×
13.01.2017
217.015.78b3

Результат интеллектуальной деятельности: СПОСОБ ИОННО-ПЛАЗМЕННОГО НАНЕСЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ НА ИЗДЕЛИЯ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения, в частности к технологии упрочнения и повышения износостойкости лопаток компрессоров газотурбинных двигателей. Способ ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов включает предварительную полировку и очистку поверхности изделия в ультразвуковой ванне, очистку ионами аргона с последующей ионной имплантацией азота в поверхностный слой изделия и осаждением слоев нитрида титана. Очистку ионами аргона осуществляют пучком ионов аргона при напряжении анода 2,0-3,0 кВ и токе 0,5А в течение 5-6 мин, ионную имплантацию азота проводят пучком ионов азота при ускоряющем напряжении 2,0-3,0 кВ и токе 0,5А в течение 10-12 мин с формированием промежуточного слоя нитрида алюминия наноразмерной величины. Покрытие из нитрида титана наносят в вакуумной камере методом магнетронного распыления катода-мишени из титана в атмосфере смеси аргона и азота с использованием импульно-частотного источника питания с частотой следования импульсов не ниже 10 кГц. Температуру изделия поддерживают в диапазоне 90-200°С, а давление в рабочей камере составляет 0,37 Па, причем время нанесения покрытия составляет 20-60 минут. Затем образцы охлаждают в среде аргона при давлении 5×10 Па до достижения температуры 25°С. Обеспечивается повышение твердости и износостойкости изделий из алюминиевых сплавов. 3 ил., 1 табл., 1 пр.

Изобретение относится к области машиностроения, в частности к технологии упрочнения и повышения износостойкости лопаток компрессоров газотурбинных двигателей нового поколения.

Известен способ обработки поверхности лопаток газотурбинного двигателя (патент RU 2296181, МПК С23С 14/35, С23С 14/16, опубл. 27.03.2007), включающий в себя предварительную обработку лопатки путем обработки электрокорундом и химической очистки ее поверхности, создание разрежения в вакуумной камере в интервале от (5×10-2) до (10-1) Па, нагрев вакуумной камеры в интервале температур от 100°С до 600°С, ионную очистку аргоном, а затем кислородом в течение 5-15 мин. Нанесение покрытия на лопатку проводят методом магнетронного распыления материала. Магнетронное распыление осуществляют со скоростью не менее 6 мкм/час. В качестве материала распыления используют серебро. Недостатком данного способа является то, что нанесение покрытия из серебра происходит при температурах выше 200°С, что неприемлемо для алюминия и его сплавов, кроме того, серебряное покрытие обладает плохой твердостью и износостойкостью.

Известен способ защиты поверхности алюминия от коррозии (патент RU 25228774, МПК С23С 14/16, С23С 14/35, опубл. 20.07.2014), включающий размещение изделия в зоне обработки, создание вакуума в зоне обработки, очистку поверхности пучком ионов и осаждение металлического покрытия с одновременной подачей на изделие отрицательного напряжения смещения. Очистку поверхности осуществляют пучком ионов инертного газа с энергией в диапазоне 1-5 кэВ. Осаждение покрытия осуществляют в два этапа. Вначале на поверхность осаждают промежуточный слой покрытия из меди толщиной от 0,5 мкм до 3 мкм в магнетронном разряде постоянного тока, горящем в среде инертного газа, с твердым катодом из меди при мощности разряда 1-2,5 кВт. Затем расплавляют катод из меди при мощности разряда 3-6 кВт с повышением температуры катода до величины, обеспечивающей достаточное давление паров меди для поддержания магнетронного разряда, прекращают подачу инертного газа и осаждают основной слой покрытия из меди толщиной 2-10 мкм в магнетронном разряде, горящем в парах меди. Слои покрытия осаждают на изделии при отрицательном напряжении смещения до 300 В и температуре поверхности 100-300°С. Недостатком известного способа является то, что полученное защитное покрытие из меди не является износостойким и не обладает достаточной твердостью.

Наиболее близким по технической сущности и выбранным в качестве прототипа является способ нанесения износостойких покрытий на лопатки компрессора ГТД (патент RU 2430992, МПК С23С 14/48, С23С 14/06, опубл. 10.10.2011), включающий в себя осаждение чередующихся слоев металлов и их нитридов с очисткой поверхности лопаток ионами аргона и ионной имплантацией в процессе осаждения. Предварительно лопатки полируют и очищают в ультразвуковой ванне. Очистку ионами аргона осуществляют газовой плазмой, образованной путем подачи на лопатки короткоимпульсного высокочастотного высоковольтного отрицательного потенциала смещения. После чего меняют плазму аргона на плазму азота и осуществляют ионную имплантацию азота при тех же параметрах потенциала смещения. Далее прерывают формирование плазмы азота, формируют плазму титана, очищают ее от микрочастиц и подают на лопатки потенциал смещения с теми же высокочастотными параметрами, обеспечивая имплантацию ионов титана в поверхностный слой и разогрев лопаток при достижении лопатками температуры, необходимой для осаждения покрытия. После этого снижением потенциала смещения наносят на лопатки подслой титана. Затем осаждают чередующиеся слои из нитрида титана и нитрида титан-алюминия, при этом слой нитрида титана осаждают при формировании плазмы азота, а слой нитрида титан-алюминия - титан-алюминиевой плазмы. Недостатком способа является нагрев лопаток до высоких температур 400-500°С, что неприемлемо для алюминия и его сплавов.

Технической задачей, на решение которой направлено изобретение, является создание способа ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов, позволяющего обрабатывать их при низкой температуре до 200°С и обеспечивающего повышение твердости и износостойкости изделий для использования в областях разработок лопаток компрессоров газотурбинных двигателей.

Технический результат - повышение твердости и износостойкости изделий из алюминиевых сплавов.

Задача решается, а технический результат достигается способом ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов, включающим предварительную полировку и очистку поверхности изделия в ультразвуковой ванне, очистку ионами аргона с последующей ионной имплантацией азота в поверхностный слой изделия и осаждением слоев нитрида титана. В отличие от прототипа очистку ионами аргона осуществляют пучком ионов аргона при напряжении анода 2,0-3,0 кВ и токе 0,5А в течение 5-6 мин, ионную имплантацию азота проводят пучком ионов азота при ускоряющемся напряжении 2,0-3,0 кВ и токе 0,5А в течение 10-12 мин, причем формируют промежуточный слой нитрида алюминия наноразмерной величины, а покрытие из нитрида титана наносят в вакуумной камере методом магнетронного распыления катода-мишени из титана в атмосфере смеси аргона и азота с использованием импульно-частотного источника питания с частотой следования импульсов не ниже 10 кГц, при этом температуру изделия поддерживают в диапазоне 90-200°С, а давление в рабочей камере составляет 0,37 Па, причем время нанесения покрытия составляет 20-60 минут, после чего образцы охлаждают в среде аргона при давлении 5×104 Па до достижения температуры 25°С.

Технический результат достигается благодаря следующему.

Обработка пучком ионов аргона позволяет очистить поверхность образца от оксидов и активировать химические связи. Обработка поверхности изделия пучком ионов азота приводит к эффективному образованию промежуточного слоя нитрида алюминия наноразмерной толщины, повышающего адгезию основного покрытия к подложке.

Нанесение покрытия в магнетронном разряде при низкой температуре (до 200°С) приводит к эффективному образованию многослойного покрытия из нитрида титана, обладающего улучшенными прочностными характеристиками, повышенной твердостью и хорошей адгезией.

Режимы обработки выбраны исходя из следующего.

Температура образца в процессе обработки составляет 90-200°С и достигается подбором режимов работы магнетрона, а также выбором расстояния между каруселью с закрепленными на ней образцами и мишенью-катодом. При температурах ниже 90°С не наблюдается образование нитрида титана. При температурах выше 200°С происходит разупрочнение материала изделия из алюминиевого сплава. При этом толщина полученного покрытия TiN составляет 1-5 мкм при толщине нижнего подслоя, состоящего из Ti2N, около 400 нм. При толщине покрытия меньше 1 мкм снижается износостойкость и твердость покрытия. При толщине более 5 мкм покрытие обладает неудовлетворительной адгезией.

Сущность изобретения поясняется чертежами, где:

на фиг. 1 показана схема установки, на которой проводят нанесение покрытия;

на фиг. 2а - поперечное сечение покрытия;

на фиг. 2б - механический излом покрытия;

на фиг. 3а показано распределение упругости по толщине покрытия;

на фиг. 3б показано распределение микротвердости по толщине покрытия.

На фиг. 1 обозначено: холодный катод 1, карусельный механизм 2, держатель образцов 3, магнетрон 4, вакуумная камера 5, датчики измерения вакуума 6, регуляторы - расходомеры 7 трехканальной системы газонапуска.

Способ осуществляют следующим образом.

Предварительно полируют и очищают поверхность изделия в ультразвуковой ванне. Затем производят очистку пучком ионов аргона при напряжении анода 2,0-3,0 кВ и токе 0,5 А в течение 5-6 мин, затем ионную имплантацию азота в поверхностный слой изделия пучком ионов азота при ускоряющемся напряжении 2,0-3,0 кВ и токе 0,5А в течение 10-12 мин, причем формируют промежуточный слой нитрида алюминия наноразмерной величины. Далее осаждают слои нитрида титана, причем покрытие из нитрида титана наносят в вакуумной камере 5 методом магнетронного распыления катода-мишени из титана в атмосфере смеси аргона и азота с использованием импульно-частотного источника питания с частотой следования импульсов не ниже 10 кГц, при этом температура изделия в диапазоне 90-200°С, а давление в рабочей камере составляет 0,37 Па, причем время нанесения покрытия составляет 20-60 минут, после чего образцы охлаждают в среде аргона при давлении 5×104 Па до достижения температуры 25°С.

Пример конкретного осуществления способа.

Были использованы образцы из алюминиевого сплава Д16Т в виде дисков диаметром 50 мм и толщиной 4 мм. Одна сторона каждого образца полировалась на шлифовально-полировальном станке «Полилаб Π12» до достижения шероховатости Ra 0,16. Затем осуществлялась очистка образцов в ультразвуковой ванне «S5 Elmasonic» в смеси бензина и изопропилового спирта, а также промывка в этиловом спирте.

Нанесение защитных покрытий проводили на установке для ионно-плазменной обработки (фиг. 1), которая содержит следующее оборудование:

- планарный несбалансированный магнетрон 4, мощность до 10 кВт;

- ионный источник с холодным катодом 1, 3 кВ, 3 кВт;

- регуляторы - расходомеры 7 трехканальной системы газонапуска типа РРГ-10;

- систему автоматизации процесса откачки, сбора и обработки информации (на чертеже не показано).

В качестве материала катода для защитного покрытия был выбран титан в силу его высокой твердости и коррозионной стойкости.

Образцы размещали в вакуумной камере 5 на карусельном механизме 2 с помощью держателя образцов 3 на расстоянии 80 мм от катода. Камера откачивалась криогенным насосом до остаточного давления 1×10-4 Па. Газовый ионный источник с холодным катодом 1 имел сечение ионного пучка (в зоне обработки) на расстоянии 100 мм от источника 60×500 мм. Мощность источника питания 5 кВт, максимальное напряжение 3 кВ. Предварительную обработку изделий осуществляли пучком ионов аргона при напряжении анода 2,5 кВ и током 0,5 мА в течение 5 мин с целью очистки поверхности и удаления окислов. Далее проводили обработку изделий пучком ионов азота при ускоряющемся напряжении 2,5 кВ и токе 0,5 А в течение 10 мин, в результате которой на поверхности образцов образовывался промежуточный слой нитрида алюминия наноразмерной величины. Нанесение покрытия из нитрида титана осуществляли катодным распылением в магнетронном разряде титанового катода-мишени при напряжении разряда 500 В и токе разряда до 5А в газовой среде азота. Магнетрон 4 работал в импульсно-частотном режиме с частотой следования импульсов 30 кГц и коэффициентом заполнения 50%. Длительность процесса нанесения покрытия составляла 30 минут, при этом толщина покрытия составляла 1,35 мкм. Температура образцов в процессе обработки не превышала 120°С. Контроль температуры осуществляли термопарой хромель-константан. Рабочий вакуум измеряли с помощью датчиков измерения вакуума 6 установки, и он составлял при работе ионного источника (6÷8)×10-2 Па при работе магнетрона 0,3÷0,4 Па.

После нанесения покрытия образцы охлаждали в среде аргона при давлении 5×104 Па до достижения ими температуры 25°С.

На фиг. 2а показано поперечное сечение полученного покрытия, на фиг. 2б - механический излом. Фотографии сделаны на растровом электронном микроскопе во вторичных электронах. На фотографиях видно, что покрытие имеет два слоя. Верхний слой имеет столбчатую структуру. Нижний слой плотный и не имеет выраженной структуры. Из анализа шлифов и изломов следует, что толщина покрытия на образце составляет около 1,35 мкм (толщина верхнего слоя около 1 мкм и нижнего подслоя 350 нм).

Проведенный на дифрактометре D8 DISCOVER рентгеноструктурный анализ покрытия указывает на наличие трех фаз (таблица 1) и отсутствие интерметаллидных фаз, которые могли бы образоваться при взаимодействии титана с алюминием.

В покрытии сосуществуют две фазы TiN и Ti2N (соответственно, верхний слой и нижний подслой), причем преобладает TiN. Параметр решетки Al подложки ближе к одному из параметров решетки Ti2N. Поэтому на алюминиевой подложке вероятно начинают расти кристаллы Ti2N, ориентированные таким образом, чтобы максимально согласовать соответствующие плоскости решеток Al и Ti2N. Интенсивность линий TiN растет с увеличением толщины покрытия. Это также указывает на то, что два слоя, которые наблюдались на снимках излома покрытия (фиг. 2б), представляют собой Ti2N (нижний подслой) и TiN (верхний слой).

Механические свойства покрытий были исследованы с помощью цифрового наноиндентометра DNT-1/5 (фиг. 3а) и б)). Видно, что твердость поверхности превышает 1000 HV0,1, при этом твердость подслоя Ti2N составляет примерно 400 HV0,1.

Таким образом, способ ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов позволяет обрабатывать их при низкой температуре до 200°С и обеспечивает повышение твердости и износостойкости изделий для использования в областях разработок лопаток компрессоров газотурбинных двигателей.

Реализация способа позволит создать экологически чистую технологию создания упрочняющих защитных покрытий на изделия из алюминиевых сплавов. Созданные покрытия могут быть использованы в машиностроении и авиационной промышленности для упрочнения и повышения износостойкости лопаток компрессоров газотурбинных двигателей нового поколения.

Способ ионно-плазменного нанесения многослойного покрытия на изделие из алюминиевого сплава, включающий предварительную полировку и очистку поверхности изделия в ультразвуковой ванне, очистку ионами аргона с последующей ионной имплантацией азота в поверхностный слой изделия и осаждением слоев нитрида титана, отличающийся тем, что очистку ионами аргона осуществляют пучком ионов аргона при напряжении анода 2,0-3,0 кВ и токе 0,5А в течение 5-6 мин, ионную имплантацию азота проводят пучком ионов азота при ускоряющем напряжении 2,0-3,0 кВ и токе 0,5А в течение 10-12 мин c формированием промежуточного слоя нитрида алюминия наноразмерной величины, а покрытие из нитрида титана наносят в вакуумной камере методом магнетронного распыления катода-мишени из титана в атмосфере смеси аргона и азота с использованием импульно-частотного источника питания с частотой следования импульсов не ниже 10 кГц, при этом температуру изделия поддерживают в диапазоне 90-200°С, а давление в рабочей камере составляет 0,37 Па, причем время нанесения покрытия составляет 20-60 минут, после чего образцы охлаждают в среде аргона при давлении 5×10 Па до достижения температуры 25°С.
СПОСОБ ИОННО-ПЛАЗМЕННОГО НАНЕСЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ НА ИЗДЕЛИЯ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ
СПОСОБ ИОННО-ПЛАЗМЕННОГО НАНЕСЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ НА ИЗДЕЛИЯ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Showing 81-90 of 108 items.
10.11.2015
№216.013.8d2c

Трехфазное симметрирующее устройство и способ управления им

Изобретение относится к области электротехники и может быть использовано для устранения несимметрии токов и напряжений в трехфазных сетях. Технический результат - повышение быстродействия и энергетических показателей, улучшение электромагнитной совместимости. Трехфазное симметрирующее...
Тип: Изобретение
Номер охранного документа: 0002567747
Дата охранного документа: 10.11.2015
10.12.2015
№216.013.992e

Магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением (варианты) и способ его изготовления

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат состоит в повышении надежности, энергоэффективности и минимизация тепловыделений, повышении кпд Диэлектрический остов статора выполнен в...
Тип: Изобретение
Номер охранного документа: 0002570834
Дата охранного документа: 10.12.2015
27.12.2016
№216.013.9da2

Способ настройки многоцелевого станка для пятикоординатной обработки

Изобретение относится к станкостроению и может быть использовано в многоцелевых станках, используемых для многокоординатной обработки. Способ заключается в том, что определяют координаты осей вращения рабочих органов станка, для чего осуществляют измерение координат произвольных точек...
Тип: Изобретение
Номер охранного документа: 0002571984
Дата охранного документа: 27.12.2015
27.12.2016
№216.013.9dab

Способ деформационно-термической обработки объемных полуфабрикатов из al-cu-mg сплавов

Изобретение относится к области металлургии, в частности к термически упрочняемым сплавам на основе алюминия, а именно к способу деформационно-термической обработки высокопрочных сплавов системы Al-Cu-Mg, используемых в качестве конструкционных материалов для деталей авиакосмической техники и...
Тип: Изобретение
Номер охранного документа: 0002571993
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c32f

Способ линейной сварки трением

Изобретение может быть использовано при сварке блисков. На диске и лопатке формируют выступы с поверхностями контакта при сварке трением с необходимым технологическим припуском Р на периферии свариваемых деталей. Приводят лопатку в линейное колебание относительно диска в заданном направлении...
Тип: Изобретение
Номер охранного документа: 0002574566
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c49c

Многосекционный синхронный двигатель

Изобретение относится к области электротехники, а именно к бесконтактным электродвигателям с возбуждением от постоянных магнитов, и может быть использовано в качестве погружного электродвигателя. Технический результат: повышение прочности конструкции многосекционного синхронного двигателя....
Тип: Изобретение
Номер охранного документа: 0002574609
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c7e4

Устройство для чистки ствола орудия (варианты)

Группа изобретений относится к устройствам для обслуживания ствола орудия, а именно к устройствам для чистки ствола. Устройство содержит электродвигатель и планетарный редуктор, размещенные внутри чистящего ерша. Устройство также включает в себя энкодер, связанный с системой управления....
Тип: Изобретение
Номер охранного документа: 0002578919
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.3327

Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть...
Тип: Изобретение
Номер охранного документа: 0002582153
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.342d

Способ раскрутки-торможения колес шасси

Изобретение относится к системам привода шасси и касается предварительной раскрутки колес шасси при посадке и торможения после посадки. Перед посадкой каждое колесо шасси вращают с окружной скоростью, равной скорости самолета, с помощью установленных на них электрических машин, которые питают...
Тип: Изобретение
Номер охранного документа: 0002581996
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.34c4

Термоэмиссионный магнитопровод статора

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат - повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%. Термоэмиссионный магнитопровод...
Тип: Изобретение
Номер охранного документа: 0002581606
Дата охранного документа: 20.04.2016
Showing 81-90 of 125 items.
27.07.2015
№216.013.67f3

Железнодорожный вагон с минимизацией центробежных сил, воздействующих на железнодорожный состав

Изобретение относится к области железнодорожного транспорта, в частности к подвеске железнодорожного вагона. Железнодорожный вагон содержит надрессорную балку, которая опирается через пружины рессорного подвешивания на боковые рамы и линейный электромеханический преобразователь энергии....
Тип: Изобретение
Номер охранного документа: 0002558164
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.688f

Способ упрочнения поверхности титановых сплавов в вакууме

Изобретение относится к области термической, химико-термической обработки и может быть использовано в машиностроении и других областях промышленности. Способ упрочнения поверхностей деталей из титановых сплавов включает азотирование с последующим отжигом. Азотирование деталей проводят в...
Тип: Изобретение
Номер охранного документа: 0002558320
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6bd6

Интеллектуальный бесконтактный мутномер

Использование: изобретение относится к области измерительной техники и может быть использовано для контроля мутности жидких дисперсных сред, экологического мониторинга, определения концентрации эмульсий и суспензий. Интеллектуальный бесконтактный мутномер содержит сосуд-стабилизатор с входным...
Тип: Изобретение
Номер охранного документа: 0002559164
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d96

Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии

Изобретение относится к способам защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии. Проводят подготовку поверхности пера лопатки под нанесение покрытия электролитно-плазменным полированием в электролите в виде 4 - 8% водного раствора сульфата аммония при напряжении...
Тип: Изобретение
Номер охранного документа: 0002559612
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7262

Стенд для исследования теплового состояния поршней двухтактных двигателей внутреннего сгорания

Изобретение относится к испытательным стендам и может быть использовано преимущественно в ходе научно-исследовательских и опытно-конструкторских работ, а также в период доводки двигателей внутреннего сгорания. Стенд для исследования теплового состояния поршней двигателей внутреннего сгорания...
Тип: Изобретение
Номер охранного документа: 0002560852
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7531

Способ безоблойной высадки клеммных болтов для рельсовых скреплений

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении клеммных болтов для рельсовых скреплений железнодорожных путей. Осуществляют предварительное и окончательное формирование прямоугольной головки болта и ее сферической опорной поверхности. Затем...
Тип: Изобретение
Номер охранного документа: 0002561576
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7784

Способ модификации поверхности изделий из титановых сплавов в вакууме

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности. Способ модификации...
Тип: Изобретение
Номер охранного документа: 0002562185
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7786

Способ модификации поверхности изделий из титановых сплавов в тлеющем разряде

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа. Способ модификации поверхности изделий из титановых сплавов...
Тип: Изобретение
Номер охранного документа: 0002562187
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7bdc

Термоэлектрический генератор автомобиля

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано для обеспечения электрической энергией узлов системы электроснабжения автомобиля. Технический результат: повышение надежности, минимизация количества узлов термоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002563305
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d12

Устройство для линейной сварки трением блисков

Изобретение может быть использовано при изготовлении сваркой трением блисков, преимущественно для роторов газотурбинных двигателей. Неподвижно закрепленный на станине узел вращения диска блиска выполнен в виде сменной револьверной головки, установленной с помощью втулки в сменном корпусе,...
Тип: Изобретение
Номер охранного документа: 0002563615
Дата охранного документа: 20.09.2015
+ добавить свой РИД