд может обеспечить снижение давления на срезе сопла камеры ЖРД и в сообщающемся со входом в ГДТ пространстве вакуумной камеры, окружающем двигатель до не менее 7 мм рт. ст. за счет эжектирования ГДТ и объема вакуумной камеры как при работе двигателя, так и после его останова, что приближает условия внешнего теплообмена двигателя и элементов ДУ к штатным условиям космического пространства, но не обеспечивает достаточно полной их имитации, для чего, как указано выше, необходимо давление окружающей среды не выше 10-2 мм рт. ст., что практически исключает конвективный теплообмен двигателя с окружающим пространством; при этом для поддержания указанного давления (не менее 7 мм рт. ст.) после останова двигателя требуется работа эжектора в течение длительного времени (до 50 мин) перераспределения температур элементов конструкции двигателя и ДУ с достижением их максимальных значений, что существенно увеличивает стоимость испытаний.

Кроме того, при тепловых испытаниях ЖРД и ДУ на этом стенде не обеспечивается имитация термооптических характеристик окружающего пространства, таких как температура и степень черноты окружающей среды (космического пространства, поверхностей двигательного отсека), что также приводит к отклонениям условий радиационного теплообмена между элементами конструкции и окружающей средой и, как следствие, отклонениям тепловых режимов элементов конструкции ЖРД и ДУ.

Все вышеперечисленное в итоге свидетельствует о недостаточном функциональном обеспечении полноценных тепловых испытаний ЖРД и ДУ космического назначения на данном стенде и, следовательно, о невозможности проверки их работоспособности по результатам таких испытаний.

Известен стенд, принятый за прототип изобретения, включающий барокамеру, выхлопной диффузор (ГДТ), охлаждаемый жидким азотом, устройство для герметизации стыка сопла двигателя и диффузора в виде вакуумного уплотнения, клапан, изолирующий канал диффузора от атмосферы при его вакуумировании после останова двигателя и охлаждаемые экраны в барокамере (См. книгу А.А. Шишкова, Б.М. Силина. «Высотные испытания реактивных двигателей», Машиностроение, 1985 г., стр. 24, рис. 1.13). Данный стенд может обеспечить имитацию условий теплообмена двигателя, близких к объектовым, как при работе двигателя, так и после его останова, таких как штатное давление на срезе сопла, давление окружающей двигатель среды в вакуумной камере на уровне около 10-2 мм рт. ст., а также термооптические характеристики окружающего пространства при соответствующих штатным условиям температурах экранов и стенок канала ГДТ (обеспечивается заданными температурами охладителей) и степенях черноты поверхностей экранов и канала ГДТ.

Однако при наличии в ЖРД радиационно-охлаждаемого высокотемпературного насадка с температурами сопла до 1000°C использование вакуумного уплотнения на основе вакуумной резины и иного мягкого уплотнительного материала может обеспечить герметичность стыка сопла и ГДТ лишь в течение нескольких секунд после запуска двигателя, после чего оно разрушается из-за воздействия высокой температуры и давление в вакуумной камере повышается с 10-2 мм рт. ст. до уровня давления на срезе сопла, величину которого обеспечивает ГДТ с эжектором (не менее 7 мм рт. ст.).

Вследствие такого повышения давления появляется конвективная составляющая внешнего теплообмена двигателя со средой вакуумной камеры, что приводит к существенному отличию тепловых режимов элементов конструкции ЖРД и ДУ от штатных, соответствующих объектовым условиям теплообмена, как при работе двигателя, так и после его останова. Кроме того, в стенде по прототипу не имитируются термооптические характеристики пространства со стороны среза сопла двигателя.

Таким образом стенд по прототипу не может обеспечить при работе двигателя и в течение достаточного для достижения установившегося теплового режима времени после его останова штатные условия внешнего теплообмена и, следовательно, непригоден для тепловых испытаний двигателя с радиционно-охлаждаемым насадком (РОН) сопла камеры.

Изобретение направлено на повышение функциональных возможностей вакуумного стенда, включающего вакуумную камеру со стапелем для установки двигателя, охлаждающие экраны, систему вакуумирования, ГДТ с эжектором, отсечной клапан в канале ГДТ и устройство герметизации стыка среза сопла с ГДТ, в части обеспечения наиболее полной имитации условий теплообмена, соответствующих объектным условиям, при огневых испытаниях ЖРД и ДУ космического назначения, в том числе ЖРД с радиационно-охлаждаемым насадком сопла, при работе двигателя и после его останова, позволяющих проверить работоспособность двигателя и ДУ при воздействии близких к штатным тепловых нагрузок.

Результат обеспечивается тем, что устройство герметизации стыка РОН сопла и ГДТ выполнено в виде компенсатора температурного расширения, состоящего из рассчитанной на радиальное температурное расширение радиационно-охлаждаемого насадка сопла тонкостенной цилиндрической или усеченно-конической мембраны из жаростойкой стали, герметично соединяемой посредством сварки со стенкой РОН на срезе сопла и, с другой стороны, - через стальную цилиндрическую проставку - с окружающим ГДТ тонкостенным сильфоном, рассчитанным на осевое температурное расширение РОН и герметично соединенным посредством фланцевого соединения с вакуумным уплотнением на внешней оболочке тракта охлаждения газодинамической трубы, также на поверхности тарели клапана внутри его кольцевого уплотнения установлен охлаждаемый экран с термооптическими характеристиками, соответствующими характеристикам окружающего и обращенного к соплу двигателя при штатной его эксплуатации космического пространства, при этом полость ГДТ от РОН до отсечного клапана в канале ГДТ подключена к системе вакуумирования через пускоотсечной клапан.

На чертежах представлены схема стенда (фиг. 1) и выноска А (фиг. 2). В состав стенда входят вакуумная камера 1 со стапелем 2 для установки и крепления двигателя 3 с высотным соплом, имеющим радиационно-охлаждаемый насадок 4, ГДТ 5 с эжектором 6 и отсечным клапаном 7, установленным в канале ГДТ после ее диффузорной части. На внутренних стенках вакуумной камеры 1 и на тарели клапана 7 установлены подключенные к системе подачи рабочих тел охлаждения экраны 8, поверхности которых имеют заданные величины степени черноты. Для вакуумирования камеры 1 и части канала ГДТ 5 между соплом и клапаном 7 в составе стенда предусмотрена специальная вакуумная система 9, с которой вакуумируемая часть ГДТ сообщена посредством магистрали с пускоотсечным клапаном 10. К радиационно-охлаждаемому насадку сопла 4 крепится компенсатор, включающий тонкостенную мембрану 11, герметично привариваемую к срезу сопла РОН, цилиндрическую проставку 12, тонкостенный сильфон 13 с фланцем 14, который герметично (через уплотнение 15) соединяется с фланцем 16 на охлаждаемой части ГДТ 5. Внутренняя поверхность канала ГДТ между РОН 4 и клапаном 7 вместе с его экраном 8 имеют термооптические характеристики окружающего космического пространства, что достигается обеспечением требуемой степенью черноты на стенках канала ГДТ 5 и экрана 8 на тарели клапана 7, а также режимом охлаждения этого участка ГДТ и экрана 8 на тарели клапана 7.

Перед началом огневых испытаний ЖРД с радиационно-охлаждаемым насадком сопла 4 и компенсатором монтируется на стапеле 2, при этом наряду с подсоединением топливных трубопроводов и пневмосети стенда к двигателю фланец 14 приваренного к РОН сопла компенсатора герметично соединяется с фланцем 16 ГДТ 5, через вакуумное уплотнение 15. После окончания монтажа стендовой системой вакуумирования 9 осуществляется откачка воздуха из вакуумной камеры 1 до давления не более 10-2 мм рт. ст. и подаются охладители с заданными температурами в тракты охлаждения экранов 8 и тракт охлаждения ГДТ 5. Перед запуском двигателя 3 включается эжектор 6, создающий разрежение в ГДТ 5 и сопле двигателя от 3 до 7 мм рт. ст. После запуска двигателя 3 ГДТ 5 выходит на устойчивый режим работы, устанавливается штатный режим течения и теплообмена в сопле с радиационно-охлаждаемым насадком 4, сопло с РОН выходит на установившийся тепловой режим, определяемый внутренним теплообменом в сопле и внешним теплообменом РОН с экранами 8, установленными на стенках вакуумной камеры 1 и имитирующими объектовые термооптические характеристики окружающего пространства, при близком к штатному давлению окружающей среды 10-2 мм рт. ст. С установившимся тепловым режимом двигатель работает заданное циклограммой испытания время, при этом температурное расширение РОН 4 воспринимается компенсатором: радиальное расширение - мембраной 11, а осевое расширение - сильфоном 13. После останова двигателя в пневмопривод клапана 7 подается газ управления, тарель клапана 7 перекрывает канал ГДТ 5, уплотняясь на седле клапана, выполненное в стенках канала ГДТ 5, затем подается команда на открытие клапана 10, после чего вакуумируется полость ГДТ 5 между клапаном 7 и РОН 4, а также полость сопла двигателя. Выключается эжектор 6, давление в канале ГДТ 5 при этом возрастает до атмосферного, а в объеме полости ГДТ 5, примыкающей к РОН 4, до клапана 7 остается на уровне не более 10-1 мм рт. ст. При близких к штатным величинах давления в полости сопла и окружающем двигатель пространстве вакуумной камеры 1, а также температурах и степенях черноты, окружающих двигатель, в том числе со стороны РОН, поверхностях экранов 8 и стенок канала ГДТ 5 осуществляется теплообмен горячих элементов конструкции двигателя за счет излучения этих элементов и кондукционного теплообмена с холодными агрегатами и элементами двигателя. При достижении установившихся значений температур испытания по определению тепловых режимов двигателя и термостойкости элементов его конструкции прекращаются, после чего все системы стенда приводятся в исходное состояние, а РОН 4 по технологическому припуску отрезают от мембраны 11 компенсатора температурного расширения.

Предлагаемое изобретение обеспечивает проведение огневых испытаний на вакуумном стенде ЖРД (ДУ) с РОН с практически полной имитацией всех условий, определяющих при штатной эксплуатации теплообмен конструкции двигателя с окружающей его средой - космическим пространством и элементами конструкции двигательного отсека при работе двигателя и после его останова, к которым относятся:

- давление в вакуумной камере не более 10-2 мм рт. ст., обеспечиваемое вакуумной системой стенда и герметизацией стыка среза РОН сопла двигателя с ГДТ при работе двигателя и после его останова;

- давление не более 10-2 мм рт. ст. внутри сопла, обеспечиваемое вакуумированием части канала ГДТ между соплом и тарелью клапана отсечного устройства, после перекрытия клапаном канала ГДТ;

- термооптические характеристики окружающего двигатель пространства (температура, степень черноты) обеспечиваются за счет соответствующим образом выполненных и охлаждаемых теплоносителями с заданными температурами экранов, установленных на тарели отсечного устройства и на стенках вакуумной камеры, а также охлаждаемой внутренней поверхности канала ГДТ, между соплом и отсечным устройством, выполненной с соответствующей космическому пространству степенью черноты.

Вакуумный стенд для огневых испытаний жидкостного ракетного двигателя космического назначения, включающий вакуумную камеру со стапелем для монтажа двигателя, охлаждаемые экраны вокруг двигателя, газодинамическую трубу (ГДТ), герметично соединенную с вакуумной камерой, эжектор на выходе газодинамической трубы, устройство герметизации стыка радиационно-охлаждаемого насадка сопла и ГДТ, отсечной клапан в канале газодинамической трубы, систему вакуумирования, отличающийся тем, что устройство герметизации стыка радиационно-охлаждаемого насадка сопла и ГДТ выполнено как компенсатор температурного расширения радиационно-охлаждаемого насадка сопла в виде тонкостенной цилиндрической или усеченно-конической мембраны из жаростойкой стали, герметично соединяемой с одной стороны посредством сварки со стенкой радиационно-охлаждаемого насадка на срезе сопла, с другой стороны - соединенной через стальную цилиндрическую проставку с окружающим газодинамическую трубу тонкостенным стальным сильфоном, рассчитанным на осевое температурное расширение радиационно-охлаждаемого насадка сопла и герметично соединенным посредством фланцевого соединения с внешней оболочкой тракта охлаждения газодинамической трубы, также на поверхности тарели клапана внутри кольцевого уплотнения установлен охлаждаемый экран, причем обращенная к радиационно-охлаждаемому насадку поверхность экрана, а также внутренняя поверхность канала газодинамической трубы между тарелью отсечного устройства и стыком сопла с газодинамической трубой выполнены с термооптическими характеристиками, соответствующими характеристикам окружающего и обращенного к соплу двигателя при штатной его эксплуатации космического пространства, при этом полость ГДТ от радиационо-охлаждаемого насадка до отсечного клапана в канале ГДТ подключена к системе вакуумирования через пускоотсечной клапан.
ВАКУУМНЫЙ СТЕНД ДЛЯ ОГНЕВЫХ ИСПЫТАНИЙ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 125 items.
20.01.2013
№216.012.1d54

Разъемный стык трубопроводов

Изобретение относится к агрегатам и узлам пневмогидросистем и предназначено для разъемного сочленения трубопроводов. Разъемный стык трубопроводов содержит наконечники на сопрягаемых трубопроводах, накидную гайку и уплотнение между наконечниками. На наконечнике, свободном от накидной гайки,...
Тип: Изобретение
Номер охранного документа: 0002473002
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d55

Бортовое разъемное соединение

Изобретение относится к космической технике и может быть использовано для модернизации борта ракеты-носителя, например, при подсоединении трубопровода термостатирования с последующим его отделением при старте. Техническим результатом изобретения является уменьшение силового воздействия на...
Тип: Изобретение
Номер охранного документа: 0002473003
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.20ab

Способ формирования команды управления одноканальной вращающейся по углу крена ракетой и устройство для его осуществления (варианты)

Предлагаемая группа изобретений относится к области ракетного вооружения. Способ формирования команды управления одноканальной вращающейся по углу крена ракетой включает формирование программно-временного сигнала, формирование сигнала крена ракеты, модуляцию им программно-временного сигнала и...
Тип: Изобретение
Номер охранного документа: 0002473864
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2336

Способ разрушения фрагментов космического мусора

Изобретение относится к области защиты космических объектов от космического мусора, метеоритов и других опасных объектов, а также для очистки околоземного космического пространства от прекративших активное существование ИСЗ, их обломков и отходов жизнедеятельности человека. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002474516
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2337

Способ подавления упругих колебаний конструкции ракеты пакетной схемы

Изобретение относится к ракетно-космической технике и может быть использовано для подавления упругих колебаний конструкций ракет космического назначения (РКН) пакетной схемы. Позиционные гироскопы установлены в трехстепенных подвесах и измеряют угловое положение ракеты. Скоростные гироскопы...
Тип: Изобретение
Номер охранного документа: 0002474517
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2452

Способ определения негерметичности агрегатов, имеющих подвижные элементы

Изобретение относится к области испытательной техники и может быть использовано для определения значения негерметичности агрегатов при воздействии вибрации, в том числе при резонансах его подвижных элементов, и направлено на повышение точности определения значения негерметичности агрегатов, что...
Тип: Изобретение
Номер охранного документа: 0002474800
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.26b1

Устройство металлизации корпуса изделия

Изобретение относится к устройствам защиты от электрических разрядов корпусов летательных аппаратов. Устройство металлизации корпуса изделия состоит из силовой конструкции, нанесенного на нее наружного слоя из нетокопроводного материала и металлических прокладок, обладающих электропроводностью....
Тип: Изобретение
Номер охранного документа: 0002475425
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.26b4

Способ управления угловым движением ракеты космического назначения

Изобретение относится к управлению движением изделий ракетно-космической техники. Способ осуществляется отклонением установленных по крестообразной схеме камер сгорания, расположенных в плоскостях стабилизации I, II, III и IV. При этом вырабатывают командные сигналы , , по тангажу, рысканию и...
Тип: Изобретение
Номер охранного документа: 0002475428
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2a4e

Способ бортового контроля для аварийного прекращения полета ракеты

Изобретение относится к ракетно-космической технике, в частности к ракетам космического назначения (РКН). Способ бортового контроля для аварийного прекращения полета ракеты заключается в периодическом вычислении в бортовой автоматической системе управления трех компонент вектора земной скорости...
Тип: Изобретение
Номер охранного документа: 0002476357
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e53

Агрегат с радиальным потоком

Изобретение относится к машиностроению и может быть использовано в конструкции центробежных высокооборотных компрессоров. Агрегат с радиальным потоком содержит корпус, рабочее колесо, расположенное на валу, щелевое уплотнение и магистраль возврата утечек на всасывание. В указанном агрегате...
Тип: Изобретение
Номер охранного документа: 0002477390
Дата охранного документа: 10.03.2013
Showing 1-10 of 127 items.
20.01.2013
№216.012.1d54

Разъемный стык трубопроводов

Изобретение относится к агрегатам и узлам пневмогидросистем и предназначено для разъемного сочленения трубопроводов. Разъемный стык трубопроводов содержит наконечники на сопрягаемых трубопроводах, накидную гайку и уплотнение между наконечниками. На наконечнике, свободном от накидной гайки,...
Тип: Изобретение
Номер охранного документа: 0002473002
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d55

Бортовое разъемное соединение

Изобретение относится к космической технике и может быть использовано для модернизации борта ракеты-носителя, например, при подсоединении трубопровода термостатирования с последующим его отделением при старте. Техническим результатом изобретения является уменьшение силового воздействия на...
Тип: Изобретение
Номер охранного документа: 0002473003
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.20ab

Способ формирования команды управления одноканальной вращающейся по углу крена ракетой и устройство для его осуществления (варианты)

Предлагаемая группа изобретений относится к области ракетного вооружения. Способ формирования команды управления одноканальной вращающейся по углу крена ракетой включает формирование программно-временного сигнала, формирование сигнала крена ракеты, модуляцию им программно-временного сигнала и...
Тип: Изобретение
Номер охранного документа: 0002473864
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2336

Способ разрушения фрагментов космического мусора

Изобретение относится к области защиты космических объектов от космического мусора, метеоритов и других опасных объектов, а также для очистки околоземного космического пространства от прекративших активное существование ИСЗ, их обломков и отходов жизнедеятельности человека. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002474516
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2337

Способ подавления упругих колебаний конструкции ракеты пакетной схемы

Изобретение относится к ракетно-космической технике и может быть использовано для подавления упругих колебаний конструкций ракет космического назначения (РКН) пакетной схемы. Позиционные гироскопы установлены в трехстепенных подвесах и измеряют угловое положение ракеты. Скоростные гироскопы...
Тип: Изобретение
Номер охранного документа: 0002474517
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2452

Способ определения негерметичности агрегатов, имеющих подвижные элементы

Изобретение относится к области испытательной техники и может быть использовано для определения значения негерметичности агрегатов при воздействии вибрации, в том числе при резонансах его подвижных элементов, и направлено на повышение точности определения значения негерметичности агрегатов, что...
Тип: Изобретение
Номер охранного документа: 0002474800
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.26b1

Устройство металлизации корпуса изделия

Изобретение относится к устройствам защиты от электрических разрядов корпусов летательных аппаратов. Устройство металлизации корпуса изделия состоит из силовой конструкции, нанесенного на нее наружного слоя из нетокопроводного материала и металлических прокладок, обладающих электропроводностью....
Тип: Изобретение
Номер охранного документа: 0002475425
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.26b4

Способ управления угловым движением ракеты космического назначения

Изобретение относится к управлению движением изделий ракетно-космической техники. Способ осуществляется отклонением установленных по крестообразной схеме камер сгорания, расположенных в плоскостях стабилизации I, II, III и IV. При этом вырабатывают командные сигналы , , по тангажу, рысканию и...
Тип: Изобретение
Номер охранного документа: 0002475428
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2a4e

Способ бортового контроля для аварийного прекращения полета ракеты

Изобретение относится к ракетно-космической технике, в частности к ракетам космического назначения (РКН). Способ бортового контроля для аварийного прекращения полета ракеты заключается в периодическом вычислении в бортовой автоматической системе управления трех компонент вектора земной скорости...
Тип: Изобретение
Номер охранного документа: 0002476357
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e53

Агрегат с радиальным потоком

Изобретение относится к машиностроению и может быть использовано в конструкции центробежных высокооборотных компрессоров. Агрегат с радиальным потоком содержит корпус, рабочее колесо, расположенное на валу, щелевое уплотнение и магистраль возврата утечек на всасывание. В указанном агрегате...
Тип: Изобретение
Номер охранного документа: 0002477390
Дата охранного документа: 10.03.2013
+ добавить свой РИД