×
10.06.2016
216.015.44b8

Результат интеллектуальной деятельности: КОСМИЧЕСКАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С МАШИННЫМ ПРЕОБРАЗОВАНИЕМ ЭНЕРГИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к объектам энергетического машиностроения. В космической энергетической установке в трубопровод между источником тепла и турбиной устанавливается смеситель, сообщенный дополнительным трубопроводом, включающим управляемый посредством электропривода дроссель, с трубопроводом между выходом компрессора и входом тепловоспринимающего тракта теплообменника-рекуператора. Изобретение позволяет улучшить ресурсные характеристики энергоустановки за счет уменьшения времени ее работы при максимальной температуре рабочего тела на входе в турбину при снижении энергопотребления. 1 ил.
Основные результаты: Космическая энергетическая установка с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом, в состав которой входят источник тепла, теплообменник-рекуператор, теплообменник-холодильник системы отвода низкопотенциального тепла на холодильник-излучатель тепла в космическое пространство, турбокомпрессор, электрогенератор, ротор которого кинематически связан с валом турбокомпрессора, трубопроводы, образующие замкнутый контур, отличающаяся тем, что в трубопровод между источником тепла и турбиной включен смеситель, сообщенный дополнительным трубопроводом, включающим управляемый посредством электропривода дроссель, с трубопроводом между выходом компрессора и входом тепловоспринимающего тракта теплообменника-рекуператора.

Изобретение относиться к области энергетического машиностроения и может быть использовано в конструкциях космических турбокомпрессорных энергетических установок с газообразным рабочим телом, реализующим замкнутый термодинамический цикл (цикл Брайтона).

Основным фактором, определяющим эффективность термодинамического цикла преобразования тепловой энергии в механическую и, следовательно, коэффициент полезного действия (КПД) машинного преобразования энергии, в частности, в турбокомпрессорной установке, реализующей замкнутый термодинамический цикл (цикл Брайтона), является разность максимальной и минимальной температуры в цикле - температура рабочего тела на входе в турбину и в компрессор. Например, расчетная оценка, проведенная применительно к турбокомпрессорной установке мощностью 200 кВт и реализующей термодинамический цикл Брайтона, показывает, что при снижении температуры на входе в турбину с 1500 К до 1200 К коэффициент полезного действия энергоустановки при температуре на входе в компрессор 320 К падает с 0,35 до 0,25.

Другим основным фактором, определяющим эффективность энергетической установки, является ее ресурс, который особенно важен для энергетической установки космического назначения, обслуживание и ремонт которой затруднен, а в большинстве случаев невозможен.

Известна электрогенераторная турбокомпрессорная установка, разработанная фирмой "CapstoneTurbineCorporation", мощностью 200 кВт, в основу которой положен открытый термодинамический цикл с регенерацией тепла, предназначенная для работы в условиях земной атмосферы при температуре рабочего тела турбины ~1050 К. Данная установка имеет достаточно высокий КПД из-за условий ее использования, в частности относительно низкой температуры окружающей среды, обеспечивающей достаточную разность максимальной и минимальной температур цикла (в условиях Земли температура воздуха на входе в компрессор составляет от 250 до 310 К), а также из-за отсутствия разницы давлений на входе в компрессор и на выходе турбины (как следствие незамкнутого термодинамического цикла). Данная установка имеет также большой заявленный ресурс (до 20 лет) вследствие относительно низкой температуры на входе в турбину.

Однако в условиях космоса открытый термодинамический цикл на практике не может применяться ввиду ограниченности запаса рабочего тела.

Известна принятая за прототип изобретения космическая энергетическая установка, с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом, реализующая замкнутый термодинамический цикл Брайтона, в состав которой входят источник тепла, например, ядерный реактор, теплообменник-рекуператор, теплообменник-холодильник для отвода низкопотенциального тепла из газообразного рабочего тела контура посредством жидкого теплоносителя на холодильник-излучатель тепла в космическое пространство, турбокомпрессор, кинематически связанный с валом ротора электрогенератора (патент РФ №2508460 от 27.02.2014 г. ).

В данной энергоустановке для достижения значения КПД цикла, сравнимого с КПД аналога, необходимо обеспечивать большую, чем в аналоге, разность температур на входе в турбину и на входе в компрессор, так как в ней существуют дополнительные затраты мощности на преодоление гидросопротивления тракта на участке контура между выходом из турбины и входом в компрессор, в том числе гидросопротивления теплообменника-холодильника, что возможно лишь за счет повышения температуры на входе в турбину, так как снижение температуры на входе в компрессор влечет за собой необходимость существенного увеличения (при мощности энергоустановки 200 кВт - на сотни квадратных метров) площади холодильника-излучателя, его массы и, соответственно, массы энергоустановки до величины, исключающей возможность ее выведения современными ракетами-носителями (РН) даже на опорную орбиту Земли. Так, расчетная оценка показывает, что при доступных современным РН полезных нагрузках площадь (и, следовательно, масса) холодильника-излучателя энергоустановки, работающей по циклу Брайтона, обеспечивается при температуре рабочего тела на входе в компрессор ≥400 К. При такой минимальной температуре цикла достаточно высокий (до 0,3) КПД энергоустановки обеспечивается лишь при максимальной температуре цикла ~1500 К.

Однако увеличение максимальной температуры цикла (температуры на входе на турбину) при использовании современных и перспективных жаропрочных сплавов в качестве материалов для изготовления высокотемпературных турбин существенно снижает их ресурс, так как их долговременная прочность вследствие превышения температуры рекристаллизации снижается в несколько раз. Например, после 1000 часов воздействия температуры 1100°C допустимое для сплава НбЦУ напряжение σ1000 уменьшается в ~2 раза по сравнению с σв, а после 10000 часов σ10000=0,2σвв - предел прочности при нормальной температуре).

Таким образом, как следует из вышеуказанного, максимальный КПД и, соответственно, максимальная мощность энергоустановки обеспечивается при максимальной температуре рабочего цикла, при которой ресурс энергоустановки минимальный.

Однако максимальная электрическая мощность, вырабатываемая энергоустановкой космического назначения при эксплуатации ее, например, в составе космического буксира, требуется лишь при электропитании агрегатов с максимальной мощностью энергопотребления, таких как электрические (ионные, плазменные и т.п.) двигатели на активных участках функционирования буксира (создание импульсов тяги при коррекциях орбиты, выведение на траектории полета к Луне и т.д.), и составляет незначительную часть общего времени функционирования энергоустановки в составе буксира или другого космического аппарата. Остальное время работы энергоустановки может быть связано с необходимостью выработки значительно меньших электрических мощностей для обеспечения, например, электроснабжения обитаемых и автоматических орбитальных станций, модулей на орбите Луны, технологических процессов производства, строительства орбитальных комплексов в космическом пространстве и т.п.

При указанных условиях эксплуатации энергоустановки, принятой в качестве прототипа, выявляется ее существенный недостаток, который заключается в том, что независимо от необходимой потребителю электрической мощности энергоустановка работает при максимальной температуре рабочего тела на входе в турбину как в случае подключения балластных нагрузок для потребления излишней электрической мощности, вырабатываемой энергоустановкой без изменения максимального режима ее работы, так и при уменьшении тепловой мощности реактора и мощности энергоустановки за счет уменьшения давления рабочего тела и его массового расхода посредством откачки части газообразного рабочего тела из замкнутого контура установки.

Таким образом, вне зависимости от электрической мощности, подаваемой на потребители электроэнергии энергоустановка работает при максимальной температуре рабочего тела на входе в турбину, что снижает долговременную прочность турбины, на которую воздействуют значительные центробежные нагрузки, вследствие чего, снижается ресурс турбины и энергоустановки в целом.

Изобретение направлено на повышение ресурсных характеристик энергоустановки за счет уменьшения времени ее работы при максимальной температуре рабочего тела на входе в турбину при уменьшении мощности энергопотребления.

Результат обеспечивается тем, что в космической энергетической установке с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом, реализующим термодинамический цикл Брайтона, в состав которой входят источник тепла (реактор), теплообменник-рекуператор, теплообменник-холодильник системы отвода низкопотенциального тепла из контура на холодильник-излучатель тепла в космическое пространство, турбокомпрессор, электрогенератор, ротор которого кинематически связан с валом турбокомпрессора, и трубопроводы, образующие замкнутый контур, в трубопровод между источником тепла и турбиной включен смеситель, сообщенный дополнительным трубопроводом, включающим управляемый посредством электропривода дроссель, с трубопроводом между выходом компрессора и входом тепловоспринимающего тракта теплообменника-рекуператора.

Предложенная схема турбокомпрессорной энергетической установки позволяет при снижении мощности потребления электроэнергии оперативно уменьшить мощность энергоустановки с уменьшением температуры рабочего тела на входе в турбину, за счет увеличения доли низкотемпературного рабочего тела в смеси с нагретым до максимальной температуры рабочим телом, поступающим из источника тепла (реактора) в смеситель, вследствие увеличения расхода перепуска с выхода компрессора в обход источника тепла (реактора) при уменьшении гидросопротивления магистрали перепуска посредством управляемого электроприводом дросселя.

Таким образом, при максимальной температуре рабочего тела турбины, энергоустановка работает лишь на максимальной мощности энергопотребления и выработки электроэнергии; в остальных случаях эта температура уменьшается. Расчетная оценка показывает, что для энергоустановки мощностью 200 кВт, реализуемой при температуре на входе в турбину 1500 К, за счет перепуска в обход реактора 22% расхода рабочего тела обеспечивается мощность 92 кВт при температуре рабочего тела на входе в турбину 1185 К, а в случае 33% перепуска мощность энергоустановки составляет 43 кВт при температуре на входе в турбину 1059 К. Соответственно, долговременная прочность материала турбины при данных температурах увеличивается в 3,6 и 8 раз, а оцененный (по времени достижения равной прочности) ресурс турбины и энергоустановки при этих температурах увеличивается в 2,6 и 5 раз.

На чертеже представлена принципиальная схема предлагаемой космической энергетической установки.

В состав энергоустановки входят турбокомпрессор, включающий турбину 1 и компрессор 2, источник тепла (реактор) 3, теплообменник-рекуператор 4, теплообменник-холодильник 5, трубопроводы 6, образующие замкнутый контур энергоустановки, смеситель 7, включенный в трубопровод 6 между источником тепла и турбиной 1, трубопровод 8, сообщающий трубопровод 6 между выходом компрессора и входом в тепловоспринимающий тракт теплообменника-рекуператора 4, и смеситель 7, дроссель 9, включенный в трубопровод 8 и управляемый электроприводом 10, электрогенератор 11, кинематически связанный с турбокомпрессором.

При работе на максимальной мощности выработки электроэнергии электрогенератором 11, дроссель 9 закрыт, расход рабочего тела с выхода компрессора 2 в смеситель 7 через трубопровод 8 отсутствует, и газообразное рабочее тело контура из источника тепла 3 через смеситель 7 поступает на вход в турбину 1 с максимальной температурой, равной его температуре на выходе источника тепла (реактора) 3, чем обеспечивается максимальная мощность турбокомпрессора, поступающая на привод электрогенератора 11. При уменьшении потребной электрической мощности энергоустановки, одновременно со снижением тепловой мощности реактора 3 посредством электропривода 10 открывается дроссель 9, обеспечивая перепуск части рабочего тела из трубопровода 6 с выхода компрессора 2 через трубопровод 8 в обход реактора 3 в смеситель 7 и, при постоянстве расхода через контур, уменьшая расход через реактор 3 пропорционально снижению его тепловой мощности; при этом температура рабочего тела на выходе реактора 3 не изменяется. После смешения в смесителе 7 расхода рабочего тела, поступающего из реактора 3 при максимальной температуре, с расходом перепуска рабочего тела, при температуре на выходе из компрессора 2, температура рабочего тела на входе в турбину 1 снижается, вследствие чего мощность турбокомпрессора падает и энергоустановка переходит на пониженный режим электрической мощности электрогенератора 11, сбалансированной с заданной мощностью потребителя электроэнергии, при сохранении оборотов роторов турбокомпрессора-электрогенератора и, следовательно, заданных параметров электрического напряжения, подаваемого на потребитель электроэнергии. На установившемся пониженном режиме энергоустановка продолжает работу при пониженной температуре рабочего тела турбины, обеспечивающей увеличение ресурса турбины и энергоустановки в целом.

Использование изобретения позволяет создать космическую энергетическую установку с машинным преобразованием энергии с управляемой электрической мощностью электрогенератора при одновременном повышении ресурса энергоустановки.

Космическая энергетическая установка с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом, в состав которой входят источник тепла, теплообменник-рекуператор, теплообменник-холодильник системы отвода низкопотенциального тепла на холодильник-излучатель тепла в космическое пространство, турбокомпрессор, электрогенератор, ротор которого кинематически связан с валом турбокомпрессора, трубопроводы, образующие замкнутый контур, отличающаяся тем, что в трубопровод между источником тепла и турбиной включен смеситель, сообщенный дополнительным трубопроводом, включающим управляемый посредством электропривода дроссель, с трубопроводом между выходом компрессора и входом тепловоспринимающего тракта теплообменника-рекуператора.
КОСМИЧЕСКАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С МАШИННЫМ ПРЕОБРАЗОВАНИЕМ ЭНЕРГИИ
Источник поступления информации: Роспатент

Showing 101-110 of 125 items.
24.07.2018
№218.016.746e

Жидкостная ракетная двигательная установка космического аппарата

Изобретение относится к ракетно-космической технике. Жидкостная ракетная двигательная установка космического аппарата, содержащая маршевый двигатель с насосной системой подачи компонентов топлива в камеру сгорания из объемных баков 1 низкого давления, двигатели 5 ориентации и стабилизации с...
Тип: Изобретение
Номер охранного документа: 0002662011
Дата охранного документа: 23.07.2018
26.07.2018
№218.016.754a

Лопастной насос

Изобретение относится к области турбонасосостроения. В лопастном насосе 2 корпус 1 выполнен с коническим участком, в котором размещено рабочее колесо 3 с втулкой 4. Предвключенная осевая ступень 5 с лопастями 6 установлена перед входом в лопастной насос 2 и имеет длину , определяемую...
Тип: Изобретение
Номер охранного документа: 0002662267
Дата охранного документа: 25.07.2018
20.02.2019
№219.016.c1f7

Способ ориентации в пространстве осей связанной системы координат космического аппарата

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ заключается в том, что оси связанной системы координат КА (X, Y, Z) совмещают с осями солнечно-орбитальной системы координат (Х, Y, Z). При этом ось Y направлена на Солнце, а совмещаемая с ней...
Тип: Изобретение
Номер охранного документа: 0002428361
Дата охранного документа: 10.09.2011
01.03.2019
№219.016.cc22

Адаптер в виде сетчатой оболочки вращения конической формы из полимерных композиционных материалов

Изобретение относится к области машиностроения в частности к оболочечным конструкциям из полимерных композиционных материалов, и может быть использовано при создании корпусов или отсеков-адаптеров летательных аппаратов, применяемых в ракетной и авиационной технике. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002350818
Дата охранного документа: 27.03.2009
04.04.2019
№219.016.fc03

Сосуд давления, способ сварки его металлической оболочки и способ получения заданного сечения корневой части сварного соединения его металлической оболочки

Изобретение относится к сварке металлов и может быть использовано для создания высоконагруженных емкостных конструкций. Сосуд давления состоит из внешней неметаллической оболочки и герметичной внутренней металлической оболочки, корневая часть сварного соединения которой выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002344337
Дата охранного документа: 20.01.2009
10.04.2019
№219.017.0660

Способ ориентации осей космического аппарата в солнечно-орбитальную систему координат

Изобретение относится к управлению движением космического аппарата (КА) вокруг центра масс с использованием прибора, измеряющего направление на Солнце. При ориентации КА в солнечно-орбитальную систему координат (COCK) создаются условия для максимального использования солнечной энергии на КА с...
Тип: Изобретение
Номер охранного документа: 0002414392
Дата охранного документа: 20.03.2011
10.04.2019
№219.017.06dd

Способ испытания изделий незамкнутой конфигурации на прочность

Изобретение относится к области испытательной техники и может быть использовано для испытаний головных обтекателей ракет-носителей на прочность и несущую способность. Техническим результатом изобретения является обеспечение возможности испытания с обеспечением заданного графика или программы...
Тип: Изобретение
Номер охранного документа: 0002428669
Дата охранного документа: 10.09.2011
10.04.2019
№219.017.09c1

Международная аэрокосмическая система глобального мониторинга (максм)

Изобретение относится к области информационного обеспечения своевременного предупреждения о грозящих чрезвычайных ситуациях природного и техногенного характера и может быть использовано в сфере прикладного освоения космического пространства на основе использования передовых информационных и...
Тип: Изобретение
Номер охранного документа: 0002465729
Дата охранного документа: 27.10.2012
17.04.2019
№219.017.1562

Силовая обечайка изделий, работающих при криогенных температурах

Изобретение относится к элементам конструкций изделий, работающих при криогенных температурах, и может быть использовано в ракетной и авиационной технике. Силовая обечайка содержит металлическую оболочку с покрытием из пенопласта. Между металлической оболочкой и слоем пенопласта размещен...
Тип: Изобретение
Номер охранного документа: 0002296911
Дата охранного документа: 10.04.2007
17.04.2019
№219.017.1568

Устройство межблочной кабельной связи ракеты

Изобретение относится к устройствам для соединения и последующего разъединения электрических соединительных элементов между разделяемыми блоками ракет. Предлагаемое устройство содержит две части соединителя с взаимодействующими между собой элементами электроразъемов, центральный замковый...
Тип: Изобретение
Номер охранного документа: 0002293693
Дата охранного документа: 20.02.2007
Showing 101-110 of 133 items.
24.07.2018
№218.016.746e

Жидкостная ракетная двигательная установка космического аппарата

Изобретение относится к ракетно-космической технике. Жидкостная ракетная двигательная установка космического аппарата, содержащая маршевый двигатель с насосной системой подачи компонентов топлива в камеру сгорания из объемных баков 1 низкого давления, двигатели 5 ориентации и стабилизации с...
Тип: Изобретение
Номер охранного документа: 0002662011
Дата охранного документа: 23.07.2018
15.10.2018
№218.016.924e

Космическая энергетическая установка с машинным преобразованием энергии

Изобретение относится к области энергетического машиностроения. Космическая энергетическая установка с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом содержит трубопроводы, образующие замкнутый контур, с включенными в него турбокомпрессором, источником тепла,...
Тип: Изобретение
Номер охранного документа: 0002669609
Дата охранного документа: 12.10.2018
20.02.2019
№219.016.be9c

Входное устройство насоса необъемного вытеснения

Изобретение относится к конструкциям входных устройств центробежных, шнекоцентробежных и осевых насосов и может быть использовано в специальном насосостроении. Входное устройство насосов необъемного вытеснения включает в себя кольцевой диффузорный участок 1 и цилиндрический участок 2 на выходе...
Тип: Изобретение
Номер охранного документа: 0002397374
Дата охранного документа: 20.08.2010
20.02.2019
№219.016.bec7

Турбонасосный агрегат

Изобретение относится к конструкциям бесконтактных уплотнений по валу быстроходных турбонасосных агрегатов (ТНА) и может быть использовано в специальном энергомашиностроении, например для ракетной техники. Турбонасосный агрегат, включающий газовую турбину, центробежный насос и разделительное...
Тип: Изобретение
Номер охранного документа: 0002395706
Дата охранного документа: 27.07.2010
01.03.2019
№219.016.d066

Способ ограничения тока короткого замыкания в системах защиты от разрушения высоковольтного оборудования

Использование: в области электротехники. Технический результат - повышение быстродействия и надежности. Ограничитель тока короткого замыкания содержит измеритель тока, токоограничивающее активное сопротивление и штатный отключатель в цепи электрооборудования, при этом токоограничивающее...
Тип: Изобретение
Номер охранного документа: 0002467446
Дата охранного документа: 20.11.2012
29.03.2019
№219.016.ef41

Управляемый снаряд

Изобретение относится к области вооружения. Управляемый снаряд, вращающийся по крену, выполненный по схеме "утка" содержит цилиндрический корпус, маршевый двигатель, аэродинамические органы управления и стабилизатор в виде складывающихся на боковую поверхность хвостовой части корпуса снаряда...
Тип: Изобретение
Номер охранного документа: 0002288436
Дата охранного документа: 27.11.2006
29.03.2019
№219.016.efa1

Управляемый снаряд (варианты)

Изобретение относится к области вооружения. Управляемый снаряд, выполненный по аэродинамической схеме "утка", содержит цилиндрический корпус, стабилизатор и аэродинамические органы управления - рули. На носовой части корпуса перед рулем установлен кольцевой пилон, выполненный из кольцевой...
Тип: Изобретение
Номер охранного документа: 0002291381
Дата охранного документа: 10.01.2007
29.04.2019
№219.017.4079

Способ стрельбы вращающимся по углу крена управляемым снарядом и устройство для его осуществления

Изобретение относится к области ракетного вооружения, а именно к способам стрельбы управляемыми снарядами. Технический результат - повышение точности стрельбы вращающихся по углу крена управляемых снарядов на начальном участке работы маршевого двигателя (МД) за счет запуска МД при...
Тип: Изобретение
Номер охранного документа: 0002349871
Дата охранного документа: 20.03.2009
29.04.2019
№219.017.413b

Способ модуляции релейных сигналов управления вращающейся по углу крена ракетой и устройство для его осуществления

Изобретение относится к области разработки систем наведения ракет. Способ, в котором формируют трехпозиционные опорные периодические по углу крена ракеты модулирующие сигналы, которые сдвинуты относительно друг друга на угол π/2. Умножают релейные сигналы управления на соответствующие им...
Тип: Изобретение
Номер охранного документа: 0002315938
Дата охранного документа: 27.01.2008
29.04.2019
№219.017.420d

Управляемый снаряд

Изобретение относится к ракетному вооружению, в частности к малогабаритным управляемым снарядам. Управляемый снаряд, вращающийся по крену, содержит складывающиеся на боковую поверхность хвостовой части корпуса гибкие консоли стабилизатора, а в хвостовой части за консолями установлено кольцо,...
Тип: Изобретение
Номер охранного документа: 0002371666
Дата охранного документа: 27.10.2009
+ добавить свой РИД