×
13.01.2017
217.015.75b0

Результат интеллектуальной деятельности: ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности к способам определения размеров частиц в аэрозольных облаках, и может быть использовано в целях охраны окружающей среды и маскировочных мероприятий. Оптический способ дистанционного измерения радиусов частиц в аэрозольных облаках заключается в том, что в течение времени существования аэрозольного облака, когда оно еще регистрируется на фоне неба, с использованием цифрового видеорегистратора измеряют оптическую плотность облака. Далее вычисляют нормированную оптическую плотность облака, которая уменьшается за счет выпадения сначала частиц больших радиусов. Затем измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме. Техническим результатом является дистанционное определение закона распределения частиц по размерам в аэрозольных облаках в оптическом диапазоне электромагнитного спектра. 1 табл., 1 ил.

Изобретение относится к измерительной технике, в частности к способам определения размеров частиц в аэрозольных облаках, и может быть использовано в целях охраны окружающей среды и оценки маскировочной обстановки.

Известные оптические способы определения размеров аэрозольных частиц основаны на решении задач поглощения и рассеяния электромагнитного излучения на частицах различных размеров [Шифрин К.С, Раскин В.Ф. Спектральная прозрачность и обратная задача теории рассеяния. Оптика и спектроскопия. 1961, т. 11, №2, с. 268-271]. На этом принципе предложен ряд способов и устройств определения размеров аэрозольных частиц при использовании как белого света, так и монохроматического излучения, например [Патент RU 2098794 С1, 10.12.1997, МПК 6 G01N 15/02; Патент RU 2235990 С1, 10.09.2004, МПК 7 G01N 15/02; Патент RU 2123176 С1, 10.12.1998, МПК 6 G01N 21/25; Патент RU 2239173 С1, 27.10.2004, МПК 7 G01N 15/02].

Общим недостатком известных способов является отсутствие дистанционности при определении размеров частиц в аэрозольных облаках. Т.е. из облака отбирают пробу, которую затем помещают в устройство определения размеров аэрозолей, принцип работы которого основан на взаимодействии оптического излучения с аэрозолями.

Отбор проб не всегда технически возможен и экономически обоснован. Результаты анализа получаются не в реальном масштабе времени. Кроме того, при взрывных работах и пылении, создаваемом при движении тяжелой техники, наблюдается быстрое выпадение крупнодисперсных аэрозолей и поэтому оптические характеристики облака быстро изменяются. Т.е. вышеуказанные способы можно использовать, если облако состоит из мелкодисперсных аэрозолей, с длительным временем их существования в воздухе.

Дистанционность достигается за счет измерения оптического излучения, рассеянного аэрозольным облаком. Поскольку размеры аэрозолей, образующихся при взрывах и пылении, не менее единиц микрометров, то для решения поставленной задачи - дистанционного измерения размеров частиц в реальном масштабе времени целесообразно использовать видимую часть оптического диапазона без активной подсветки облака.

Известна зависимость оптической плотности аэрозольного облака от распределения частиц в нем, по концентрациям и размерам [В.Е. Зуев, М.В. Кабанов. Оптика атмосферного аэрозоля, М.: Гидрометеоиздат, 1987].

Основной трудностью, препятствующей реализации предлагаемого способа прототипа, является многопараметричность задачи, т.к. оптическая плотность облака зависит от начальной концентрации аэрозольных частиц, распределения этих частиц по размерам, а также от времени выпадения частиц из облака. Для практической реализации способа на первом этапе необходимо создать математическую модель, устраняющую вышеуказанную неопределенность.

Согласно теории объемного рассеяния Ми для частиц, размер которых много больше длины волны видимого излучения, объемный коэффициент рассеяния определяется выражением

где N0 - число частиц в единице объема рассеивающего облака, Rcp - усредненный радиус частиц. Объем частицы . Среднее число частиц в облаке обозначим как N. Тогда и предыдущее выражение можно записать следующим образом:

Оптическая плотность облака, зафиксированная на видеоносителе, например, с использованием цифровой видеокамеры

где Pi - повторяемость градаций частиц в их законе распределения по размерам.

Введем понятие нормированной оптической плотности облака Q(t)/Qmax. Здесь Qmax - максимальная оптическая плотность облака в начальный момент времени, когда выпадение частиц из облака еще не происходило. Отношение Q(t)/Qmax уже не зависит от начальной концентрации аэрозолей. Т.е. нормированная оптическая плотность облака зависит только от распределения частиц по размерам и времени и определяется временем осаждения аэрозольных частиц.

На выпадающую частицу действуют две силы: 1) сила тяжести , где ρ - плотность частицы, R - ее радиус; 2) сила сопротивления при движении в вязкой среде. В случае стационарного облака и ламинарного движения сферической частицы эта сила является силой Стокса , где η - коэффициент динамической вязкости воздуха, υ - скорость движения частицы. Тогда движение падающей частицы описывается дифференциальным уравнением

где - характеристический параметр движения частицы.

Решением уравнения (4) является следующее выражение:

Движение частицы происходит с переменным ускорением. Но при b≥4 частицы практически мгновенно достигают скорости равномерного движения υ0=g/b.

Интегрирование уравнения (5) определяет путь H, проходимый аэрозольной частицей за время t.


Соответственно из уравнения (6) можно определить время t0 осаждения частиц с радиусом R0 с высоты Н0 до момента падения на Землю. Т.е. за время t0 выпадают частицы с радиусами R≥R0, и соответственно уменьшается оптическая плотность облака.

Измеряя среднюю высоту аэрозольного облака [Михеев С.В. Исследование оптико-электронной системы контроля положения объекта методом триангуляции. Дис. канд. тех. наук. 2007. Санкт-Петербургский Государственный университет информационных технологий, механики и оптики. 124 с.], можно вычислить время выпадения частиц различных размеров и плотности. На фиг. 1 представлена номограмма, связывающая время выпадения частиц различных размеров и нормированную оптическую плотность облака, при его средней высоте 50 м. При радиусе частиц R≥300 мкм они падают практически свободно, не зависимо от их плотности. При меньших размерах время выпадения зависит от плотности частиц, что отражено на номограмме в виде двух ветвей, когда плотность изменяются от 1,5·103 кг/м3 - частицы почвы, до 11·103 кг/м3 - частицы тяжелых металлов. Средний радиус аэрозольной частицы определяется по попаданию точки пересечения линий времени выпадения и оптической плотности облака в ту или иную градацию.

Техническим результатом изобретения является дистанционное определение закона распределения частиц по размерам в аэрозольных облаках в оптическом диапазоне электромагнитного спектра.

Указанный технический результат достигается тем, что в течение времени существования аэрозольного облака, с использованием цифрового видеорегистратора измеряют оптическую плотность облака, вычисляют нормированную оптическую плотность облака, измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме.

В качестве примера рассмотрим процесс выпадения частиц гранита с плотностью ρ=2,5·103 кг/м3 из аэрозольного облака, образовывающегося при буровзрывных работах. Высота облака Н0=50 м. Грансостав выпавших частиц определялся методом осаждения в жидкости. В таблице приведены усредненные размеры выпавших частиц по девяти градациям, а также их повторяемости Р. Мелкодисперсная взвесь с радиусом R≤3 мкм образовывалась при бурении. Оставшиеся 88% частиц образовались при взрыве. По уравнению (5) определено время осаждения t0 частиц в воздухе по всем градациям. Для этих же градаций в таблице приведена нормированная оптическая плотность облака Q/Qmax, определенная по результатам цифровой видеосъемки. Для частиц с радиусами меньшими 3 мкм, оптическая плотность облака сравнивалась с фоном неба и не регистрировалась.

На фиг. 1 показаны экспериментальные точки пересечения линии времени выпадения частиц гранита, присутствующих в облаке и его нормированной оптической плотности. Как видно из фиг. 1 - получено хорошее совпадение экспериментально измеренных радиусов частиц, выпавших из облака, и оценок их радиусов по номограмме, что подтверждает достоверность результатов, полученных с использованием предложенного способа.

Таким образом, измеряя высоту и нормированную оптическую плотность облака и вычисляя время выпадения аэрозольных частиц заданных размеров и плотности, можно по номограмме дистанционно определить закон распределения частиц по размерам в аэрозольных облаках.

Оптический способ дистанционного измерения радиусов частиц в аэрозольных облаках, основанный на обработке оптического излучения, рассеянного аэрозолями облака, отличающийся тем, что в течение времени существования аэрозольного облака измеряют оптическую плотность облака, вычисляют нормированную оптическую плотность облака, измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме.
ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ
ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ
Источник поступления информации: Роспатент

Showing 111-120 of 210 items.
10.04.2016
№216.015.3140

Способ моделирования процессов двухуровневого адаптивного управления и система моделирования для его осуществления

Группа изобретений относится к области моделирования процессов управления и может быть использована для моделирования процессов двухуровневого адаптивного управления техническими средствами (ТС) различного назначения, например охраны, связи, разведки, защиты информации, радиоэлектронной борьбы,...
Тип: Изобретение
Номер охранного документа: 0002580785
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.332f

Датчик давления с цифровым выходом

Изобретение относится к области средств автоматизации. Датчик давления с цифровым выходом содержит основной измерительный блок 1, состоящий из дифференциального реле давления 2 с рабочими плоскостями 3 и 4, разобщенными клапаном 5, и счетчика импульсов 6, двух дополнительных измерительных...
Тип: Изобретение
Номер охранного документа: 0002582305
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.359d

Способ определения износа фрикционных накладок тормозных колодок в автомобиле с гидравлическим приводом тормозной системы

Изобретение относится к области автомобилестроения, в частности к тормозным системам с гидравлическим приводом. Способ определения износа фрикционных накладок заключается в определении количества тормозной жидкости, проходящей через гидравлический привод тормозных колодок колеса при торможении...
Тип: Изобретение
Номер охранного документа: 0002581450
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37bd

Плазменная антенна

Изобретение относится к антенной технике. Плазменная антенна содержит плазменный генератор, формирующий плазменное образование, и первичный источник электромагнитных волн, при этом анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки,...
Тип: Изобретение
Номер охранного документа: 0002582491
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.37f6

Устройство автоматического выравнивания платформ аэродромных грузоподъемных механизмов

Изобретение относится к области применения средств механизации на аэродроме. Устройство автоматического выравнивания платформ аэродромных грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы,...
Тип: Изобретение
Номер охранного документа: 0002582563
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38c6

Частотный детектор

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов. Достигаемый технический результат - увеличение крутизны линейного участка детекторной характеристики. Частотный детектор содержит первый и второй амплитудные детекторы, первый и...
Тип: Изобретение
Номер охранного документа: 0002582552
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38fd

Формирователь последовательности разнополярных прямоугольных импульсов с изменяемой длительностью и интервалом

Изобретение относится к импульсной технике. Техническим результатом является обеспечение возможности формирования последовательности двух разнополярных прямоугольных импульсов, изменения их длительности и интервала между ними в пределах от сотен миллисекунд до единиц-десятков-сотен секунд путем...
Тип: Изобретение
Номер охранного документа: 0002582553
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3985

Транспортное средство для буксировки поврежденных автомобилей

Изобретение относится к автомобильному транспорту. Транспортное средство для буксировки поврежденных автомобилей способом полупогрузки содержит надрамник с опорной стойкой, тяговую лебедку, поворотную телескопическую балку с выдвижной секцией (7) и траверсу (9), оборудованную корзинами (10, 11)...
Тип: Изобретение
Номер охранного документа: 0002582561
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39c9

Способ определения координат местоположения источника радиоизлучения

Изобретение относится к пассивным системам радиомониторинга радиоэлектронных средств, в частности может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Сущность способа определения координат местоположения ИРИ заключается в доставке в предполагаемый район...
Тип: Изобретение
Номер охранного документа: 0002582592
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39f0

Осевой компрессор

Изобретение относится к области авиационного двигателестроения и может быть использовано в осевых компрессорах для совершенствования аэродинамики их проточной части за счет управления течением у корпуса рабочих колес. В стенке корпуса над лопатками рабочих колес, по крайней мере одной ступени,...
Тип: Изобретение
Номер охранного документа: 0002582537
Дата охранного документа: 27.04.2016
Showing 111-120 of 208 items.
20.04.2016
№216.015.332f

Датчик давления с цифровым выходом

Изобретение относится к области средств автоматизации. Датчик давления с цифровым выходом содержит основной измерительный блок 1, состоящий из дифференциального реле давления 2 с рабочими плоскостями 3 и 4, разобщенными клапаном 5, и счетчика импульсов 6, двух дополнительных измерительных...
Тип: Изобретение
Номер охранного документа: 0002582305
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.359d

Способ определения износа фрикционных накладок тормозных колодок в автомобиле с гидравлическим приводом тормозной системы

Изобретение относится к области автомобилестроения, в частности к тормозным системам с гидравлическим приводом. Способ определения износа фрикционных накладок заключается в определении количества тормозной жидкости, проходящей через гидравлический привод тормозных колодок колеса при торможении...
Тип: Изобретение
Номер охранного документа: 0002581450
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37bd

Плазменная антенна

Изобретение относится к антенной технике. Плазменная антенна содержит плазменный генератор, формирующий плазменное образование, и первичный источник электромагнитных волн, при этом анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки,...
Тип: Изобретение
Номер охранного документа: 0002582491
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.37f6

Устройство автоматического выравнивания платформ аэродромных грузоподъемных механизмов

Изобретение относится к области применения средств механизации на аэродроме. Устройство автоматического выравнивания платформ аэродромных грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы,...
Тип: Изобретение
Номер охранного документа: 0002582563
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38c6

Частотный детектор

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов. Достигаемый технический результат - увеличение крутизны линейного участка детекторной характеристики. Частотный детектор содержит первый и второй амплитудные детекторы, первый и...
Тип: Изобретение
Номер охранного документа: 0002582552
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38fd

Формирователь последовательности разнополярных прямоугольных импульсов с изменяемой длительностью и интервалом

Изобретение относится к импульсной технике. Техническим результатом является обеспечение возможности формирования последовательности двух разнополярных прямоугольных импульсов, изменения их длительности и интервала между ними в пределах от сотен миллисекунд до единиц-десятков-сотен секунд путем...
Тип: Изобретение
Номер охранного документа: 0002582553
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3985

Транспортное средство для буксировки поврежденных автомобилей

Изобретение относится к автомобильному транспорту. Транспортное средство для буксировки поврежденных автомобилей способом полупогрузки содержит надрамник с опорной стойкой, тяговую лебедку, поворотную телескопическую балку с выдвижной секцией (7) и траверсу (9), оборудованную корзинами (10, 11)...
Тип: Изобретение
Номер охранного документа: 0002582561
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39c9

Способ определения координат местоположения источника радиоизлучения

Изобретение относится к пассивным системам радиомониторинга радиоэлектронных средств, в частности может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Сущность способа определения координат местоположения ИРИ заключается в доставке в предполагаемый район...
Тип: Изобретение
Номер охранного документа: 0002582592
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39f0

Осевой компрессор

Изобретение относится к области авиационного двигателестроения и может быть использовано в осевых компрессорах для совершенствования аэродинамики их проточной части за счет управления течением у корпуса рабочих колес. В стенке корпуса над лопатками рабочих колес, по крайней мере одной ступени,...
Тип: Изобретение
Номер охранного документа: 0002582537
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39f6

Способ имитации теплового контраста объекта

Изобретение относится к средствам защиты от тепловизионных средств воздушно-космической разведки. При способе имитации теплового контраста объекта регистрируют тепловое изображение имитируемого объекта на фоне местности, передают зарегистрированное изображение на имитатор, регистрируют тепловое...
Тип: Изобретение
Номер охранного документа: 0002582560
Дата охранного документа: 27.04.2016
+ добавить свой РИД