×
10.06.2016
216.015.4488

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ С ГАРАНТИЕЙ СВОЙСТВ В НАПРАВЛЕНИИ ТОЛЩИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству толстых листов из кремнемарганцовистой стали на реверсивных станах. Для обеспечения относительного сужения при испытании на растяжение в направлении толщины не менее 35% для изготовления сварных металлоконструкций используют непрерывнолитую заготовку толщиной не менее 250 мм из стали, содержащей, мас.%: 0,09-0,12 C, 0,50-0,65 Si, 1,30-1,70 Mn, Cr≤0,10, Ni≤0,30, Cu≤0,10, Ti≤0,03, N≤0,008, Al≤0,05, S≤0,010, P≤0,018, Fe - остальное, при этом аустенизацию непрерывнолитой заготовки производят до температуры 1190-1210°C, чистовую прокатку ведут с суммарным обжатием не менее 30% и единичными обжатиями не менее 7%. Для листов конечной толщины до 90 мм включительно чистовую прокатку начинают при температуре 750-780°C, а для листов конечной толщины более 90 мм - при температуре 720-740°C, а завершают при температуре 700-740°C. 2 з.п. ф-лы, 2 табл.

Изобретение относится к производству толстых листов и может быть использовано при горячей прокатке кремнемарганцовистых марок стали на реверсивных станах.

Известен также способ производства толстолистовой конструкционной стали, содержащей C≤0,23%, Mn≤1,35%, P≤0,04%, S≤0,05%, Si≤0,50%, V≤0,10%, Ni≤0,50%, Cr≤0,70%, Cu≤0,40%, железо и примеси - остальное. Способ предусматривает нагрев сляба до температуры 1120-1180°C, черновую прокатку с обжатием 40-60% и чистовую прокатку при температуре не выше 980°C с обжатием 40-50% и температурой конца прокатки ниже 870°C (патент США 4662950, МПК C21D 8/02, 1987 г.).

Недостатками известного способа являются: высокие пределы прочности и текучести, низкое относительное удлинение, отсутствие гарантии высокого уровня относительного удлинения в направлении толщины. Данные особенности ограничивают использование металла в областях, где необходима ограниченная прочность и текучесть и необходима высокая пластичность.

Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства толстолистовой низколегированной стали, включающий нагрев сляба до температуры аустенизации, черновую прокатку в раскат промежуточной толщины, подстуживание раската до температуры 740-760°C, чистовую прокатку с суммарным обжатием не менее 30% и температурой конца прокатки 700-740°C и охлаждение листа (патент РФ 2225887, МПК C21D 8/02, C21D 9/46, 2004 г.).

Известный способ производства имеет следующие недостатки: во-первых, при производстве проката по данной технологии не гарантируется достижение высокого уровня относительного сужения в направлении толщины. Во-вторых, данный способ позволяет получить высокие значения предела прочности и предела текучести, что негативно влияет на относительное удлинение. При этом металл обладает низкой пластичностью и не может гарантировать стойкость к расслоению по толщине при формовке.

Технический результат - получение проката толщиной до 100 мм с гарантированным относительным сужением при испытании на растяжение в направлении толщины не менее 35% для изготовления сварных металлоконструкций. Технический результат достигается тем, что в способе производства горячекатаных толстых листов из низколегированной стали, включающем аустенизацию непрерывнолитой заготовки, черновую прокатку в раскат промежуточной толщины, его подстуживание, чистовую прокатку с суммарным обжатием не менее 30% и температурой конца прокатки 700-740°C, согласно изобретению непрерывнолитую заготовку получают из стали со следующим соотношением элементов: 0,09-0,12% C; 0,50-0,65% Si; 1,30-1,70% Mn; Cr≤0,10%; Ni≤0,30%; Cu≤0,10%; Ti≤0,03%; N≤0,008%; Al≤0,05%; S≤0,010%; P≤0,018%; Fe - остальное, при этом аустенизацию непрерывнолитой заготовки производят до температуры 1190-1210°C, чистовую прокатку для листов конечной толщины до 90 мм включительно начинают при температуре 750-780°C, а для листов конечной толщины более 90 мм - при температуре 720-740°C.

Технический результат достигается также тем, что чистовую прокатку ведут с единичными обжатиями не менее 7% и используют непрерывнолитую заготовку толщиной не менее 250 мм.

Углерод в стали определяет ее прочностные свойства. Снижение содержания углерода менее 0,09% приводит к падению прочностных свойств ниже допустимого уровня, увеличение содержания более 0,12% приводит к снижению пластичности и вязкости стали.

При содержании кремния менее 0,50% повышается загрязненность стали оксидными включениями, увеличение содержания более 0,65% приводит к загрязненности силикатами - все это негативно отражается на механических свойствах стали.

Марганец, так же как и углерод, повышает прочностные характеристики стали. При увеличении содержания марганца более 1,70% наблюдается понижение ударной вязкости стали и ухудшение свариваемости. Однако введение марганца в сталь является необходимым для раскисления стали и удаления серы, поэтому снижение содержания марганца менее 1,30% нежелательно.

Повышение содержания никеля более 0,30%, хрома и меди более 0,10% для каждого может привести к упрочнению стали и повышению ее твердости выше ожидаемого уровня. Возникающие при этом чрезмерно высокие значения предела прочности сильно ограничат область применения данной марки стали.

Содержание титана (не более 0,03%), алюминия (не более 0,05%) и азота (не более 0,008%) является достаточным для обеспечения уровня механических свойств, который устанавливается стандартом на данную марку стали. Содержание упомянутых элементов выше указанных максимальных значений экономически нецелесообразно и приводит к повышению стоимости без улучшения свойств.

Заявленные пределы содержания серы (не более 0,01%) и фосфора (не более 0,018%) обеспечивают получение высоких значений ударной вязкости при отрицательных температурах. При содержании серы и фосфора более указанных количеств есть риск возникновения провальных результатов по ударной вязкости.

Для производства данной стали используется непрерывнолитая заготовка толщиной не менее 250 мм. При использовании заготовок меньшей толщины достаточная проработка структуры не обеспечивается. Возникает риск получения низких механических свойств.

Непрерывнолитая заготовка проходит аустенизацию до температур 1190-1210°C. При температурах менее 1190°C прогрев заготовки по сечению неравномерен, что негативно влияет на качество производимой стали. Увеличение температуры нагрева выше 1210°C сопровождается интенсивным ростом зерен аустенита и огрублением границ.

Суммарные обжатия на чистовой стадии прокатки составляют не менее 30%, единичные обжатия - не менее 7%. Такая комбинация величин суммарных и единичных обжатий позволяет обеспечить глубокую проработку структуры и получение высоких значений предела прочности и предела текучести.

Экспериментально установлено, что температура начала чистовой прокатки ниже 750°C для листа конечной толщины до 90 мм включительно и ниже 720°C для листа конечной толщины более 90 мм не позволяет подготовить аустенит к последующему превращению, создав высокую плотность несовершенств кристаллической решетки гамма-железа. При температуре начала чистовой прокатки выше 780°C для листа конечной толщины до 90 мм включительно и выше 740°C для листа конечной толщины более 90 мм не обеспечивается оптимальное соотношение структурных составляющих (феррит, бейнит, игольчатый феррит), что приводит к необеспечению комплекса механических свойств.

Чистовую прокатку завершают при температуре 700-740°C. При нарушении указанных диапазонов температур конца чистовой прокатки появляется риск необеспечения требуемого уровня прочности и пластичности при испытаниях на растяжение. Помимо этого возникает риск получения низкой ударной вязкости.

Из приведенного анализа следует, что реализация предложенного технического решения позволяет получить требуемое качество горячекатаных листов с гарантированным относительным сужением при испытании на растяжение в направлении толщины. Это достигается за счет выбора рациональных температурно-деформационных режимов для данного химического состава стали. Однако в случае выхода варьируемых технологических параметров за предлагаемые границы возникают трудности с получением стабильных и удовлетворительных механических свойств. Таким образом, полученные данные подтверждают правильность рекомендаций по выбору допустимых значений технологических параметров предложенного способа производства горячекатаных листов для строительных стальных конструкций.

Применение способа поясняется примером его реализации при производстве листов 09Г2С на стане 5000.

Выплавка стали осуществлялась в кислородном конвертере вместимостью 370 т с проведением процесса десульфурации магнием в заливочном ковше. На выпуске проводилось первичное легирование, предварительное раскисление и обработка металла твердошлаковыми смесями с продувкой металла аргоном в сталеразливочном ковше. Окончательное легирование, микролегирование, обработка металла кальцием и перегрев металла для проведения вакуумирования проводилось на агрегате комплексной доводки стали. Дегазация металла осуществлялась путем его вакуумирования. Разливка производилась на машине непрерывного литья заготовок с защитой металла аргоном от вторичного окисления в заготовки сечением 315×1715-2003 мм.

Химический состав сталей приведен в таблице 1.

Сталь получена со следующим составом химических элементов: C=0,10%; Si=0,53%; Mn=1,43%; Cr=0,06%; Ni=0,03%; Cu=0,05%; Ti=0,003%; N=0,004%; Al=0,03%; S=0,005%; P=0,013%; железо и примеси - остальное.

Непрерывнолитые заготовки толщиной 315 мм нагревали до температуры 1190°C, прокатывали в черновой стадии при температуре начала прокатки 994°C до толщины раската 156 мм, охлаждали на воздухе до температуры 735°C, прокатывали на чистовой стадии за 17 проходов с единичными обжатиями 8-12% до конечной толщины 100,0 мм с окончанием процесса деформации при 714°C.

Испытания на растяжение в направлении толщины проводили на цилиндрических образцах по ГОСТ 28870-90.

Варианты реализации предложенного способа и показатели их эффективности приведены в таблице 2.

Из таблицы 2 следует, что при реализации заявленного способа производства (режимы №1-3; №5-7) готовые листы обладают повышенным комплексом прочностных и пластических свойств, при этом достигается получение горячекатаных листов с гарантированным относительным сужением при испытании на растяжение в направлении толщины не менее 35% для изготовления сварных металлоконструкций.

При запредельных значениях предложенных режимов (режим №4, №8) и при нарушении требований по химическому составу (химический состав №4) комплекс механических и пластических свойств снижается, и не обеспечивается получение готового листа с требуемым относительным сужением.

Технико-экономические преимущества рассматриваемого изобретения состоят в том, что использование предложенного способа обеспечивает производство толстых листов толщиной до 100 мм с гарантированным относительным сужением в направлении толщины для изготовления сварных металлоконструкций.

Источник поступления информации: Роспатент

Showing 121-130 of 140 items.
01.05.2020
№220.018.1a76

Способ подготовки извести к выплавке стали в сталеплавильном агрегате

Изобретение относится к способу подготовки извести к выплавке стали в сталеплавильном агрегате. Способ включает нагрев и обжиг известняка во вращающейся трубной печи, охлаждение получаемой извести и ее подачу в сталеплавильный агрегат, согласно изобретению для обжига используют известняк с...
Тип: Изобретение
Номер охранного документа: 0002720279
Дата охранного документа: 28.04.2020
01.05.2020
№220.018.1ab1

Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства

Изобретение относится к области металлургии, а именно к производству горячекатаных полос из низколегированной стали, используемых для изготовления электросварных труб магистральных трубопроводов. Сталь имеет следующий химический состав, мас.%: углерод 0,04-0,07, кремний 0,15-0,25, марганец...
Тип: Изобретение
Номер охранного документа: 0002720284
Дата охранного документа: 28.04.2020
16.05.2020
№220.018.1da1

Канат стальной в полимерной оболочке со светоотражающими наполнителями (варианты)

Изобретение относится к канатному производству, предназначено для использования в мостостроении, судостроении, горнорудной области, а также в обустройстве автодорог и путепроводов. Предлагается канат стальной одинарной свивки, состоящий из оцинкованных проволок либо проволок без покрытия...
Тип: Изобретение
Номер охранного документа: 0002720971
Дата охранного документа: 15.05.2020
12.06.2020
№220.018.269f

Способ непрерывной разливки стали в заготовки малого сечения

Изобретение относится к области металлургии и может быть использовано при непрерывной разливке стали. Во время разливки в промежуточный ковш присаживают магнезиальный флюс, содержащий не менее 30% MgO. Во время присадки магнезиального флюса в промежуточном ковше снижают уровень стали на 3-30%...
Тип: Изобретение
Номер охранного документа: 0002723340
Дата охранного документа: 09.06.2020
29.06.2020
№220.018.2c62

Способ изготовления нераскручивающихся канатов закрытой конструкции и устройство для его осуществления

Изобретение относится к метизному производству и может быть использовано при изготовлении канатов закрытой конструкции и включает в себя способ и устройство для данного производства. Способ изготовления нераскручивающихся канатов закрытой конструкции, заключающийся в том, что проволока...
Тип: Изобретение
Номер охранного документа: 0002724825
Дата охранного документа: 25.06.2020
10.07.2020
№220.018.30f4

Листовой прокат, изготовленный из высокопрочной стали

Изобретение относится к области металлургии, а именно к листовому прокату толщиной до 50 мм из высокопрочной стали для судостроения, краностроения, транспортного и тяжелого машиностроения. Сталь содержит элементы при следующем соотношении, мас.%: углерод 0,08-0,10, кремний 0,15-0,35, марганец...
Тип: Изобретение
Номер охранного документа: 0002726056
Дата охранного документа: 08.07.2020
24.07.2020
№220.018.36a2

Способ производства горячекатаного рулонного проката

Изобретение относится к черной металлургии, а именно к способам производства сталей для изготовления из рулонного проката деталей для машиностроения, в т.ч. элементов автомобилей, тракторов, сельскохозяйственных машин. Способ включает выплавку стали в сталеплавильном агрегате, выпуск стали в...
Тип: Изобретение
Номер охранного документа: 0002727398
Дата охранного документа: 21.07.2020
31.07.2020
№220.018.3a69

Высокопрочный бетон

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при изготовлении сооружений специального назначения. Технический результат - повышение трещиностойкости и повышение коррозионной...
Тип: Изобретение
Номер охранного документа: 0002727990
Дата охранного документа: 28.07.2020
06.08.2020
№220.018.3d20

Рулонный прокат для обсадных и насосно-компрессорных труб и способ его производства

Изобретение относится к металлургии, а именно к производству рулонного проката толщиной 4-20 мм для изготовления высокопрочных насосно-компрессорных и обсадных труб, преимущественно малого диаметра, эксплуатируемых в агрессивных средах, содержащих сероводород и углекислый газ. Прокат выполнен...
Тип: Изобретение
Номер охранного документа: 0002728981
Дата охранного документа: 03.08.2020
20.04.2023
№223.018.4f00

Способ производства низколегированного рулонного проката

Изобретение относится к области металлургии, в частности к прокатному производству, и может быть использовано для изготовления рулонного проката из низколегированных трубных сталей с повышенной коррозионной стойкостью. Способ производства низколегированного рулонного проката включает получение...
Тип: Изобретение
Номер охранного документа: 0002793012
Дата охранного документа: 28.03.2023
Showing 101-104 of 104 items.
10.07.2019
№219.017.b010

Способ производства штрипса для магистральных труб из низкоуглеродистой стали

Изобретение предназначено для повышения производительности реверсивного толстолистового стана при производстве штрипса для труб большого диаметра. Способ включает нагрев заготовки, черновую прокатку на реверсивном толстолистовом стане до получения заданной толщины и ширины промежуточной...
Тип: Изобретение
Номер охранного документа: 0002401706
Дата охранного документа: 20.10.2010
16.08.2019
№219.017.c080

Способ производства трубного проката повышенной коррозионной стойкости на реверсивном стане

Изобретение относится к области металлургии. Для повышения коррозионной стойкости трубного проката при сохранении высокой прочности, пластичности и ударной вязкости получают непрерывно-литую заготовку из стали, содержащей, мас.%: С 0,04-0,08, Si 0,15-0,35, Mn 0,7-1,0, Ni 0,2-0,5, Cu 0,4-0,6, Nb...
Тип: Изобретение
Номер охранного документа: 0002697301
Дата охранного документа: 13.08.2019
21.04.2023
№223.018.4fa4

Способ производства прямошовных труб большого диаметра из низколегированной стали

Изобретение относится к области производства стальных труб большого диаметра для магистральных трубопроводов. Способ производства прямошовных труб большого диаметра из низколегированной стали включает фрезеровку продольных кромок, их подгибку, формовку штрипсового проката в трубную заготовку,...
Тип: Изобретение
Номер охранного документа: 0002792989
Дата охранного документа: 28.03.2023
14.05.2023
№223.018.54dc

Способ производства горячекатаных листов из низколегированной стали для изготовления ответственных металлоконструкций

Изобретение относится к металлургии и может быть использовано для изготовления толстых листов для металлоконструкций ответственного назначения, применяемых в судостроении, топливно-энергетическом комплексе, тяжелом машиностроении, в том числе для конструкций, работающих при высоких (до 250°C)...
Тип: Изобретение
Номер охранного документа: 0002737690
Дата охранного документа: 02.12.2020
+ добавить свой РИД