×
12.01.2017
217.015.5e9b

Результат интеллектуальной деятельности: ГЕН PDGF-Bopt ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА ЧЕЛОВЕКА

Вид РИД

Изобретение

№ охранного документа
0002590704
Дата охранного документа
10.07.2016
Аннотация: Изобретение относится к области биотехнологии, конкретно к технологии получения генно-инженерных конструкций для экспрессии трансгенов в клетках млекопитающих, и может быть использовано для рекомбинантной продукции тромбоцитарного фактора роста человека. Для эффективной экспрессии в клетках млекопитающих оптимизирован ген тромбоцитарного фактора роста человека (PDGF-B), последовательность нуклеотидов которого представлена на фиг. 1. 3 ил., 1 пр.

Изобретение относится к области биотехнологии, технологии получения генно-инженерных конструкций для экспрессии трансгенов в клетках млекопитающих in vitro и in vivo с целью их применения в клеточной инженерии и в генной терапии. Изобретение представляет собой модифицированную последовательность гена В-полипептидной цепи тромбоцитарного фактора роста (PDGF-B) человека, включаемого в состав генно-инженерных векторов в качестве одного из фрагментов.

Тромбоцитарные факторы роста представляют собой группу ростовых факторов, играющих важную роль в эмбриогенезе, а также в процессах репарации и регенерации поврежденных тканей. Они стимулируют пролиферативную и миграционную активность мезенхимальных клеток, являются кофактором других ростовых факторов, стимулируют секреторную активность клеток, продукцию ими белков внеклеточного матрикса, таких как фибронектин, коллаген, протеогликаны. Эти свойства делают тромбоцитарные факторы роста привлекательными для использования в различных биотехнологиях, в том числе генной и клеточной терапии, при производстве биотрансплантатов.

Тромбоцитарные факторы роста являются димерами, состоящими из полипептидных цепей, связанных дисульфидными связями. Существуют четыре гена PDGF, кодирующие PDGF-A, PDGF-B, PDGF-C и PDGF-D полипептидные цепи (Linda Fredriksson, Hong Li, Ulf Eriksson. Cytokine & Growth Factor Reviews 15 (2004) 197-204). PDGF-B экспрессируется в эндотелиальных клетках, мегакариоцитах и нейронах (Hellström M, Kalén M, Lindahl Ρ, Abramsson A, Betsholtz С. Development 1999; 126:3047-55). Он является одним из важнейших факторов ангиогенеза. PDGF-BB стимулирует миграцию перицитов и гладкомышечных клеток в места образования новых сосудов и тем самым способствует стабилизации вновь сформированных капилляров (Banfi A. von Degenfeld G. Gianni-Barrera R. Rednato S. Merchant MJ. McDonald DM. Blau HM. FASEB J. 2012 Jun; 26(6):2486-97; Gaengel K., Genové G., Armulik Α., Betsholtz С. (2009) Arterioscler. Thromb. Vase. Biol. 29, 630-638).

Перспективы генной терапии в лечении заболеваний, связанных с нарушением кровоснабжения, продемонстрированы как в экспериментальных, так и в клинических исследованиях (Ylä-Herttuala S., Rissanen Т.Т., Vajanto I., Hartikainen J.J. Am. Coll. Cardiol., 2007, vol. 49, pp. 1015-1026; Banfi A. von Degenfeld G. Gianni-Barrera R. Reeinato S. Merchant MJ, McDonald DM. Blau HM. FASEB J. 2012 Jun; 26(6):2486-97).

Технической задачей, решаемой авторами настоящего изобретения, является создание модифицированной последовательности гена PDGF-B, которая при ее включении в состав генно-инженерного вектора позволяла бы достичь более высокого уровня экспрессии соответствующего белка в клетках, трансфицированных данным вектором.

Технический результат достигался модификацией природной последовательности гена PDGF-B, в основе которой лежала вырожденность генетического кода. Последовательность модифицировали таким образом, чтобы триплеты нуклеотидов, кодирующие некоторые из аминокислот белковой последовательности тромбоцитарного фактора роста, встречались в генах человека наиболее часто. При этом использовали опубликованные в открытых источниках данные по частотам встречаемости кодонов (http://www.kazusa.or.jp/codon/).

На Фиг. 1 представлена последовательность нуклеотидов гена PDGF-Bopt (средние строки) в сравнении с последовательностью нуклеотидов природного гена PDGF-B (верхние строки). Показана также последовательность аминокислот кодируемого белкового продукта - тромбоцитарного фактора роста человека (нижние строки). Серым фоном в последовательности гена PDGF-Bopt выделены триплеты нуклеотидов, отличные от таковых в природной последовательности.

На Фиг. 2 приведена функциональная карта плазмиды pVAX1-PDGF-Bopt.

На Фиг. 3 представлены результаты количественного определения белка PDGF-BB человека в среде культивирования клеток линии НЕК293-Т, трансфицированных плазмидами pVAX1, pVAX1-PDGF-B, pVAX1-PDGF-Bopt.

Синтез оптимизированного гена PDGF-Bopt и конструирование плазмиды осуществляли с помощью стандартной технологии и оборудования, применяемых для решения подобных задач в генной инженерии (Watson J.D., Gilman M., Witkowski J., Zoller M. - Recombinant DNA, Scientific American Books, New York, 1992).

Дизайн оптимизированной последовательности нуклеотидов, кодирующей тромбоцитарный фактор роста человека, проводили на основе базы данных частоты встречаемости кодонов у разных организмов, доступной на вэб-сайте http://www.kazusa.or.jp/codon/. Среди триплетов нуклеотидов, кодирующих аминокислоты белковой последовательности природного гена PDGF-B, выявляли такие, которые редко встречаются в генах человека. Выявленные редкие триплеты, а также соседние с ними триплеты заменяли на триплеты, кодирующие ту же аминокислоту, но при этом встречающиеся в генах человека наиболее часто. Благодаря вырожденности генетического кода все аминокислоты природного гена тромбоцитарного фактора роста человека остались неизмененными. Полученная последовательность нуклеотидов представлена на Фиг. 1.

Плазмиду, несущую оптимизированный ген PDGF-Bopt, получали методом генно-инженерного конструирования, как описано ниже на примере плазмиды pVAX1-PDGF-Bopt.

Химически синтезировали следующие олигонуклеотиды:

Смешивали их (по 2 мкМ каждого) в лигазном буфере и кинировали. После инактивации киназы полученную смесь (смесь 1) смешивали с равным объемом смеси 2, представляющей собой следующие синтезированные олигонуклеотиды (также по 2 мкМ) в лигазном буфере:

Прогревали на 95°С в течение 1 мин и давали медленно остыть до комнатной температуры для медленного отжига олигонуклеотидов. Далее полученную смесь разводили в 5 раз 1х лигазным буфером и ставили реакцию лигирования на ночь. На следующий день лигазную смесь разводили в 5 раз и подвергали ее ПЦР со следующими концевыми праймерами:

Разделение и идентификацию продуктов реакции осуществляли методом электрофореза в 1,5% агарозном геле. Далее вырезали из геля основную полосу, соответствующую целевому продукту реакции, проводили экстракцию ДНК и клонировали ее в коммерчески доступную плазмиду pVAX1, расщепленную рестриктазами EcoR1 и EcoRV, с получением плазмиды pVAX1-PDGF-Bopt. Встраивание последовательности оптимизированного PDGF-B и ее идентичность подтверждали рестриктным анализом и секвенированием.

Эффективность заявляемого изобретения иллюстрируется следующим примером.

Пример. Клетки НЕК293Т, культивируемые в 6-луночной плашке в среде DMEM, содержащей 10% эмбриональной телячьей сыворотки, трансфицировали плазмидой pVAX1-PDGF-Bopt, несущей оптимизированный ген тромбоцитарного фактора роста человека (PDGF-Bopt), или контрольными плазмидами pVAX1-PDGF-B (кодирует природный ген тромбоцитарного фактора роста человека) и pVAX1 (пустая плазмида). Для трансфекции клеток в одной лунке плашки брали 2,5 мкг ДНК и 7,5 мкл реагента Lipofectamine 2000 (Invitrogen), процедуру проводили в соответствии с протоколом производителя. Через 24 ч после трансфекции культуральную среду заменяли на свежую и инкубировали клетки в течение 48 часов. Концентрацию гомодимера тромбоцитарного фактора роста человека В (PDGF-BB) в среде культивирования клеток определяли методом иммуноферментного анализа с использованием набора реагентов Human PDGF-BB Quantikine ELISA Kit (R&D Systems) в соответствии с протоколом производителя.

Результаты измерений представлены на Фиг. 3, где отражена средняя концентрация гомодимера тромбоцитарного фактора роста ВВ (PDGF-BB) в среде культивирования клеток линии НЕК293Т, трансфицированных плазмидой pVAX1, pVAX1-PDGF-B или плазмидой pVAX1-PDGF-Bopt.

Иммуноферментный анализ показал, что в условиях эксперимента концентрация PDGF-BB в среде культивирования клеток, трансфицированных вектором с оптимизированной последовательностью гена PDGF, составляла 1129±233,3 нг/мл, что в 4,01 раза выше, чем в группе «pVAX1-PDGF-B» (281,4±34,8 нг/мл). Концентрация белка в группе «pVAX1» была ниже порога чувствительности метода.

Ген тромбоцитарного фактора роста человека, оптимизированный для экспрессии в клетках млекопитающих, который представлен последовательностью нуклеотидов, приведенной на Фиг. 1.
ГЕН PDGF-Bopt ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА ЧЕЛОВЕКА
ГЕН PDGF-Bopt ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА ЧЕЛОВЕКА
ГЕН PDGF-Bopt ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА ЧЕЛОВЕКА
Источник поступления информации: Роспатент

Showing 21-21 of 21 items.
20.02.2019
№219.016.c064

Способ одновременного днк-тестирования на наличие полиморфизмов н63d и c282y в гене hfe, связанных с наследственным гемохроматозом

Изобретение относится к области молекулярной биологии и может быть использовано в медицине. Предложен усовершенствованный способ одновременного генотипирования полиморфизмов H63D и C282Y в гене HFE с помощью метода ПЦР в реальном времени с флуоресцентной детекцией. Новый способ отличается...
Тип: Изобретение
Номер охранного документа: 0002304170
Дата охранного документа: 10.08.2007
Showing 131-140 of 180 items.
29.12.2017
№217.015.f061

Способ сухой электронно-лучевой литографии

Использование: для формирования резистных масок. Сущность изобретения заключается в том, что наносят слой резиста, в качестве которого выбирают низкомолекулярный полистирол, на подложку методом термического вакуумного напыления, при этом температура подложки во время напыления не более 30°C;...
Тип: Изобретение
Номер охранного документа: 0002629135
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f106

Способ приготовления катализатора для получения синтез-газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез-газа из метана с его использованием

Изобретение относится к технологии переработки газообразного углеводородного сырья. Описан способ приготовления катализатора для получения синтез-газа, который включает электрохимическую обработку в ионной жидкости бутилметилимидазолий ацетат BMIMAc и последующее нанесение методом...
Тип: Изобретение
Номер охранного документа: 0002638831
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f3ff

Способ получения замещенных 3-арил-5-хлоризоксазолов

Изобретение относится к области органической химии, связанной с синтезом производных изоксазола, а именно к способу получения замещенных 3-арил-5-хлоризоксазолов общей формулы (I), где R - H, 3-Cl, 3-Br, 3-NO, 4-Cl, 4-Br, 4-F, 4-NO, 2-NO. Способ осуществляют взаимодействием...
Тип: Изобретение
Номер охранного документа: 0002637927
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f447

Волоконно-оптический нейроинтерфейс и способ для долговременной оптической регистрации процессов в мозге живых свободно движущихся животных

Предлагаемое изобретение относится к волоконно-оптическим устройствам и способам, предназначенным для проведения измерений функционально значимых нейрофизиологических процессов, происходящих в мозге живых свободно движущихся лабораторных животных, оптическими методами. Заявленный...
Тип: Изобретение
Номер охранного документа: 0002637823
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f5d7

Сенсорный элемент и способ детектирования изменения состава исследуемой жидкой или газообразной среды

Группа изобретений относится к способам и устройствам для измерения и анализа концентраций газообразных и жидких сред. Сенсорный элемент для детектирования изменения состава исследуемой жидкой или газообразной среды представляет собой многослойный наноструктурированный материал с сенсорной...
Тип: Изобретение
Номер охранного документа: 0002637364
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f627

Способ получения мелкокристаллического титаната бария

Изобретение относится к области синтеза неорганических материалов, а именно титаната бария, используемого в качестве сырья для изготовления сегнетоэлектрической керамики. Способ получения мелкокристаллического титаната бария включает обработку в реакторе в статическом режиме смеси порошков...
Тип: Изобретение
Номер охранного документа: 0002637907
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f7d3

Моноклональное антитело, связывающееся с гликопротеином вируса эбола, фрагменты днк, кодирующие указанное антитело, и антигенсвязывающий фрагмент

Изобретение относится к области биотехнологии, а именно к моноклональному антителу, селективно связывающему гликопротеин вируса Эбола с константой диссоциации комплекса 1,8×10М, а также изолированным фрагментам ДНК, кодирующим участки легкой и тяжелой цепи указанного антитела, и...
Тип: Изобретение
Номер охранного документа: 0002639533
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f7f2

Способ скрининга противоопухолевых препаратов - ингибиторов parp1 на основе биохимических методов анализа

Изобретение относится к биохимии, в частности к способу скрининга противоопухолевых препаратов - ингибиторов PARP1. Для осуществления указанного способа проводят сборку нуклеосом из очищенных гистонов на ДНК-матрицах, затем лигирование с РНК-полимеразой и внесение в полученный комплекс...
Тип: Изобретение
Номер охранного документа: 0002639535
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f8cc

Композиция, ингибирующая теломеразу

Изобретение относится к композиции, ингибирующей теломеразу. Указанная композиция включает блок-сополимер полиоксиэтилена и полиоксипропилена, а также координационное соединение производного имидизол-4-она, ингибирующее теломеразу, общей формулы При этом координационное соединение производного...
Тип: Изобретение
Номер охранного документа: 0002639819
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8d4

Система для адресного контроля нейронов мозга живых свободноподвижных животных на основе размыкаемого волоконно-оптического зонда с многоканальными волокнами

Группа изобретений относится к медицине, биологии и включает систему и способ ее использования для адресного контроля нейронов мозга живых, свободноподвижных животных на основе размыкаемого волоконно-оптического зонда с многоканальными волокнами. Система включает лазерную систему возбуждения,...
Тип: Изобретение
Номер охранного документа: 0002639790
Дата охранного документа: 22.12.2017
+ добавить свой РИД