×
27.07.2014
216.012.e528

СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для определения концентрации элемента в веществе сложного химического состава. Сущность изобретения заключается в том, что выполняют облучение пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, при этом установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения. Технический результат: обеспечение возможности определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона. 9 ил.
Основные результаты: Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида: (Z - аналитический параметр для элемента i; E - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(E) - измеренная интенсивность характеристического излучения, соответствующая энергии E; I(E) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента E; I(E) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, I(E) - рассчитанная интенсивность фона некогерентно рассеянного излучения),где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле: (E - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, I - интенсивность характеристического излучения в точке спектра с энергией E+ΔE).
Реферат Свернуть Развернуть

Изобретение относится к способу определения концентрации элемента (элементов), основанному на измерении характеристического рентгеновского излучения в веществах сложного химического и фазового состава, имеющих различную структуру и плотность.

Изобретение относится к методам неразрушающего контроля элементного состава вещества и реализуется в методах волнового и энергодисперсионного рентгенофлуоресцентного анализа.

Флуоресцентная эмиссия рентгеновских лучей является одним из наиболее мощных средств обнаружения и количественного определения элементов практически в любом фазовом состоянии сложного вещественного состава [Юинг Г. Инструментальные методы химического анализа. М.: Мир, 1989, 608 с.]. Учитывая, что структура и плотность матрицы влияет на интенсивность характеристической линии элемента, для определения концентрации элемента в образце сложного химического и фазового состава необходим набор стандартных образцов, имеющих фазовую структуру, идентичную структуре анализируемого образца, что не всегда технически и аналитически выполнимо.

Известен способ определения тяжелых металлов в породах и рудах по их характеристическому рентгеновскому излучению, возбуждаемому гамма-квантами рентгеновской трубки или другого источника излучения. Для уточнения влияния плотности матрицы, сокращения количества измерений и упрощения методики их проведения в условиях естественного залегания пород и руд производят одновременное измерение интенсивностей вторичного излучения в двух участках спектра, расположенных по разные стороны от К (L)-края поглощения искомого элемента (SU 171482, опубл. 26.05.1965).

Содержание искомого элемента находят по величине отношения интенсивностей в двух указанных участках спектра вторичного излучения. С целью определения нескольких элементов производят одновременное измерение интенсивностей вторичного излучения в участках спектра, расположенных по разные стороны от К (L)-краев поглощения каждого элемента. Недостатком указанного способа является нелинейная зависимость интенсивности вторичного рентгеновского излучения от концентрации элемента, что снижает точность анализа, а следовательно, недостаточно достоверная информация об анализируемом веществе.

Известен способ определения концентрации элемента и кристаллической фазы, куда входит определяемый элемент, в веществе сложного химического состава, включающий облучение пробы анализируемого вещества монохроматическим рентгеновским излучением, регистрацию интенсивности когерентно рассеянного определяемой кристаллической фазой первичного излучения. В способе предусматривается одновременная или последовательная регистрация интенсивности когерентно рассеянного излучения с интенсивностью некогерентного рассеянного первичного излучения этой же пробой, а затем по отношению указанных интенсивностей устанавливается концентрация определяемой фазы (RU 2255328, опубл. 27.06.2005).

Данный способ объединяет два направления: рентгеноспектральный и рентгенофазовый анализ. В рентгеноспектральном анализе определяется концентрация того или иного элемента, в рентгенофазовом анализе определяется концентрация той или иной фазы. Для реализации метода использовалось совершенно разное оборудование, основанное на разных физических принципах - рентгеновские спектрометры для рентгеноспектрального анализа и рентгеновские дифрактометры для рентгенофазового анализа. Способ позволяет снизить влияние химического и фазового состава пробы на ошибку измерения, однако не позволяет получить точную информацию о количестве анализируемого элемента, входящего в определяемую фазу.

Известен способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава (патент RU 2362149, опубл. 20.07.2009 г.), выбран в качестве прототипа, описывающий способ определения концентрации элемента и фазы в веществах сложного химического состава. Отличительной особенностью способа является то, что одновременно регистрируют интенсивность характеристического излучения определяемого элемента, его определяемой фазы и интенсивность когерентно и некогерентно рассеянного (по Комптону) излучений, а затем по отношению указанных интенсивностей определяют концентрации элемента и фазы, включающей данный элемент, что позволяет учитывать влияние вещественного состава на результаты анализа (матричный эффект). Предлагаемый способ основывается на методе спектральных отношений при рентгенофлуоресцентном анализе и разработанном автором способе определения концентрации фазы при рентгенофазовом анализе.

Автор утверждает, что отношение интенсивности аналитической линии Ii к интенсивности некогерентно рассеянному излучению Inc не зависит от матрицы пробы и может использоваться как аналитический параметр Ki . Однако метод, принятый в качестве прототипа, не учитывает влияние фона характеристического излучения, возникающего вследствие облучения пробы первичным потоком гамма-квантов, что вносит существенную погрешность в нахождение концентраций определяемых элементов [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.148, 208 с.].

Интенсивность фона, зависящая от структуры и состава пробы, пропорциональна интенсивности характеристического излучения, возбуждаемого первичным потоком рентгеновского излучения трубки или другого источника. В то же время интенсивность фона некогерентно рассеянного излучения пропорциональна интенсивности некогерентно рассеянных квантов первичного излучения с соответствующей энергией (длиной волны), зависящей от материала анода рентгеновской трубки [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.140, с.147, с.149, 208 с.].

Влияние фона можно не учитывать только в том случае, когда химический и фазовый состав анализируемых материалов является постоянным. Если же состав проб изменяется, то при их анализе интенсивность фона для каждого образца следует измерять рядом с аналитической линией, что является трудоемкой операцией и не всегда возможно в силу конволюции спектров характеристического излучения.

Техническим результатом настоящего изобретения является возможность определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона.

Технический результат достигается тем, что способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения проводят по аналитическому параметру вида , учитывающему влияние фона характеристического излучения, что позволяет привести к линейной зависимости измеряемых величин интенсивности характеристического излучения от концентрации каждого определяемого элемента в пробе сложного химического и фазового состава и тем самым значительно повысить точность анализа.

В формуле расчета аналитического параметра Zi для i-го элемента приняты следующие обозначения: Zi - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i; I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Нормирование скорректированной интенсивности аналитической линии к интенсивности некогерентно рассеянного излучения не зависит от матрицы пробы (вещественного состава, плотности и фазового состояния) и используется как аналитический параметр.

Для определения аналитических параметров в заявляемом способе проводят следующие операции:

1. Измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения.

2. По измеренному спектру рассчитывают интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, по формуле:

,

где Iфона(Ei) - интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента, Emin,i - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, IEmin,i+ΔE - интенсивность характеристического излучения в точке спектра с энергией Emin,i+ΔE.

3. По рассчитанной в п.2 интенсивности фона определяют скорректированную интенсивность для каждого i-го элемента по формуле:

Ji=(I(Ei)-Iфона(Ei))2,

где Ji - скорректированная интенсивность аналитической линии элемента i, I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной энергии Emin,i для i-го элемента.

4. По отношению интенсивностей аналитических линий элемента и некогерентно рассеянного излучения с учетом интенсивности фона рассчитывают аналитический параметр Zi для элемента i

где I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона, кратная энергии Emin,i для i-го элемента, I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Используя вместо измеряемых величин интенсивности характеристического излучения аналитический параметр Zi, получаем линейную зависимость аналитического параметра Zi от содержания i-го элемента в пробе:

Zi=aiCi+bi,

где ai и bi - коэффициенты пропорциональности, определяемые методом наименьших квадратов при построении калибровочных зависимостей для i-го элемента, Ci - концентрация элемента i в пробе.

Таким образом, вместо уравнения, связывающего интенсивность характеристического излучения i-го элемента с его концентрацией, используется зависимость аналитического параметра Zi от концентрации i-го элемента, что позволяет получить предельную линейную зависимость, устраняя влияние других элементов, входящих в пробу вещества сложного состава.

На фиг.1 приведена зависимость интенсивности I линии La элемента церия от его концентрации в растворе, на фиг.2 - линейная зависимость аналитического параметра Z для тех же образцов.

На фиг.2 видно, что введение параметра Z позволяет провести линеаризацию зависимости измеряемых величин от концентрации, что существенно повышает точность рентгенофлуоресцентного анализа.

На фиг.3 приведены зависимости интенсивности некогерентно рассеянного излучения от концентрации Ce в растворах и в твердой фазе (порошки). Изменение интенсивности некогерентно рассеянного излучения в растворах и порошках учитывается эквивалентным выражением, что показывает возможность учета влияния матрицы для проб различной структуры.

Техническая реализация предлагаемого способа осуществима на энергодисперсионных спектрометрах и спектрометрах с волновой дисперсией. При этом в качестве регистрирующего устройства могут использоваться полупроводниковые детекторы, кристаллы-сцинтилляторы, газоразрядные трубки и pin-диоды.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.

Пример 1. Количественное определение фосфата церия в концентрате фосфатов редкоземельных элементов. Используемое оборудование: энергодисперсионный рентгеновский спектрометр РЕАН; условия измерения - Uycк - 40 кВ, Iанод - 100 мкА; материал анода - Мо; время экспозиции - 100 с; среда измерения - воздух; детектор некогерентно рассеянного излучения Si-pin-диод (16,57 кэВ).

Приготовлен массив градуировочных проб разбавлением химически чистого CePO4 продуктом моноаммонийфосфата (МАФ) дигидратного сернокислотного производства фосфорной кислоты с диапазоном концентраций по церию: 0,1-11,0%, 11-53,6%.

Объект анализа - гомогенизированный порошок разбавленного фосфата церия, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм, искомый элемент-аналит - церий. Полученные зависимости интенсивности Lα линии церия от концентрации элемента (%) и интенсивности некогерентно рассеянного излучения от концентрации Ce (%) представлены фиг.4 и 5.

Введение аналитического параметра Zi с учетом интенсивности фона для Lα линии церия позволяет получить линейные зависимости как для низких, так и для высоких концентраций данного элемента, представленные на фиг.6.

Пример 2. Количественное определение редкоземельных элементов (РЗЭ) в модельных смесях. Используемое оборудование: рентгеновский спектрометр «Спектроскан G»; условия измерения - Uуск - 40 кВ, Iанод - 100 мкА; материал анода - Ag; время экспозиции - 5 с; среда измерения - воздух; (16,57 кэВ); длина волны некогерентного рассеяния - 605 mÅ.

Приготовлен массив градуировочных проб разбавлением химически чистых нитратов РЗЭ продуктом МАФ. Объект анализа - гомогенизированный порошок разбавленных нитратов РЗЭ, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм. Элементы-аналиты - La, Er, Eu с диапазоном концентраций по лантану: 0,04-3%; по эрбию: 0,03-1%; по европию: 0,1-4%.

Использование аналитического параметра Zi с учетом интенсивности фона позволяет получить линейные зависимости для каждого элемента-аналита: лантана, эрбия и европия, от их концентрации в совместном присутствии. Полученные линейные зависимости аналитического параметра Zi от концентрации для характеристических линий Lα La, Lα Er и Lα Eu представлены на фиг.7, 8, 9.

Изобретение может быть использовано в различных отраслях промышленности для решения следующих задач:

- определение элементного состава руд, минералов, промышленных и товарных продуктов горнодобывающей промышленности;

- определение элементного состава природных и сточных вод, промышленных технологических растворов;

- исследование продуктов лабораторного и промышленного синтеза неорганических структур.

Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида: (Z - аналитический параметр для элемента i; E - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(E) - измеренная интенсивность характеристического излучения, соответствующая энергии E; I(E) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента E; I(E) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, I(E) - рассчитанная интенсивность фона некогерентно рассеянного излучения),где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле: (E - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, I - интенсивность характеристического излучения в точке спектра с энергией E+ΔE).
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ЭЛЕМЕНТА В ВЕЩЕСТВЕ СЛОЖНОГО ХИМИЧЕСКОГО СОСТАВА
Источник поступления информации: Роспатент

Showing 1-10 of 172 items.
20.02.2013
№216.012.25ca

Способ хирургического лечения рака гортани

Изобретение относится к области медицины, а именно к ЛОР-хирургии и онкологии, и может найти применение при хирургическом лечении обширных злокачественных опухолей гортани, в том числе на фоне последствий радикальной химиолучевой терапии. Сущность способа состоит в префабрикации...
Тип: Изобретение
Номер охранного документа: 0002475194
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2a69

Способ очистки сточных вод от фенолов

Изобретение может быть использовано при очистке фенолсодержащих сбросных вод, промышленных стоков, а также попутных вод нефтепромыслов. Для осуществления способа проводят каталитическое окисление фенолов марганецсодержащим окислителем в термостатированном реакторе с автоматическим...
Тип: Изобретение
Номер охранного документа: 0002476384
Дата охранного документа: 27.02.2013
20.05.2013
№216.012.4142

Комплекс для проходки выработки метрополитена круглого поперечного сечения

Изобретение относится к горному делу и может быть использовано для проходки горных выработок. Техническим результатом является повышение надежности работы комплекса, исключение возможности скопления у забоя горной массы, образующейся при проходке выработки, уменьшение трудоемкости обслуживания...
Тип: Изобретение
Номер охранного документа: 0002482276
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4897

Способ извлечения редкоземельных металлов из водных растворов

Изобретение относится к гидрометаллургии и может быть использовано в технологии получения редкоземельных металлов из низкоконцентрированного или вторичного сырья на стадии извлечения и разделения суммы лантаноидов. Способ извлечения редкоземельных металлов из водных растворов включает...
Тип: Изобретение
Номер охранного документа: 0002484163
Дата охранного документа: 10.06.2013
10.09.2013
№216.012.6716

Способ снятия остаточных напряжений в сварных соединениях трубопроводов

Способ включает наложение вибрационными устройствами низкочастотных колебаний на сварной шов и околошовную зону металла в процессе сварки. Наложение низкочастотных колебаний на сварной шов и околошовную зону осуществляют с частотой, равной частоте собственных колебаний участка трубопровода со...
Тип: Изобретение
Номер охранного документа: 0002492037
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6c8a

Система управления турбоагрегатом

Изобретение относится к области управления турбоагрегатами и направлено на обеспечение их работы с максимально возможным коэффициентом полезного действия не зависимо от изменения характеристики трубопровода. Система управления включает центробежный насос, электродвигатель, блок изменения...
Тип: Изобретение
Номер охранного документа: 0002493437
Дата охранного документа: 20.09.2013
10.11.2013
№216.012.7e8e

Комплекс для проведения коротких выработок с тюбинговой крепью

Изобретение относится к горному делу и предназначено для проведения выработок в неустойчивых породах при строительстве метрополитенов с обеспечением сохранности поверхностных сооружений. Комплекс для проведения коротких выработок с тюбинговой крепью в слабоустойчивых породах содержит рабочий...
Тип: Изобретение
Номер охранного документа: 0002498071
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8038

Высокодинамичный бездатчиковый асинхронный электропривод с непосредственным управлением моментом

Изобретение относится к электротехнике и может быть использовано в электроприводах различного отраслевого применения, построенных на основе асинхронного короткозамкнутого двигателя. Технический результат заключается в снижении пульсаций электромагнитного момента за счет обеспечения плавного...
Тип: Изобретение
Номер охранного документа: 0002498497
Дата охранного документа: 10.11.2013
20.01.2014
№216.012.981a

Коронка для направленного механического бурения льда

Изобретение относится к буровой технике и может быть использовано для искусственного искривления с отбором керна скважины, пробуренной в ледовых массивах Арктики и Антарктики. Обеспечивает расширение возможностей устройства и повышение надежности проведения ствола скважины в проектном...
Тип: Изобретение
Номер охранного документа: 0002504637
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9852

Электроприводная перекачивающая станция на морской платформе

Изобретение относится к транспортировке многофазной углеводородной смеси по трубопроводам, проложенным по морскому дну. Перекачивающая станция на морской платформе содержит контейнер. Контейнер разделен на три отсека. Во втором отсеке установлен электродвигатель, ротор которого установлен на...
Тип: Изобретение
Номер охранного документа: 0002504693
Дата охранного документа: 20.01.2014
Showing 1-10 of 221 items.
20.02.2013
№216.012.25ca

Способ хирургического лечения рака гортани

Изобретение относится к области медицины, а именно к ЛОР-хирургии и онкологии, и может найти применение при хирургическом лечении обширных злокачественных опухолей гортани, в том числе на фоне последствий радикальной химиолучевой терапии. Сущность способа состоит в префабрикации...
Тип: Изобретение
Номер охранного документа: 0002475194
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2a69

Способ очистки сточных вод от фенолов

Изобретение может быть использовано при очистке фенолсодержащих сбросных вод, промышленных стоков, а также попутных вод нефтепромыслов. Для осуществления способа проводят каталитическое окисление фенолов марганецсодержащим окислителем в термостатированном реакторе с автоматическим...
Тип: Изобретение
Номер охранного документа: 0002476384
Дата охранного документа: 27.02.2013
20.05.2013
№216.012.4142

Комплекс для проходки выработки метрополитена круглого поперечного сечения

Изобретение относится к горному делу и может быть использовано для проходки горных выработок. Техническим результатом является повышение надежности работы комплекса, исключение возможности скопления у забоя горной массы, образующейся при проходке выработки, уменьшение трудоемкости обслуживания...
Тип: Изобретение
Номер охранного документа: 0002482276
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4897

Способ извлечения редкоземельных металлов из водных растворов

Изобретение относится к гидрометаллургии и может быть использовано в технологии получения редкоземельных металлов из низкоконцентрированного или вторичного сырья на стадии извлечения и разделения суммы лантаноидов. Способ извлечения редкоземельных металлов из водных растворов включает...
Тип: Изобретение
Номер охранного документа: 0002484163
Дата охранного документа: 10.06.2013
10.09.2013
№216.012.6677

Способ оценки склонности к риску

Изобретение относится к области медицины, а именно к оценке психофизиологических качеств горноспасателей, и может быть использовано в отраслях, связанных с опасным производством. Перед началом операций определяют силу электрокожного раздражения индивидуально для каждого испытуемого по реакции...
Тип: Изобретение
Номер охранного документа: 0002491878
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.6716

Способ снятия остаточных напряжений в сварных соединениях трубопроводов

Способ включает наложение вибрационными устройствами низкочастотных колебаний на сварной шов и околошовную зону металла в процессе сварки. Наложение низкочастотных колебаний на сварной шов и околошовную зону осуществляют с частотой, равной частоте собственных колебаний участка трубопровода со...
Тип: Изобретение
Номер охранного документа: 0002492037
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6c8a

Система управления турбоагрегатом

Изобретение относится к области управления турбоагрегатами и направлено на обеспечение их работы с максимально возможным коэффициентом полезного действия не зависимо от изменения характеристики трубопровода. Система управления включает центробежный насос, электродвигатель, блок изменения...
Тип: Изобретение
Номер охранного документа: 0002493437
Дата охранного документа: 20.09.2013
10.10.2013
№216.012.726b

Ленточно-канатный конвейер с промежуточными приводами

Конвейер содержит ленту и размещенный внутри ее контура тяговый контур из двух канатов (3, 4), опирающийся на грузонесущей ветви (1) ленты на ролики (5,6) с ребордами. Борта грузонесущей ветви ленты опираются на наклонные ролики (7, 8) с формированием желобчатого профиля ленты. Канаты нижней...
Тип: Изобретение
Номер охранного документа: 0002494948
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7ab6

Способ определения астрономического азимута и широты по неизвестным звездам

Изобретение относится к области астрономо-геодезических измерений и может быть использовано для определения по звездам астрономических азимутов направлений на земные ориентиры для решения разнообразных задач инженерной геодезии. Способ определения астрономического азимута и широты по...
Тип: Изобретение
Номер охранного документа: 0002497076
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7d44

Головной однобарабанный привод ленточного конвейера с прижимной лентой

Привод содержит огибаемый конвейерной лентой (1) приводной барабан (2) с разгрузочной воронкой (3) и прижимную ленту (4), контур которой размещен под приводным барабаном с размещением отклоняющего барабана (5) в зоне сбегания конвейерной ленты с приводного барабана. Корпусы (6) подшипников...
Тип: Изобретение
Номер охранного документа: 0002497741
Дата охранного документа: 10.11.2013
+ добавить свой РИД