×
20.08.2016
216.015.4bb1

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Технический результат: повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС. Способ изготовления тензорезисторного датчика давления с высокой временной и температурной стабильностью на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС) включает формирование тензорезисторов путем последовательности технологических операций, воздействие тестовых факторов, определение сопротивлений тензорезисторов при тестовых воздействиях, вычисление по ним критериев стабильности и сравнение их с тестовыми значениями. При этом после присоединения выводных проводников к контактным площадкам тензорезисторы НиМЭМС подвергают воздействию ряда тестовых напряжений, полярность которых совпадает с рабочей полярностью, и ряда тестовых напряжений, полярность которых противоположна рабочей полярности, а величины напряжений при обеих полярностях последовательно равны NU, 2NU, 3NU, … NNU, где N-количество интервалов разбиения величины максимально допустимого напряжения питания U тензорезисторов, и измеряют токи, протекающие через тензорезисторы при каждом тестовом значении напряжения. Критерии стабильности определяют по соотношениям

Предлагаемое изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования.

Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков [1].

Недостатком известного способа изготовления является сравнительно низкая временная стабильность вследствие отсутствия выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС. Отсутствие такого выявления при эксплуатации приводит к разному временному и температурному изменению сопротивлений тензорезисторов НиМЭМС, в том числе вследствие различной скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной схемы. Недостаточная временная и температурная стабильность приводит к увеличению временной и температурной погрешности и уменьшению ресурса и срока службы датчика.

Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, выбранный в качестве прототипа, заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, воздействии тестовых факторов, определении сопротивлений тензорезисторов при тестовых воздействиях, вычислении по ним критериев стабильности и сравнении их с тестовыми значениями [2].

Недостатком известного способа изготовления является сравнительно низкая временная и температурная стабильность тензорезисторов вследствие отсутствия выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС с несовершенной внутренней структурой. Отсутствие такого выявления приводит к разному временному и температурному изменению сопротивлений тензорезисторов НиМЭМС в процессе эксплуатации, а следовательно, к увеличению временной и температурной погрешности и уменьшению ресурса и срока службы датчика. Кроме того, низкая временная и температурная стабильность тензорезисторов НиМЭМС является причиной сравнительно высоких значений времени готовности и погрешности при воздействии нестационарных температур и повышенных виброускорений.

Целью предлагаемого изобретения является повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовой измерительной цепи НиМЭМС с необходимой внутренней структурой (в пределах выбранных критериев) при помощи жесткой регламентации нелинейностей и разностей нелинейностей вольтамперных характеристик тензоэлементов и мостовой измерительной цепи НиМЭМС.

Поставленная цель достигается тем, что в способе изготовления тензорезисторного датчика давления с высокой временной и температурной стабильностью на основе тонкопленочной НиМЭМС, заключающемся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, воздействии тестовых факторов, определении сопротивлений тензорезисторов при тестовых воздействиях, вычислении по ним критериев стабильности и сравнении их с тестовыми значениями, в соответствии с заявляемым изобретением после присоединения выводных проводников к контактным площадкам тензорезисторы НиМЭМС подвергают воздействию ряда тестовых напряжений, полярность которых совпадает с рабочей полярностью, и ряда тестовых напряжений, полярность которых противоположна рабочей полярности, а величины напряжений при обеих полярностях последовательно равны где N - количество интервалов разбиения величины максимально допустимого напряжения питания Uм тензорезисторов, и измеряют токи, протекающие через тензорезисторы при каждом тестовом значении напряжения, а критерии стабильности определяют по соотношениям

где Ij+ - ток, измеренный при тестовых напряжениях Uj+, полярность которых совпадает с рабочей полярностью;

Ij- - ток, измеренный при тестовых напряжениях Uj-, полярность которых противоположна рабочей полярности,

и, если |ψ1(R)+|<|ψ1(R)max|, |ψ1(R)-|<|ψ1(R)max|, |ψ2(R)|<|ψ2(R)max|, где ψ1(R)max, ψ2(R)max - соответственно предельно допустимое значение первого и второго критерия стабильности, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

Кроме того, в соответствии с предлагаемым изобретением тензорезисторы, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и подвергают ее воздействию ряда тестовых напряжений, полярность которых совпадает с рабочей полярностью, и ряда тестовых напряжений, полярность которых противоположна рабочей полярности, а величины напряжений при обеих полярностях последовательно равны где Nc - количество интервалов разбиения величины максимально допустимого напряжения питания Uмс мостовой измерительной цепи, и измеряют ток Icj, протекающий через мостовую измерительную цепь при напряжении Ucj, а критерий стабильности определяют по соотношению

где Icj+ - ток мостовой измерительной цепи, измеренный при тестовых значениях напряжения Ucj+, полярность которого совпадает с рабочей полярностью; Icj- - ток мостовой измерительной цепи, измеренный при тестовых значениях напряжения Ucj-, полярность которого противоположна рабочей полярности, и, если |ψ3(R)+|<|ψ3(R)max|, |ψ3(R)-|<|ψ3(R)max|, |ψ4(R)|<|ψ4(R)max|, где ψ3(R)max и ψ4(R)max - соответственно предельно допустимое значение третьего и четвертого критерия стабильности, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

Заявляемый способ реализуется следующим образом. Изготавливают (например, из сплава 36НКВХБТЮ) мембрану с периферийным основанием в виде оболочки вращения методами лезвийной обработки с применением на последних стадиях электроэрозионной обработки. Полируют поверхность мембраны с использованием электрохимикомеханической доводки и полировки или алмазной доводки и полировки. Методами тонкопленочной технологии на планарной поверхности мембраны последовательно наносят сплошными слоями диэлектрическую пленку в виде структуры SiO-SiO2 с подслоем хрома (поз. 1, Фиг. 1), тензочувствительную пленку из сплава Х20Н75Ю (поз. 2, Фиг. 1). При формировании перемычек и контактных площадок методом фотолитографии низкомную пленку V-Au (золото с подслоем ванадия) (поз. 3, 4, Фиг. 1) наносят сплошным слоем на тензочувствительную пленку (из сплава Х20Н75Ю). Формируют перемычки и контактные площадки методом фотолитографии с использованием шаблона перемычек и контактных площадок. Формирование тензоэлементов проводят методом фотолитографии с использованием ионно-химического травления в среде аргона и шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков. После присоединения выводных проводников к контактным площадкам до герметизации тензоэлементов с перемычками и контактными площадками помещают упругие элементы со сформированными на них таким образом тензорезисторами в специальное технологическое приспособление, обеспечивающее защиту от воздействия окружающей среды и электрическое контактирование с использованием микросварки выводных проводников с измерительной цепью. Тензорезисторы НиМЭМС подвергают воздействию ряда тестовых напряжений, полярность которых совпадает с рабочей полярностью, и ряда тестовых напряжений, полярность которых противоположна рабочей полярности, а величины напряжений при обеих полярностях последовательно равны N-1Uм, 2N-1Uм, 3N-1Uм, … NN-1Uм, где N - количество интервалов разбиения величины максимально допустимого напряжения питания Uм тензорезисторов. Например, при N=5 величины напряжений при обеих полярностях последовательно равны 0,2Uм, 0,4Uм, 0,6Uм, 0,8Uм, 1,0Uм. Измеряют токи, протекающие через тензорезисторы при каждом тестовом значении напряжения. Критерии стабильности определяют по соотношениям (1), (2).

Если |ψ1(R)+|<|ψ1(R)max|, |ψ1(R)-|<|ψ1(R)max|, |ψ2(R)|<|ψ2(R)max|, где ψ1(R)max, ψ2(R)max, - соответственно предельно допустимое значение первого и второго критерия стабильности, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. В соответствии с п. 2 формулы изобретения тензорезисторы, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и подвергают ее воздействию ряда тестовых напряжений, полярность которых совпадает с рабочей полярностью, и ряда тестовых напряжений, полярность которых противоположна рабочей полярности. Величины напряжений при обеих полярностях последовательно равны где Nc - количество интервалов разбиения величины максимально допустимого напряжения питания Uсм мостовой измерительной цепи. Например, при N=5 величины напряжений при обеих полярностях последовательно равны 0,2Uсм, 0,4Uсм, 0,6Uсм, 0,8Uсм, 1,0Uсм. Измеряют ток Icj, протекающий через мостовую измерительную цепь при напряжении Ucj. Критерии стабильности определяют по соотношениям (3), (4). Если |ψ3(R)+|<|ψ3(R)max|, |ψ3(R)-|<|ψ3(R)max|, |ψ4(R)|<|ψ4(R)max|, где ψ3(R)max и ψ4(R)max - соответственно предельно допустимое значение третьего и четвертого критерия стабильности, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

Установление причинно-следственной связи заявляемых признаков и достигаемого технического эффекта проведем исходя из установленной в результате теоретических и экспериментальных исследований зависимости величины электрического сопротивления тензорезисторов тонкопленочной НиМЭМС с структурой X20H75Ю-V-Au, при наличии в ней примесей, дефектов, окислов, от величины и полярности приложенного напряжения. При этом вольтамперная характеристика тензорезисторов носит нелинейный характер, закон Ома в классическом понимании не соблюдается, т.к. на вольтамперной характеристике могут быть участки, характерные для отрицательных сопротивлений. При отсутствии внутренних дефектов структуры величина сопротивления тензорезисторов тонкопленочной НиМЭМС не зависит от величины и полярности приложенного напряжения и подчиняется закону Ома. Несовершенство внутренней структуры НиМЭМС возникает в результате различных причин - нарушение режимов технологического процесса, скорости напыления, концентрации остаточного газа и температуры подложки, отсутствие единого вакуумного цикла при формировании тензорезисторов. В результате происходит образование широкой гаммы окислов хрома и ванадия. Что особенно важно для тензорезисторов НиМЭМС, по типу проводимости окислы переходных металлов могут быть диэлектриками, полупроводниками или металлами. Например, ванадий с кислородом образует большое количество оксидных фаз, в кристаллической решетке атомы ванадия могут иметь различную степень окисления: VO, V2O3, фазы гомологического ряда VnO2n-1, VO2, V6O13 и V2O5. Субоксиды VOx(x<l), монооксид VO, а также V7O13 проявляют металлические свойства. Пятиокись ванадия - диэлектрик с широкой запрещенной зоной. Остальные оксиды в основном состоянии являются полупроводниками с относительно невысоким удельным сопротивлением. Таким образом, наличие окислов, примесей и дефектов приводит к образованию двухфазных систем типа «металл-диэлектрик» и «металл-полупроводник». Отклонения состава от необходимых концентраций для двухфазных систем типа «металл-диэлектрик» и «металл-полупроводник» ведут к значительному отклонения от термодинамического равновесия внутренней структуры, нелинейности вольтамперной характеристики тонкопленочных тензорезисторов, различию их сопротивления в зависимости от полярности приложенного напряжения и плохой временной и температурной стабильности НиМЭМС. В то же время значительные отклонения от равновесия обязательно приведут к последующему равновесию и изменению вольтамперной характеристики НиМЭМС (в течение ресурса работы НиМЭМС). Поэтому отличительным свойством оксидов переходных металлов является то, что в них наблюдается переходы "металл-изолятор", "металл-полупроводник", "изолятор-металл", "полупроводник-металл", при некоторой критической температуре. Величина критической температуры перехода зависит от типа окисла. При этом, например, для оксидов ванадия критическая температура принимает значения в пределах от 70 до 450 К. Указанный диапазон температур для современных тонкопленочных НиМЭМС является рабочим. Поэтому вероятность изменения типа проводимости высока, что не допустимо. В соответствии с изложенным определение нелинейности вольтамперной характеристики тензорезисторов и мостовой измерительной цепи на их основе при воздействии ряда тестовых напряжений, полярность которых совпадает с рабочей полярностью, и ряда тестовых напряжений, полярность которых противоположна рабочей полярности, и первого критерия стабильности, вычисляемого по заявляемому соотношению (1), а также сравнение его с предельно допустимым значением обеспечивает выявление на ранней стадии изготовления НиМЭМС с недопустимой нелинейностью вольтамперной характеристики тензоэлементов. При этом исключаются из производства тензоэлементы НиМЭМС, имеющие аномально большие значения нелинейности вольтамперной характеристики, а следовательно, имеющие помимо металлического типа проводимости полупроводниковый и диэлектрический тип проводимости, т.е. имеющие несовершенные внутренние структуры. Выполнение неравенства по соотношению (2) обеспечивает дополнительное исключение попадания на последующую сборку тензорезисторов, имеющих хотя бы в одном поддиапазоне воздействующего напряжения питания различной полярности отклонение сопротивлений от заданных границ, а следовательно, уменьшает вероятность пропуска НиМЭМС, имеющих концентрацию примесей, дефектов и окислов переходных металлов выше предельно допустимой. Иными словами физический смысл соотношений (1) состоит в определении нелинейностей вольтамперных характеристик тензорезисторов при различных полярностях напряжения питания, а соотношения (2) - в определении разности нелинейностей вольтамперных характеристик тензорезисторов при различных полярностях напряжения питания. Аналогично определение нелинейностей вольтамперных характеристик мостовой измерительной цепи НиМЭМС при различных полярностях напряжения питания, в соответствии с соотношениями (3) и разностей этих нелинейностей в соответствии с соотношением (4) обеспечивает исключение попадания на последующую сборку НиМЭМС с мостовой измерительной цепью, имеющей хотя бы в одном поддиапазоне воздействующего напряжения питания различной полярности отклонение нелинейностей вольтамперных характеристик от заданных границ, а следовательно, уменьшает вероятность пропуска мостовых измерительных цепей НиМЭМС в целом, имеющих концентрацию примесей, дефектов и окислов переходных металлов выше предельно допустимой (интегральный критерий).

Внедрение заявляемого способа в производство тензорезисторных датчиков давления на основе тонкопленочных НиМЭМС обеспечивает повышение временной и температурной стабильности при сравнительно небольших материальных и временных затратах, что позволяет увеличить ресурс и срок службы датчиков. Кроме того, жесткая регламентация величин нелинейности тензоэлементов и мостовой измерительной цепи в целом обеспечивает уменьшение времени готовности, погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов диагонали питания мостовой измерительной цепи интеллектуальных датчиков давления на основе НиМЭМС. Таким образом, техническим результатом изобретения является повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовой измерительной цепи НиМЭМС с необходимой внутренней структурой (в пределах выбранных критериев) при помощи жесткой регламентации нелинейностей и разностей нелинейностей вольтамперных характеристик тензорезисторов и мостовой измерительной цепи НиМЭМС.

Источники известности

1. RU. Белозубов Е.М., Белозубова Н.Е. Способ изготовления тонкопленочного тензорезисторного датчика давления. Патент РФ №2442115. Бюл. №4 от 10.02.12.

2. RU. Белозубов Е.М., Белозубова Н.Е., Козлова Н.А. Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы. Патент РФ №2498249. Бюл. №31 от 10.11.13.


СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ С ВЫСОКОЙ ВРЕМЕННОЙ И ТЕМПЕРАТУРНОЙ СТАБИЛЬНОСТЬЮ НА ОСНОВЕ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ
Источник поступления информации: Роспатент

Showing 81-90 of 104 items.
13.01.2017
№217.015.8484

Способ изготовления датчика вакуума наноструктурой на основе смешанных полупроводниковых оксидов и датчик вакуума на его основе

Изобретение относится к датчикам давления разреженного газа, а также к способам изготовления таких датчиков. Способ изготовления датчиков давления включает образование гетероструктуры, формирование в ней тонкопленочного полупроводникового резистора, имеющего вид сетчатой наноструктуры...
Тип: Изобретение
Номер охранного документа: 0002602999
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.86e6

Усиливающий пьезоэлектрический актюатор

Изобретение относится к электротехнике и может быть использовано в качестве исполнительного механизма управляющих систем прецизионного приборостроения, в оптических системах и др. Технический результат состоит в повышении линейности, точности позиционирования, нагрузочного усилия, надежности и...
Тип: Изобретение
Номер охранного документа: 0002603353
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.963d

Устройство управления самочувствительным линейным пьезоэлектрическим актюатором

Изобретение относится к электротехнике и и может быть использовано для привода различных устройств в прецизионном приборостроении, в оптических системах, в системах нанотехнологий. Технический результат состоит в упрощении управления и повышении надежности и уменьшении габаритов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002608842
Дата охранного документа: 25.01.2017
25.08.2017
№217.015.99a1

Способ получения биопрепарата, обладающего ноотропным действием

Изобретение относится к области фармакологии, а именно к способу получения пептидного биопрепарата ноотропного действия. Способ получения пептидного биопрепарата ноотропного действия заключается в гомогенизации личинок трутневого расплода в охлажденном изотоническом растворе NaCl, кипячении...
Тип: Изобретение
Номер охранного документа: 0002609872
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.a1af

Способ реставрации анатомических препаратов

Изобретение относится к области медицины, преимущественно к нормальной и патологической анатомии, зоологии и эмбриологии. Для восстановления ранее фиксированных и бальзамированных анатомических препаратов используют 1-10%-ный раствор бензоата натрия. Способ позволяет улучшить качество,...
Тип: Изобретение
Номер охранного документа: 0002606749
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b075

Способ изготовления газового сенсора на основе термовольтаического эффекта в оксиде цинка

Изобретение относится к нанотехнологии и может быть использовано при изготовлении газовых сенсоров. Предложен способ изготовления газовых сенсоров, содержащих корпус, установленную в нем на основании двухслойную наноструктуру ZnO-ZnO:Cu, точечные контакты, соединенные с выводами корпуса,...
Тип: Изобретение
Номер охранного документа: 0002613488
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.bad6

Способ неинвазивной экспресс-диагностики диабета второго типа методом ик-спектроскопии

Изобретение относится к медицине, в частности эндокринологии, и может быть использовано для неинвазивной экспресс-диагностики диабета второго типа. Проводят забор слюны человека. С помощью метода ИК-Фурье спектроскопии записывают ИК-спектры полос поглощения подсушенного при 20°С материала. При...
Тип: Изобретение
Номер охранного документа: 0002615722
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.bce2

Способ нанесения гальванических покрытий сплавом олово-цинк

Изобретение относится к области гальваностегии, в частности к нанесению гальванических покрытий сплавом олово-цинк с содержанием цинка в сплаве 20-80%, и может быть использовано для нанесения защитных покрытий, в том числе в виде альтернативы кадмиевым покрытиям. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002616314
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bd37

Самочувствительный многослойный пьезоэлектрический актюатор

Изобретение относится к области метрологии. Пьезоэлектрический актюатор содержит пьезокерамические секции, каждая из которых состоит из пары соединенных механически друг с другом пьезоэлементов, имеющих на одной плоской поверхности грани по одному плоскому электроду, а на другой противоположной...
Тип: Изобретение
Номер охранного документа: 0002616225
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c95a

Датчик давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом

Изобретение относится к измерительной технике, в частности к микромеханическим датчикам, и может быть использовано для создания датчиков для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур. Датчик...
Тип: Изобретение
Номер охранного документа: 0002619447
Дата охранного документа: 15.05.2017
Showing 81-90 of 125 items.
20.04.2016
№216.015.33b4

Способ адаптивной обработки речевых сигналов в условиях нестабильной работы речевого аппарата

Изобретение относится к медицине, а именно к биометрической идентификации и диагностике органов речевого аппарата. Способ адаптивной обработки речевых сигналов в условиях нестабильной работы речевого аппарата состоит в том, что осуществляют регистрацию речевых сигналов, сегментацию речевых...
Тип: Изобретение
Номер охранного документа: 0002582050
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3659

Способ настройки термоустойчивого датчика давления на основе тонкоплёночной нано- и микроэлектромеханической системы

Способ настройки термоустойчивого датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы относится к области измерительной техники и предназначен для измерения давления при воздействии нестационарной температуры измеряемой среды. Способ заключается во введении в...
Тип: Изобретение
Номер охранного документа: 0002581454
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3840

Противопробуксовочное устройство

Изобретение относится к автомобилестроению и предназначено для оснащения колес автомобилей с целью уменьшения скольжения пневматических шин колес на дорогах в условиях гололеда, снега, грязи. Противобуксовочное устройство содержит металлическое основание, изогнутое в продольном направлении по...
Тип: Изобретение
Номер охранного документа: 0002582759
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b79

Способ защиты транспортного средства от гидродинамического воздействия жидких образований на дороге

Изобретение относится к области машиностроения, в частности к способу защиты транспортного средства от гидродинамического воздействия жидких образований на дороге. Способ защиты транспортного средства заключается в вытеснении жидких образований из зоны контакта с колесом струей рабочего тела...
Тип: Изобретение
Номер охранного документа: 0002583246
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.4569

Способ и устройство для измерения частоты вращения

Использование: для измерения частоты вращения. Сущность изобретения заключается в том, что проводят дискретизацию сигнала датчика частоты вращения, выделение его колебательных составляющих (мод) и нахождение колебательной составляющей с максимальной амплитудой, по частоте которой определяют...
Тип: Изобретение
Номер охранного документа: 0002586825
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4681

Способ предоставления данных, относящихся к пациентам медицинского учреждения

Способ относится к медицине, а именно к медицинским информационным системам, и предназначен для предоставления данных, относящихся к пациентам медицинского учреждения. Для каждого из нескольких пациентов медицинского учреждения формируют совокупность данных. Каждой сформированной совокупности...
Тип: Изобретение
Номер охранного документа: 0002586854
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.583b

Штамм бактерий lactococcus lactis - компонент молочнокислой закваски

Изобретение относится к микробиологии и может быть использовано при производстве кисломолочных продуктов. Штамм Lactococcus lactis №1б-МИ, обладающий способностью накапливать биомассу в условиях минимального состава питательной среды и высокой биохимической активностью в отношении углеводов и...
Тип: Изобретение
Номер охранного документа: 0002588386
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5b03

Способ лечения гипотонической формы дискинезии жёлчевыводящих путей и вегетативных расстройств у больных хроническим бескаменным холециститом

Изобретение относится к медицине, а именно к гатроэнтерологии, и касается лечения гипотонической формы дискинезии желчных путей и вегетативных расстройств у больных хроническим бескаменным холециститом. Для этого в комплекс медикаментозной терапии включают гербастресс - по 1 таблетке в сутки во...
Тип: Изобретение
Номер охранного документа: 0002589900
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f95

Штамм бактерий streptococcus thermophilus, используемый для приготовления кисломолочного продукта

Изобретение относится к микробиологической и пищевой промышленности и касается молочнокислых бактерий Streptococcus thermophilus. Они используются в качестве закваски при получении кисломолочных продуктов обычно в сочетании с культурами болгарской палочки. Штамм Streptococcus thermophilus...
Тип: Изобретение
Номер охранного документа: 0002590716
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6794

Фильтр тонкой очистки топлива многократного использования

Изобретение относится к области двигателестроения, в частности к фильтрам для очистки топлива в двигателях внутреннего сгорания (ДВС). Предложен фильтр тонкой очистки топлива, включающий крышку (4) с входным штуцером (5), корпус (1) с фильтрующим элементом (12) и выходным штуцером (7). Крышка...
Тип: Изобретение
Номер охранного документа: 0002591370
Дата охранного документа: 20.07.2016
+ добавить свой РИД