×
10.06.2016
216.015.4878

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ ПОРОШКОВ ОКСИДА ИНДИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения высокодисперсных порошков оксида индия InО, которые могут быть использованы в качестве полупроводников и газовых сенсоров. Способ получения субмикронного порошка оксида индия включает приготовление исходного водного раствора сульфата индия, который приводят в контакт с реагентом-осадителем, в качестве которого используют сильноосновные гелевые аниониты АВ-17-8 или Purolite А300 в гидроксидной форме. После контакта с анионитом продукт-прекурсор отделяют от раствора, промывают водой, сушат и обжигают при температуре 400°С. Ионообменный способ обеспечивает получение высокодисперсного порошка оксида индия с бимодальным распределением (50, 150 нм) частиц по размерам, не содержащего катионов осадителя, без применения агрессивных сред и давлений. 2 ил., 4 пр.
Основные результаты: Способ получения высокодисперсных порошков оксида индия InO, включающий приготовление исходного водного раствора, содержащего сульфат индия, осаждение из раствора продукта-прекурсора, отделение его от раствора, промывку водой, сушку и обжиг при 400°C, отличающийся тем, что в качестве реагента-осадителя используют сильноосновные гелевые аниониты (AB-17-8 (Россия) или Purolite A300) с полистирольной матрицей, содержащие остатки четвертичных аммониевых оснований -N(CH) в гидроксидной форме.

Изобретение относится к технологии получения порошков оксида индия, которые могут быть использованы в качестве полупроводников и газовых сенсоров.

Известен способ получения нанодисперсных порошкообразных оксидов 3d-металлов, 4d-металлов оксида индия [патент RU №2538585, МПК C01G 25/02, B01J 19/12, опубл. 10.01.2015]. Раствор карбамида и раствор нитрата индия смешивают в смесителе. Полученную смесь подают в камеру электромагнитного излучения, где компоненты смеси взаимодействуют между собой с образованием нанодисперсного оксида индия. В процессе взаимодействия реагенты также образуют пары, которые конденсируются и выводятся из камеры электромагнитного излучения.

К недостаткам данного способа можно отнести сложность и дороговизну аппаратурного оформления, высокую стоимость исходного сырья (карбамида), а также необходимость улавливания паров из камеры электромагнитного излучения.

Известен способ получения нанодисперсных порошков оксида индия [S. Maensiri, P. Laokul, J. Klinkaewnarong, S. Phokha, V. Promarak, S. Séraphin. Indium oxide (In2O 3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties. Optoelectronics and advanced materials - rapid communications Vol. 2, No. 3, March 2008, p. 161-165], в котором 3 г ацетилацетоната индия растворяют в 30 мл водного экстракта алоэ вера и выдерживают в течение нескольких часов при температуре 60°С до удаления воды. Полученный порошкообразный прекурсор измельчают и обжигают при температуре 600°С.

К недостаткам данного способа можно отнести: дороговизну исходных веществ, необоснованность применения алоэ вера для синтеза оксида индия.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения оксида индия [Руководство по неорганическому синтезу. Редактор Г. Брауэр. В шести томах. - М.: Мир, 1985, т. 3, с. 941]. К раствору хлорида индия при 100°С приливают в небольшом избытке раствор аммиака. На несколько часов осадок оставляют «стареть» под маточным раствором при 100°С, затем отмывают водой до отсутствия хлорид-ионов и сушат при комнатной температуре. Полученный гидроксид индия In2O3 прокаливают при 850°С до постоянной массы, а затем еще 30 мин на воздухе при 1000°С.

К недостаткам данного способа можно отнести большой расход воды на промывание осадка от хлорид-ионов.

Техническим результатом заявляемого изобретения является разработка анионообменного способа получения высокодисперсных порошков оксида индия, являющегося достаточно простым, не предполагающего применения агрессивных сред и высоких давлений.

Технический результат достигается тем, что в способе получения порошков оксида индия, включающем приготовление исходного раствора соли индия, осаждение из раствора продукта - прекурсора, отделение от раствора, промывку водой, сушку и обжиг, новым является то, что в качестве реагента-осадителя используют сильноосновный гелевый анионит АВ-17-8 или Purolite А300 в гидроксидной форме с полистирольной матрицей, содержащий в качестве функциональных групп остатки четвертичных аммониевых оснований - N+(СН3)3.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Изобретение поясняется чертежами. На фиг. 1 показаны рентгеновские спектры оксида индия, полученного из сульфатного раствора. На фиг. 2 представлена микрофотография оксида индия.

Необходимость создания настоящего изобретения обусловлена тем, что по данным многих исследований, осаждение In(ОН)3 идет через промежуточную стадию образования основных солей различного состава, например In4(OH)10SO4, In5(OH)14Cl, In(OH)2.5(SO4)0.25 и т.п. При анионообменном синтезе образуются прекурсоры, не содержащие примесей основных солей. Кроме того, предложенный анионообменный синтез приводит к образованию высокодисперсного продукта.

При создании заявленного изобретения были использованы гелевые и пористые сильноосновные аниониты в ОН-форме. Полученные данные свидетельствуют, что использование пористых анионитов нецелесообразно, так как значительная доля осадка (более 50%) удерживается анионитом. Поэтому выбор гелевого сильноосновного анионита АВ-17-8 или Purolite А300 является предпочтительным.

Заявляемый способ осуществляется следующим образом.

Переводят анионит АВ-17-8 (ГОСТ 20301-74) или Purolite А300 в ОН-форму, осуществляют контакт анионита с раствором соли индия (III), отделение и промывку осадка, прокаливание.

Перевод анионита в ОН-форму проводят заливая исходный АВ-17-8 или Purolite А300 в хлоридной форме 1 М раствором NaOH (т:ж=1:3), затем 2 М раствором NaOH - 3 раза, выдерживая каждую порцию в течение часа. После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°С.

Массу анионита, необходимую для синтеза, рассчитывают по формуле:

где CIn, - концентрация исходного раствора индия (III), VIn - объем исходного раствора индия, мл; n - молярное соотношение функциональных групп анионита и ионов индия, СОЕ - статическая обменная емкость анионита в ОН-форме, ммоль-экв·г-1.

Рассчитанное количество анионита, выступающего в качестве реагента-осадителя, приводят в контакт с 50 мл 0,42 М раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Осадок (прекурсор) после промывания водой сушат при температуре 100°С. Далее прекурсор обжигают при температуре 400°С для получения чистой фазы оксида индия (III).

На фиг. 1 представлена рентгенограмма продукта, прокаленного при 400°С. Дифракционные пики с d=2,925Å, 2,531Å, 1,791Å соответствуют чистой фазе кубического In2O3 (JCPDS 74-1990).

Согласно данным РФА продуктов, полученных с использованием анионита АВ-17-8 или Purolite А300 в качестве реагента-осадителя, образование оксида индия происходит при более низких температурах, чем описано в прототипе (1000°С).

Пример 1. Получение высокодисперсных порошков In2O3 из сульфатных растворов индия при температуре 400°С в течение 1 ч.

Навеску анионита АВ-17-8 массой 43 г (n=4,5) приводят в контакт с 50 мл 0,42 М раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при температуре 400°С в течение 1 ч для получения чистой фазы оксида индия. По данным микрорентгеноспектрального анализа, соотношение In:ОН в любой точке твердой фазы составляет 1:3, т.е. соответствует стехиометрии фазы гидроксида. Полученный осадок анализировали методами ИК-спектроскопии, микрорентгенофлуресцентным, атомно-абсорбционным и химическим анализом. В осадке не обнаружено примесей основных солей. Выход продукта - 74%.

На фиг. 1 представлен типичный рентгеновский спектр.

На фиг. 2 представлена электронная микрофотография, из которой следует, что частицы оксида индия имеют форму, близкую к сферической, и размер порядка 50-100 нм, кроме того, наблюдается некоторое количество агломератов субмикронного размера.

Пример 2. Получение высокодисперсных порошков In2O3 из сульфатных растворов индия при температуре 400°С в течение 1 ч.

Навеску анионита АВ-17-8 массой 57 г (n=6) приводят в контакт с 50 мл 0,42 M раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при температуре 400°С в течение 1 часа для получения чистой фазы оксида индия. По данным микрорентгеноспектрального анализа соотношение In:ОН в любой точке твердой фазы составляет 1:3, т.е. соответствует стехиометрии фазы гидроксида. Полученный осадок анализировали методами ИК-спектроскопии, микрорентгенофлуресцентным, атомно-абсорбционным и химическим анализом. В осадке не обнаружено примесей основных солей. Выход продукта - 85%.

Результаты РФА и электронно-микроскопического анализа аналогичны представленным в примере 1 на фиг. 1.

Пример 3. Получение высокодисперсных порошков In2O3 из сульфатных растворов индия при температуре 400°С в течение 1 ч.

Навеску анионита Purolite А300 массой 38 г (n=4,5) приводят в контакт с 50 мл 0,42 M раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при 400°С в течение 1 ч для получения чистой фазы оксида индия. По данным микрорентгеноспектрального анализа, соотношение In:ОН в любой точке твердой фазы составляет 1:3, т.е. соответствует стехиометрии фазы гидроксида. Полученный осадок анализировали методами ИК-спектроскопии, микрорентгенофлуресцентным, атомно-абсорбционным и химическим анализом. В осадке не обнаружено примесей основных солей. Выход продукта - 76%.

Результаты РФА и электронно-микроскопического анализа аналогичны представленным в примере 1 на фиг. 1.

Пример 4. Получение высокодисперсных порошков оксида индия In2O3 из сульфатных растворов индия при температуре 400°С в течение 1 ч.

Навеску анионита Purolite А300 массой 54 г (n=6) приводят в контакт с 50 мл 0,42 M раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при 400°С в течение 1 ч для получения чистой фазы оксида индия. По данным микрорентгеноспектрального анализа соотношение In:ОН в любой точке твердой фазы составляет 1:3, т.е. соответствует стехиометрии фазы гидроксида. Полученный осадок анализировали методами ИК-спектроскопии, микрорентгенофлуресцентным, атомно-абсорбционным и химическим анализом. В осадке не обнаружено примесей основных солей. Выход продукта - 87%.

Результаты РФА и электронно-микроскопического анализа аналогичны представленным в примере 1 на фиг. 1.

Преимущества предлагаемого способа заключаются в том, что он достаточно прост, не предполагает применения агрессивных сред и давлений. Используя данное техническое решение можно добиться получения продукта, не содержащего примесей основных солей, что освобождает в дальнейшем от необходимости длительной промывки полученного осадка. Кроме того, предложенный анионообменный метод синтеза оксида индия приводит к образованию высокодисперсного продукта.

Способ получения высокодисперсных порошков оксида индия InO, включающий приготовление исходного водного раствора, содержащего сульфат индия, осаждение из раствора продукта-прекурсора, отделение его от раствора, промывку водой, сушку и обжиг при 400°C, отличающийся тем, что в качестве реагента-осадителя используют сильноосновные гелевые аниониты (AB-17-8 (Россия) или Purolite A300) с полистирольной матрицей, содержащие остатки четвертичных аммониевых оснований -N(CH) в гидроксидной форме.
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ ПОРОШКОВ ОКСИДА ИНДИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 55 items.
10.02.2015
№216.013.2264

Способ разделения кобальта и никеля

Изобретение относится к гидрометаллургии никеля и кобальта и может быть использовано для разделения этих металлов при переработке растворов выщелачивания. Способ разделения кобальта и никеля из сернокислых растворов осуществляют экстракцией кобальта органической фазой, содержащей...
Тип: Изобретение
Номер охранного документа: 0002540257
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25e4

Композиция на основе дипропионата бетулина

Изобретение относится к химико-фармацевтической промышленности, в частности к противоопухолевой композиции. Противоопухолевая композиция производного бетулина с биосовместимым носителем, где в качестве производного бетулина включает дипропионат бетулина, а в качестве биосовместимого носителя...
Тип: Изобретение
Номер охранного документа: 0002541153
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3926

Способ получения производных 3-сульфата аллобетулина

Изобретение относится к способу получения производных 3-сульфата аллобетулина. Сульфатирование аллобетулина проводят в N,N-диметилформамиде смесью сульфаминовой кислоты и мочевины при температуре 70-75°C в течение 2-3 часов, а выделение продукта проводят охлаждением реакционной массы,...
Тип: Изобретение
Номер охранного документа: 0002546118
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c75

Способ получения сульфатированных производных арабиногалактана

Изобретение относится к способам получения сульфатированного арабиногалактана, используемого в химико-фармацевтической промышленности. Способ включает взаимодействие арабиноногалактана с сульфатирующим комплексом сульфаминовая кислота-мочевина в диметилсульфоксиде при непрерывном перемешивании...
Тип: Изобретение
Номер охранного документа: 0002546965
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f49

Способ получения целлюлозы

Изобретение относится к целлюлозно-бумажной промышленности и может быть использовано для получения целлюлозы из древесного сырья. Способ получения целлюлозы заключается в варке древесной щепы при температуре 98-100°С, интенсивном перемешивании и атмосферном давлении в смеси, содержащей 3,0-5,6...
Тип: Изобретение
Номер охранного документа: 0002547689
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4a09

Способ извлечения иридия (iii) из хлоридных растворов

Изобретение относится к области гидрометаллургии благородных металлов, в частности к аффинажному производству металлов платиновой группы (МПГ). Способ заключается в переводе хлоридных комплексов иридия (III) в хорошо экстрагируемое трибутилфосфатом комплексное соединение иридия (IV) путем...
Тип: Изобретение
Номер охранного документа: 0002550460
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4d6a

Способ переработки железистых редкоземельных фосфатных руд

Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано при переработке железосодержащего и другого фосфатного редкоземельного сырья. Задачами заявляемого изобретения является упрощение способа переработки труднообогатимых железистых руд с использованием...
Тип: Изобретение
Номер охранного документа: 0002551332
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.591f

Способ получения диоксида платины (iv) на поверхности носителя

Изобретение относится к синтезу диоксида платины, применяемого в качестве прекурсора дисперсной платины - составной части катализаторов, например гидрирования и изомеризации углеводородов, а также для получения металл-углеродных композиций на основе высокодисперсной платины. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002554356
Дата охранного документа: 27.06.2015
27.07.2015
№216.013.66c9

Способ извлечения золота из щелочных цианидных растворов

Изобретение относится к способу извлечения золота, в частности сорбции золота из водных цианидных растворов. Способ извлечения золота из щелочных цианидных растворов включает контактирование водного раствора цианида золота с анионитом, имеющим в своем составе аминогруппы. При этом для...
Тип: Изобретение
Номер охранного документа: 0002557866
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6a6b

Способ брикетного выщелачивания

Изобретение относится к извлечению полезных компонентов из руд. Способ выщелачивания полезных компонентов из руды включает подготовку исходной руды, укладку рудного материала, подачу выщелачивающих растворов и сбор продукционных растворов. При этом из исходного рудного материала формируют...
Тип: Изобретение
Номер охранного документа: 0002558796
Дата охранного документа: 10.08.2015
Showing 21-30 of 74 items.
10.01.2014
№216.012.93a1

Способ получения хлора из хлорида кальция

Изобретение может быть использовано для получения хлора, в частности, из хлорида кальция. Для этого после предварительного прокаливания для удаления гидратированной воды хлорид кальция спекается с алюмосиликатом или смесью оксидов алюминия и кремния в мольном соотношении СаО:AlO:SiO=1:1:2 при...
Тип: Изобретение
Номер охранного документа: 0002503487
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9bb0

Композиционный материал на основе синтетического цис-изопренового каучука и сверхвысокомолекулярного полиэтилена (свмпэ) для наружных обкладок конвейерных лент

Изобретение относится к полимерному композиционному материалу и может быть использовано для наружных обкладок резинотканевых конвейерных лент, а также для производства резиновых технических изделий. Композиционный материал для наружных обкладок резинотканевых конвейерных лент на основе...
Тип: Изобретение
Номер охранного документа: 0002505562
Дата охранного документа: 27.01.2014
20.03.2014
№216.012.ab86

Способ получения наноразмерного порошка железоиттриевого граната

Изобретение относится к получению порошков для микроволновой техники и магнитооптики. Способ получения наноразмерного порошка железо-иттриевого граната включает приготовление водного раствора солей иттрия (III) и водного раствора солей железа (III). Сначала реагент-осадитель, в качестве...
Тип: Изобретение
Номер охранного документа: 0002509625
Дата охранного документа: 20.03.2014
20.04.2014
№216.012.ba3a

Способ получения додекаборида алюминия

Изобретение может быть использовано в химической технологии. Способ синтеза додекаборида алюминия включает смешение паров субхлорида алюминия и паров хлорида или фторида бора. Один вариант синтеза додекаборида алюминия включает пропускание паров субхлорида алюминия над элементным бором....
Тип: Изобретение
Номер охранного документа: 0002513402
Дата охранного документа: 20.04.2014
27.05.2014
№216.012.c8bf

Композиция на основе диацетата бетулина

Изобретение относится к фармацевтической промышленности, в частности к композиции производного бетулина с биосовместимым носителем. Композиция, содержащая диацетат бетулина с арабиногалактаном, при определенном соотношении компонентов. Вышеописанная композиция обладает улучшенной...
Тип: Изобретение
Номер охранного документа: 0002517157
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cda9

Способ крепления футеровочных пластин из полимерных материалов к металлической поверхности

Изобретение относится к области транспортного машиностроения. Способ крепления футеровочных пластин из полимерных материалов к металлической поверхности заключается в том, что устанавливают футеровочные пластины на стальные прутки, приваренные к металлической поверхности. На каждый пруток...
Тип: Изобретение
Номер охранного документа: 0002518420
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ce48

Способ получения углеродного адсорбента

Изобретение относится к области получения углеродных сорбентов на основе растительного сырья. Способ получения углеродного адсорбента включает карбонизацию измельченной древесины березы при 300-800°C в инертной среде. После карбонизации осуществляют выдержку карбонизата при конечной температуре...
Тип: Изобретение
Номер охранного документа: 0002518579
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1b9

Способ получения кремния с использованием субхлорида алюминия

Изобретение относится к области металлургии кремния и может быть использовано для получения поликристаллического кремния для фотогальваники. Способ включает восстановление кремния из паров соединений кремния с хлором или кремния с хлором и водородом при смешении этих паров с парами низших...
Тип: Изобретение
Номер охранного документа: 0002519460
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d213

Способ получения ванилина

Изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической отраслях промышленности. Способ заключается в окислении кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины,...
Тип: Изобретение
Номер охранного документа: 0002519550
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d796

Способ получения топливной присадки 1,1-диэтоксиэтана

Настоящее изобретение относится к способу получения оксигенатной топливной присадки 1,1-диэтоксиэтана к дизельным топливам и бензинам, улучшающей их качество. Способ заключается в конверсии этанола при повышенной температуре и давлении в присутствии катализатора. При этом конверсию этанола...
Тип: Изобретение
Номер охранного документа: 0002520968
Дата охранного документа: 27.06.2014
+ добавить свой РИД