×
20.05.2016
216.015.3f1e

Результат интеллектуальной деятельности: СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области подготовки к транспортированию смеси газа и газового конденсата. Способ включает очистку природного газа, многоступенчатое охлаждение его до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. %. Полученную углеводородную смесь охлаждают до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния. Обеспечивается возможность транспортирования смеси сжиженных углеводородных газов с газоконденсатных месторождений Севера по магистральным трубопроводам. 4 ил.
Основные результаты: Способ подготовки к транспортированию смеси сжиженных углеводородов, содержащей природный газ и конденсат, включающий очистку природного газа, создание смеси природного газа и конденсата, отличающийся тем, что осуществляют многоступенчатое охлаждение природного газа до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. % и охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния.

Изобретение относится к области подготовки смеси газа и газового конденсата газоконденсатных месторождений Севера к однофазному трубопроводному транспорту и может найти применение в нефтегазовой промышленности.

Известен способ перекачки криогенной жидкости самотечным способом по трубопроводу из хранилища в цистерну (патент RU №2006116911/22, опубл. 27.11.2006 г.) без потерь газовой фазы путем ее удаления из стояка трубопровода и возврата ее в хранилище.

Недостатком данного способа является то, что трубопровод предназначен для транспортировки криогенной жидкости, например сжиженного природного газа (СПГ), азота, кислорода, водорода (с температурой ниже 120 K). Поэтому для перекачки придется использовать дорогостоящие низкотемпературные никелевые нержавеющие стали. Кроме того, авторы предлагают перекачивать СПГ по низконапорным трубопроводам, что скажется на его производительности.

Известен также способ перекачки СПГ по магистральным криогенным трубопроводам при температуре 153-173 K (минус 120 - минус 100°C) (Магистральные трубопроводы охлажденного и сжиженного природного газа. Ответственный редактор А.Е. Полозов / Н.П. Акульшина, В.А. Андрианов, В.И. Зоркальцев и др. УРО РАН, Коми НЦ. СЫКТЫВКАР, 1988, с. 158). В этом случае предлагается использовать специально разработанные экономно-легированные стали (например, 10ХГНМАЮ) или криогенные никелевые нержавеющие стали. Согласно А.Е. Полозову (Полозов А.Е. Повышение прочности низкотемпературных теплоизолированных трубопроводов: Дис. д-ра техн. наук: 25.00.19: Курск, 2004. 348 с. ) переход на СПГ-проводы дает большой экономический и экологический эффект. Удельный вес трубной стали в затратах на строительство газопровода составляет 80%, а переход на перекачку СПГ по трубопроводам, по его мнению, позволяет перейти с 4 ниток газопровода на 1 нитку криогенного трубопровода, что дает экономию затрат по металлу 75%. С учетом затрат на теплоизоляцию СПГ-провода и повышенную стоимость ЭЛ-стали получаем экономию средств, равную 37%.

Недостатком этого способа является необходимость использования дорогих хладостойких никелевых сталей (не менее 8% никеля) и дорогостоящей криогенной вакуумной изоляции, а также необходимость поддержания низкой температуры (минус 161°С) при атмосферном давлении. Кроме того, СПГ придется перекачивать по низконапорным трубопроводам, что скажется на его производительности.

Известна система для хранения газа на основе метана (патент RU №2224171, опубл. 20.02.2004 г.). Она состоит из контейнера для хранения углеводородного растворителя и растворенного газа, образующего жидкую и паровую фазы и средство регулирования композиции для поддержания заранее определенного соотношения фаз. Настоящее изобретение касается улучшенной системы для сжижения и хранения газа и особенно системы для хранения газа, основным компонентом которого является метан, посредством смешивания с другим углеводородом (органическим растворителем) для хранения.

Недостатком является то, что данная система для хранения газа на основе метана имеет ограниченное применение (только на моторном транспортном средстве) и не может быть применена при транспортировании сжиженных углеводородов по трубопроводам.

Известен «Метод бестарной транспортировки и хранения газа в жидкой среде» («Method of bulk transport and storage of gas in a liquid medium») (патент US 8257475 B2, опубл. 04.09.2012 г.). Интегрированная система с установленным судном для загрузки газового потока предназначена для отделения тяжелых углеводородов, сжатия газа, его дальнейшего охлаждения, смешивания газа с осушителем, смешивания его с жидкостным носителем или растворителем, и затем охлаждения смеси до условий обработки, хранения и транспортирования. После транспортирования продукта к месту его предназначения, технологическая линия подготовки углеводородов и метод жидкостного перемещения обеспечивают разгрузку жидкости в систему хранения, отделение жидкостного носителя, и перемещение газового потока к системе хранения или транспортирования. Рассматриваются только способы смешивания и сорбции природного газа в легком углеводородном растворителе (в основном, пропане) и устройства для хранения и транспортировки судами - газовозами сжиженных углеводородных газов.

Недостатком является то, что необходимого количества легкого углеводородного растворителя (в основном, пропана) в смеси практически невозможно получить непосредственно на месторождении.

В качестве ближайшего аналога принят способ подготовки к транспортированию смеси углеводородов, содержащей природный газ и конденсат, известный из патента RU 2476789 С1, приоритет 27.02.2013 г.

При реализации способа по первому варианту осуществляют первичную сепарацию жидкости из входного потока, в газ первичной сепарации добавляется метанол, охлаждение полученного потока происходит в аппарате воздушного охлаждения, в параллельно расположенных первом и втором рекуперативных теплообменниках, и газа в узле редуцирования и рекуперации холода, сепарация - в низкотемпературном сепараторе. Газ низкотемпературной сепарации нагревают в теплообменнике и в узле редуцирования и рекуперации холода, после чего направляют в трубопровод продуктового газа. Конденсат первичной сепарации направляют на дегазацию и отделение водной или водно-метанольной фазы в первый трехфазный разделитель, из которого выделившийся газ подают на вход в низкотемпературный сепаратор, а конденсат нагревают в третьем рекуперативном теплообменнике и кубовом подогревателе, после чего направляют в нижнюю сепарационную часть ректификационной колонны. Конденсат низкотемпературной сепарации нагревают в теплообменнике и подвергают дегазации и отделению водно-метанольной фазы во втором трехфазном разделителе, после чего конденсат подают в ректификационную колонну в качестве орошения. Газ из ректификационной колонны и газ дегазации из второго трехфазного разделителя компримируют в узле компримирования и смешивают с газом низкотемпературной сепарации. Конденсат из ректификационной колонны охлаждают в третьем рекуперативном теплообменнике и втором аппарате воздушного охлаждения и направляют на отделение водно-метанольной фазы в третий трехфазный разделитель, дожимают и подают в трубопровод продуктового конденсата.

Недостатком данного технического решения является то, что задачей данного способа низкотемпературной подготовки природного газа и извлечения нестабильного конденсата из пластового газа является разделение природного газа и газового конденсата (его извлечение из пластового газа) и дальнейшая транспортировка по отдельным трубопроводам. Задача нашего технического решения состоит в смешении природного газа и газового конденсата и совместная транспортировка углеводородной смеси по низкотемпературному трубопроводу потребителю.

Заявленное изобретение отличается тем, что осуществляют очистку природного газа, многоступенчатое его охлаждение его до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве 3-10 вес. %, охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до получения однофазного жидкого состояния.

Техническим результатом является обеспечение возможности транспортирования смеси сжиженных углеводородных газов, состоящей из природного газа и газового конденсата, по магистральным трубопроводам при температуре от -40 до -50°С и давлении от 10 до 12 МПа.

Технический результат достигается тем, что с целью обеспечения транспортирования смеси в однофазном жидком состоянии по магистральным трубопроводам с газоконденсатных месторождений природный газ охлаждают до температуры от -0 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. %, охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до получения однофазного жидкого состояния.

Способ поясняется следующими фигурами: Фиг. 1 - схема технологии получения смеси сжиженных углеводородов; Фиг. 2 - Р-Т-диаграмма (давление - температура) различных индивидуальных веществ и смесей (в массовых процентах):

1 - метан Ткр=-82,4°С, Ркр=4,6 МПа,

2 - типичный природный газ Ткр=-73°С, Ркр=5,4 МПа,

3 - пластовый газ Ткр=-50,8°С, Ркр=8,7 МПа,

4 - смесь газа и газового конденсата в соотношении 97:3 Ткр=-39,6°С, Ркр=10,03 МПа,

5 - смесь газа и газового конденсата в соотношении 95:5 Ткр=-37,1°С, Ркр=10,45 МПа,

6 - смесь газа и газового конденсата в соотношении 93:7 Ткр=-34,96°С, Ркр=10,81 МПа,

7 - смесь газа и газового конденсата в соотношении 90:10 Ткр=-28,9°С, Ркр=11,72 МПа;

Фиг. 3 - компонентный состав пластового газа Южно-Тамбейского газоконденсатного месторождения (% объемные) и типичного природного газа (% массовые);

Фиг. 4 - принципиальная схема трубопроводного транспорта сжиженных углеводородных газов:

1 - установка комплексной подготовки газа,

2 - установка получения углеводородной смеси,

3 - трубопровод,

4 - головная насосная станция,

5 - промежуточные станции охлаждения,

6 - промежуточные насосные станции,

7 - низкотемпературное хранилище,

8 - установка регазификации,

9 - подача газа потребителям.

Способ осуществляется следующим образом. Природный газ непосредственно с газоконденсатного месторождения поступает в блок осушки, где из него извлекаются частицы воды, проходит через фильтр (очистка от кислых компонентов, тонкая очистка от ртути и удаление азота) (фиг. 1). После этого газ проходит многоступенчатый этап охлаждения и повышения давления с добавлением на каждой ступени газового конденсата и высокомолекулярных соединений. Полученная смесь сжиженных углеводородов при температуре от -40 до -50°С и давлении не более 12 МПа приводится в жидкое состояние. После сжижения она поступает непосредственно в трубопровод.

С учетом необходимого запаса по давлению и температуре для предотвращения газообразования при обосновании и разработке технологии предварительно приняты начальная температура минус 40 - минус 50°С и давление 10-12 МПа. Более высокое давление и низкая температура смеси приведет к удорожанию строительства из-за необходимости использовать дорогие никелевые стали и увеличения толщины стенки трубы. Существующие сорта сталей марки Х70 и Х80 работоспособны при вышеуказанных давлениях и температурах.

Особенности получения смеси сжиженного метана и газового конденсата обусловлены необходимостью получения сравнительно высокой температуры сжижения при сравнительно низком давлении. Поэтому стандартная схема производства сжиженного природного газа (СПГ) может быть существенно удешевлена за счет использования только первой части схемы производства СПГ (отказа от блока получения температуры -160°С).

Благоприятным фактором для получения смеси природного газа, конденсата и нефти в однофазном состоянии является то, что большинство месторождений п. о. Ямал являются газоконденсатными. Массовое содержание нефти и газового конденсата достигает от 3 до 10%. Исследования проводились на примере Южно-Тамбейского газоконденсатного месторождения. Суммарные запасы углеводородов Южно-Тамбейского ГКМ по данным Государственного баланса от 01.01.2008 г. составляют: газа по категории С1 - 1003,92 млрд м3; С2 - 252,186 млрд м3; конденсата по категории С1 - 47,48 млн т; С2 - 18,78 млн т. Суммарные запасы газа (С1+С2) составляют 1256,1 млрд м. Суммарные запасы конденсата (С1+С2) составляют 66,26 млн т.

На фиг. 2 представлена фазовая диаграмма Р-Т (давление - температура) смеси природного газа и газового конденсата. Она показывает, что добавление 3% газового конденсата по массе к добываемому природному газу приводит к тому, что критическая температура смеси повышается с минус 73°С для типичного природного газа и с минус 50,8°С для пластового газа Южно-Тамбейского месторождения до минус 39,6°С (критическое давление составляет 10,03 МПа). Состав типичного природного газа и пластового газа Южно-Тамбейского месторождения представлен на фиг. 3. При добавлении 5% критическая температура смещается до минус 37,1°С при критическом давлении 10,45 МПа. При содержании газового конденсата 7 и 10% критическая температура составляет минус 34,96 и минус 28,9°С, а критическое давление 10,81 и 11,72 МПа соответственно. Фазовые диаграммы Р-Т (давление - температура) и критические параметры смеси при различном содержании газового конденсата представлены на фиг. 2.

Таким образом, добавление в природный газ газового конденсата позволит транспортировать эту смесь в жидком однофазном состоянии при температуре минус 40 - минус 50°С и давлении 10-12 МПа (с учетом необходимого запаса по давлению). Так как состав газового конденсата, добываемого из различных скважин газоконденсатного месторождения, различен, управление температурой и давлением сжижения планируется добавлением небольшого количества специальных добавок высокомолекулярных соединений, получаемых на разрабатываемом месторождении.

На фиг. 4 изображена принципиальная схема трубопроводного транспорта смеси сжиженных углеводородов.

Природный газ с газоконденсатного месторождения Севера поступает на установку комплексной подготовки газа (УКПГ) 1, где производится его очистка, осушка и отделение от примесей.

Затем очищенный и охлажденный природный газ и охлажденный газовый конденсат подается на установку получения углеводородной смеси (УПУС) 2, где происходят следующие процессы: повышение давления одновременно с охлаждением газа и впрыскиванием газового конденсата под высоким давлением в нижнюю часть установкичерез специальную форсунку до достижения необходимых параметров смеси сжиженных углеводородов (давление не более 12 МПа и температура от -40 до -50°С). Часть газа, которая не успевает перейти в сжиженное состояние, поступает обратно в нижнюю часть установки смешивания. Процесс подготовки смеси повторяется до тех пор, пока вся смесь не перейдет в однофазное жидкое состояние при вышеуказанных температуре и давлении. Полученная смесь под давлением подается в предварительно охлажденный трубопровод 3.

Принципиальным отличием установки комплексной подготовки сжиженных углеводородов от установки подготовки СПГ является то, что мы отказываемся от цикла сжижения смеси углеводородов от -50°С до -160°С, что значительно снижает затраты.

Дальше полученная смесь поступает на головную насосную станцию (ГНС) 4, на которой поддерживаются необходимые условия перекачки. В состав ГНС входят: приемные емкости, подпорная и основная насосные и узел учета. Они служат для приема сжиженных углеводородных газов и для хранения некоторого его запаса с целью обеспечения бесперебойности работы трубопровода.

Чтобы предотвратить нагрев газа за счет теплопритока от окружающей среды, трубопроводы покрывают тепловой изоляцией (например, из пенополиуретана толщиной 50-70 мм), а вдоль трассы размещают промежуточные станции охлаждения (ПСО) 5.

Промежуточные насосные станции (ПНС) 6 располагаются на расстояниях, определяемых на основании гидравлического и теплового расчета. По расчетам, перекачивающие и охлаждающие станции нужно устанавливать на расстоянии около 100 км.

В конце трубопровода размещаются низкотемпературное хранилище (НХ) 7 и установка регазификации (УР) 8 сжиженной углеводородной смеси. На установке регазификации смесь разделяется на составляющие: газ, газовый конденсат, высокомолекулярные соединения. Газ подается в магистральный газопровод, а газовый конденсат транспортируется по трубопроводам или железнодорожным или автомобильным транспортом.

Предлагаемый способ подготовки позволяет осуществить перекачку смеси природного газа и нестабильного газового конденсата по магистральным трубопроводам с газоконденсатных месторождений Севера. Из проведенного исследования следует, что предложенный способ комбинированной транспортировки СПГ по Северному морскому пути и смеси сжиженных углеводородов по подземным магистральным трубопроводам позволит существенно сократить затраты на транспорт газа и газового конденсата, сократить количество ледоколов и танкеров.

Способ подготовки к транспортированию смеси сжиженных углеводородов, содержащей природный газ и конденсат, включающий очистку природного газа, создание смеси природного газа и конденсата, отличающийся тем, что осуществляют многоступенчатое охлаждение природного газа до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. % и охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния.
СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ
СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ
Источник поступления информации: Роспатент

Showing 71-80 of 161 items.
27.12.2014
№216.013.14f2

Устройство для определения величины коэффициента трения сыпучего груза о грузонесущей орган транспортной машины

Изобретение относится к устройствам определения физико-механических свойств транспортируемых грузов. Устройство для определения величины коэффициента трения сыпучего груза о грузонесущий орган транспортной машины содержит размещенную на опорной раме съемную пластину из материала грузонесущего...
Тип: Изобретение
Номер охранного документа: 0002536786
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14f5

Система экологического мониторинга атмосферного воздуха горнопромышленной промагломерации

Изобретение относится к экологическим системам сбора и обработки информации и может быть использовано для прогнозирования распространения загрязнения атмосферного воздуха на территории горнопромышленной агломерации. Сущность: система содержит первую (1) и вторую (5) группы...
Тип: Изобретение
Номер охранного документа: 0002536789
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.14f7

Стенд для исследования энергообмена при разрушении горных пород

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд для исследования энергообмена при разрушении горных пород...
Тип: Изобретение
Номер охранного документа: 0002536791
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.156c

Комплекс для перегрузки древесных опилок с наземного склада в транспортное средство

Комплекс для перегрузки древесных опилок с наземного склада в транспортное средство состоит из П-образной в поперечном сечении рамы с вертикальными опорами и верхней поперечиной при опирании вертикальных опор на поверхность наземного грунта с помощью двух пар пневмоколес с приводами их...
Тип: Изобретение
Номер охранного документа: 0002536908
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.16e2

Нефтехранилище

Нефтехранилище содержит корпус с замкнутой в горизонтальной плоскости боковой вертикальной стенкой, плоским днищем, загрузочный и разгрузочный трубопроводы. Внутри корпуса нефтехранилища размещен плавучий на нефти плоский стальной лист минимальной толщины, полностью перекрывающий поперечное...
Тип: Изобретение
Номер охранного документа: 0002537282
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1787

Способ селективной выемки руд

Изобретение относится к горной промышленности и может быть использовано при формировании и стабилизации качества руд на стадии горных работ. Техническим результатом является повышение показателей качества и извлечения технологических сортов руд и горной массы для рудосортировки. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002537451
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.196d

Способ стыковки рельсов железнодорожных путей и устройство для его реализации

При стыковке рельсов осуществляют фиксацию каждой пары стыкуемых рельсов от их смещения по вертикали друг относительно друга путем размещения с внутренней стороны каждой пары смежных стыкуемых рельсов между их головками и основаниями и с перекрытием смежных рельсов продольных балок. Эти балки...
Тип: Изобретение
Номер охранного документа: 0002537937
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.196e

Шахтная канатно-скреперная установка

Изобретение относится к транспортным машинам периодического действия, предназначенным для транспортирования от забоя добытой горной массы. Шахтная канатно-скреперная установка содержит скрепер ящичного типа, соединенные с ним головной и хвостовой тяговые канаты, скреперную лебедку и...
Тип: Изобретение
Номер охранного документа: 0002537938
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.196f

Перегрузочное устройство для сыпучих грузов

Перегрузочное устройство содержит боковые стенки (1, 2) и наклонное днище, выполненное в виде замкнутой на верхнем (3) и нижнем (4) барабанах прорезиненной однопрокладочной ленты (5) с арамидной основой. Верхняя ветвь ленты (5) опирается на цилиндрические ролики (6), состоящие из двух...
Тип: Изобретение
Номер охранного документа: 0002537939
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1970

Винтовой спуск для сыпучих грузов

Винтовой спуск содержит закрепленный на вертикальной стойке (1) круглого поперечного сечения винтовой желоб с наклонной образующей винтовой поверхности, формирующей поперечное сечение желоба. Наклонная образующая выполнена с прогибом вниз при ее нормальной ориентации к вертикальной стойке и при...
Тип: Изобретение
Номер охранного документа: 0002537940
Дата охранного документа: 10.01.2015
Showing 71-80 of 198 items.
20.07.2014
№216.012.df36

Способ защиты углеродной футеровки

Изобретение относится к способу защиты углеродной футеровки алюминиевого электролизера при получении алюминия из металлургического глинозема в криолит-глиноземном расплаве и может быть использовано при вводе алюминиевого электролизера в эксплуатацию. Способ защиты углеродной футеровки...
Тип: Изобретение
Номер охранного документа: 0002522928
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfca

Термонагружатель к стенду для испытания образцов

Изобретение относится к средствам испытаний образцов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель содержит платформу, установленные на ней фрикционный элемент, опорный элемент...
Тип: Изобретение
Номер охранного документа: 0002523076
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfd6

Стенд для исследования энергообмена при разрушении горных пород

Изобретение относится к испытательной технике, к испытаниям, преимущественно, образцов горных пород. Стенд содержит основание, соосно установленные на нем захваты образца, устройство для нагружения образца, связанное с захватами, механизм для механической обработки образца и платформу для...
Тип: Изобретение
Номер охранного документа: 0002523088
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e471

Винтовой конвейер (варианты)

Винтовой конвейер содержит размещенные в несущем желобе (1) с укрытием (2) криволинейной формы с выпуклостью, обращенной вверх, два вала (3, 4) с винтовыми поверхностями (5, 6). По первому варианту укрытие выполнено с закрепленным на его внутренней поверхности и размещенным вдоль продольной оси...
Тип: Изобретение
Номер охранного документа: 0002524271
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e473

Наклонный ленточный конвейер

Наклонный ленточный конвейер содержит ленту, опирающуюся на желобчатые роликоопоры, состоящие из двух наклонных боковых роликов (2, 3) и центрального горизонтального ролика (4). На обоих торцевых частях горизонтального ролика закреплены блоки (5, 6) с выступами (7) на их наружной поверхности,...
Тип: Изобретение
Номер охранного документа: 0002524273
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e474

Стенд для исследования и выбора параметров вибрационного конвейера с увеличенной производительностью

Стенд содержит раму (1) с установленным на ней с помощью плоских наклонных рессор (4, 5) желобом (2) с закрепленными на его нижней поверхности ребрами жесткости (3). Желоб связан с установленным на раме кривошипно-шатунным приводом с регулируемой частотой вращения его двигателя. Высота передних...
Тип: Изобретение
Номер охранного документа: 0002524274
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e475

Центрирующее устройство для конвейерной ленты

Центрирующее устройство содержит желобчатую роликоопору (1) грузонесущей ветви (2) конвейерной ленты, установленную с возможностью поворота относительно оси (3) шарнирного узла (4), закрепленной с помощью поперечной балки (5) на прогонах (6, 7) рамы конвейера. Ось шарнирного узла каждого...
Тип: Изобретение
Номер охранного документа: 0002524275
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e528

Способ определения концентрации элемента в веществе сложного химического состава

Использование: для определения концентрации элемента в веществе сложного химического состава. Сущность изобретения заключается в том, что выполняют облучение пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей...
Тип: Изобретение
Номер охранного документа: 0002524454
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5a9

Способ интенсификации добычи природного газа из угольных пластов через скважины

Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов с целью повышения безопасности работ в шахтах, а также для добычи метана из угольных пластов через скважины, пробуренные с поверхности или из горных выработок. Способ интенсификации добычи...
Тип: Изобретение
Номер охранного документа: 0002524583
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e625

Капатно-скреперная установка

Изобретение относится к горным транспортным машинам периодического действия, а именно к канатно-скреперным установкам. Техническим результатом является уменьшение износа с повышением долговечности хвостового тягового каната, уменьшение энергоемкости транспортирования горной массы и повышение...
Тип: Изобретение
Номер охранного документа: 0002524710
Дата охранного документа: 10.08.2014
+ добавить свой РИД