×
10.05.2016
216.015.3ab5

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННОЙ ФОРМЫ ТЕРАПЕВТИЧЕСКОГО БЕЛКА СУПЕРОКСИДДИСМУТАЗЫ ДЛЯ ПЕРОРАЛЬНОГО ПРИМЕНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области высокомолекулярной химии и фармакологии и предназначено для использования в качестве пероральной формы терапевтического белка супероксиддисмутазы (СОД). Изобретение заключается во введении СОД в пористые кальций карбонатные (CaCO) ядра методом соосаждения растворов NaCO и CaCl×2HO и дальнейшем формировании альгинатных микрокапсул (АМК), содержащих эти ядра. Для подавления пептидазной активности в кишечной среде в систему введен ингибитор пептидаз - овомукоид (ОМ), который, как и СОД, но независимо от него, включен в ядра. Ядра CaCO формируются согласно следующей методике: равные объемы 0.33 М растворов NaCO и CaCl×2HO сливают и перемешивают 30 с. Суспензия созревает в течение 15 мин, затем ядра промывают водой и ацетоном, отфильтровывают и сушат при Т=40°С. Формирование АМК, содержащих ядра с белками, проводили методом ионотропной сшивки. Размеры АМК составляют 800-900 мкм. Включение СОД и ОМ в них составляет 10-30 мкг/мг и 5-20 мкг/мг соответственно. Такая конфигурация системы пероральной доставки сохраняет активность СОД в присутствии кишечного фермента трипсина. Высвобождение СОД в среду, имитирующую желудочную (0.05 М НС1 рН=1.2), минимально. В среду, имитирующую кишечную (фосфатный буфер, рН=8.0), СОД высвобождается на 60% за 24 часа, что обеспечивает пролонгированное действие препарата. 2 ил., 2 пр.
Основные результаты: Способ получения микрокапсулированной формы терапевтического белка супероксиддисмутазы для перорального применения, включающий формирование двухуровневой микрокапсулы, содержащей внутри целевой белок и ингибитор пептидаз, отличающийся тем, что целевой белок супероксиддисмутаза, как и овомукоид - ингибитор пептидазной активности в кишечной среде, вводят независимо друг от друга в пористые кальций карбонатные (СаСО) ядра методом соосаждения равных объемов 0.33 М растворов NaCO и CaCl×2HO, в последнем содержатся белки СОД или ОМ в концентрации 2-3 мг/мл, при перемешивании в течение 30 с, после созревания суспензии в течение 15 мин ядра промывают на фильтре Шотта №16 водой, отфильтровывают, затем промывают ацетоном и сушат в термостате при Т=40-50°C; в дальнейшем альгинатные микрокапсулы, служащие наружной оболочкой для обоих типов ядер, формируют методом ионотропной сшивки, согласно следующей процедуре: дисперсию ядер в 3% растворе альгината натрия не более 200 мг ядер в 1 мл раствора вводят при перемешивании по каплям в осадительную ванну, содержащую 1% раствор CaCl в 0.2-0.5% растворе хитозана в 1% уксусной кислоте, затем фильтруют на воронке Бюхнера, промывают водой и сушат при комнатной температуре; размеры полученных таким способом альгинатных микрокапсул составляют 800-900 мкм, включение супероксиддисмутазы и овомукоида в них составляет 10-30 мкг/мг и 5-20 мкг/мг соответственно.

Предложение относится к области высокомолекулярной химии и фармакологии и предназначено для использования в качестве микрокапсулированной формы терапевтического белка супероксиддисмутазы (СОД) для перорального применения.

В литературе приведены различные способы получения инкапсулированных форм СОД в биодеградируемые микрокапсулы (МК). Препараты на базе хитозановых МК, полученных соосаждением [Ö. Çelik, J. Akbuğa. Preparation of superoxide dismutase loaded chitosan microspheres: Characterization and release studies. European Journal of Pharmaceutics and Biopharmaceutics, 66 (2007) 42-47], или на основе МК, сформированных эмульсионным способом с использованием поли(D,L-лактида-ко-гликолида) [S. Giovagnoli, P. Blasi, M. Ricci, and C. Rossi. Biodegradable Microspheres as Carriers for Native Superoxide Dismutase and Catalase Delivery, AAPS Pharm Sci Tech, 5 (2004) 1-9], обладают способностью пролонгировать процесс высвобождения СОД с частичным сохранением ферментативной активности. Существенным недостатком этих способов является получение инъекционных форм препаратов, тогда как применение пероральных препаратов намного удобнее для пациентов и смягчает требования к обеспечению стерильности процесса изготовления лекарственных форм. Существенным недостатком аэрозольного препарата СОД, полученного методом двойной эмульсии «твердое вещество/масло/вода» на основе поликетала [V.F. Fiore, M.C. Lofton, S. Roser-Page, S.C. Yang, J. Roman, N. Murthy, T.H. Barker. Polyketal microparticles for therapeutic delivery to the lung, Biomaterials, 31 (2010) 810-817], является использование дихлорметана - вредного органического растворителя.

Вместе с тем в настоящее время не известны препараты СОД для перорального применения. Для пероральных лекарственных форм необходимо обеспечить устойчивость в кислой среде желудка и в щелочной среде кишечника. Для белковых лекарственных форм существенную опасность представляют, кроме того, и протеолитические ферменты кишечника трипсин, химотрипсин, эластаза и др.

Наиболее близким по сущности является способ получения перорального инкапсулируемого инсулина, заключающийся в формировании микрочастиц, которые получали постадийной адсорбцией противоположно заряженных полиэлектролитов на матрице, представляющей собой нерастворимый комплекс белков - инсулина и ингибиторов кишечных пептидаз с полианионом (декстрансульфатом и хитозаном) [Печенкин М.А., Балабушевич Н.Г., Зоров И.Н., Изумрудов В.А., Клячко Н.Л., Кабанов А.В., Ларионова Н.И. Использование ингибиторов протеаз в составе полиэлектролитных микрочастиц для увеличения биодоступности капсулируемых белков при пероральном применении. ХФЖ 47 (2013) 49-56].

Существенным недостатком этого способа получения пероральной микрокапсулированной формы белка является то, что способ разработан для инкапсулирования именно инсулина. В случае использования способа для инкапсулирования белка с другими характеристиками (прежде всего с другим значением изоэлектрической точки) совместное введение целевого белка и ингибиторов пептидаз в процессе их соосаждения с полимером не исключает взаимодействия составляющих системы и уменьшения их активности. Агрегаты белков с полимером крайне неоднородны по размерам и морфологии. Стадия формирования микрокапсулы методом полиэлектролитной адсорбции крайне трудоемка и приводит к потерям целевого продукта.

Технической задачей и положительным результатом заявляемого способа является разработка методики получения микрокапсулированной формы терапевтического белка супероксиддисмутазы для перорального применения в виде двухуровневой микрокапсулы, обладающей устойчивостью к воздействию кислой среды желудка и с пролонгированным выделением в щелочную среду кишечника, а для защиты СОД от кишечных пептидаз в препарат введен ингибитор пептидаз - овомукоид (ОМ).

Указанная задача и технический результат достигается в способе получения микрокапсулированной пероральной формы терапевтического белка супероксиддисмутазы, включающем раздельное введение методом соосаждения целевого фермента - СОД и ингибитора пептидаз - ОМ в первичные носители - пористые кальций карбонатные ядра с последующим совместным включением их во вторичную оболочку - альгинатную МК, формируемую методом ионотропной сшивки. А именно: целевой белок супероксиддисмутаза, как и овомукоид - игибитор пептидазной активности в кишечной среде, вводят независимо друг от друга в пористые кальций карбонатные (СаСО3) ядра методом соосаждения равных объемов 0.33 М растворов Na2CO3 и CaCl2×2H2O (в последнем содержатся белки СОД или ОМ в концентрации 2-3 мг/мл) при перемешивании в течение 30 с, после созревания суспензии в течение 15 мин ядра промывают на фильтре Шотта №16 водой, отфильтровывают, затем промывают ацетоном и сушат в термостате при Т=40-50°C; в дальнейшем альгинатные микрокапсулы (АМК), служащие наружной оболочкой для обоих типов ядер, формируют методом ионотропной сшивки, согласно следующей процедуре: дисперсию ядер в 3% растворе альгината натрия (не более 200 мг ядер в 1 мл раствора) вводят при перемешивании по каплям в осадительную ванну, содержащую 1% раствор СаС12 в 0.2-0.5% растворе хитозана в 1% уксусной кислоте, затем фильтруют на воронке Бюхнера, промывают водой и сушат при комнатной температуре; размеры полученных таким способом АМК составляют 800-900 мкм, включение СОД и ОМ в предлагаемые системы составляет 10-30 мкг/мг и 5-20 мкг/мг соответственно.

Более полно способ излагается на приводимых примерах, где в экспериментах использовали следующие реактивы: ОМ (Реахим, Россия), трипсин (Sigma-Aldrich), Na2CO3, СаС12×2 H2O и безводный СаС12 - все puriss p.a. (Sigma-Aldrich), Na2HPO4, NaH2PO4 - чда (Реахим Россия), кислота уксусная, чда (Вектон Россия), вода деионизованная extra pure reagent grade III (Acros Organics), альгинат Na низковязкий медицинский (Архангельский комбинат), хитозан кислоторастворимый, ТУ 15-01482-88 с ММ=560 кДа и ММ=35 кДа, набор реагентов Ransod (SD125) для определения активности СОД (Randox).

Пример 1. Двухуровневые АМК, содержащие СаСО3 ядра с включенными в них антиоксидантным ферментом СОД и пептидазным ингибитором ОМ, получали следующим образом. Супероксиддисмутаза (СОД) является ключевым ферментом антиоксидантной защиты организма. Физиологическое действие связано с детоксикацией супероксидных радикалов, образующихся при развитии различных патологических состояний. Основное ограничение при терапевтическом использовании СОД - короткий период полувыведения из плазмы - всего 6 минут. В работе использовали препарат Рексод (ВНИИ ОЧБП), основным действующим веществом которого является рекомбинантная СОД человека, получаемая из дрожжей Saccharomyces cerevisiae, штамм Y2134. Рексод - оригинальный препарат, в зарубежных фармакопеях не описан. Регистрационное удостоверение ЛСР-007164/09 от 10.09.2009. ОМ - ингибитор пептидазных ферментов, содержащихся в кишечнике - трипсина, химотрипсина и эластазы. Первый уровень инкапсулирования соосаждение СОД в пористые ватериты СаСО3- проводили следующим образом: равные объемы 0.33 М растворов Na2CO3 и СаС12×2H2O (в последнем содержатся белки СОД или ОМ в концентрации 2-3 мг/мл) сливали и перемешивали в течение 30 с. Суспензия созревала в течение 15 мин, затем ядра на фильтре Шотта №16 промывали 6-кратным объемом воды, отфильтровывали, затем промывали ацетоном и сушили в термостате при Т=40-50°C. Температурный режим влияет на морфологию кристаллов СаСО3. Сушка геля CaCO3 при Т ниже 30°C приводит к формированию непористых кальцитов, при Т выше 50°C формируется смесь пористых сферических ватеритов и непористых арагонитов, с ростом температуры увеличивается доля арагонитов. Введение ингибитора пептидаз ОМ на первом уровне инкапсулирования проводили аналогично введению СОД. Размеры карбонатных ядер, содержащих белки СОД или ОМ, составляют 4-6 мкм. Второй уровень инкапсулирования - формирование АМК, содержащих ядра с белками, проводили методом ионотропной сшивки. Дисперсию ядер (не более 200 мг на 1 мл раствора) в 3% растворе альгината натрия вводили при перемешивании по каплям в осадительную ванну, содержащую 1% водный раствор СаСl2. Для улучшения качества поверхности АМК вводят добавки хитозана, для этого осадительная ванна СаСl2 содержала 0.2-0.5% раствор хитозана в 1% уксусной кислоте. При попадании в ванну альгинат натрия в составе капли пространственно сшивается двухвалентными ионами кальция, образуя прочную эластичную АМК, внутри которой заключены карбонатные ядра с белком. Затем АМК фильтровали, промывали водой и сушили при комнатной температуре. Размеры АМК составляют 800-900 мкм. Полученные АМК являются основным компонентом перорального препарата СОД пролонгированного действия. Включение СОД и ОМ в предлагаемые системы составляет 10-30 мкг/мг и 5-20 мкг/мг соответственно. Высвобождение СОД в среду, имитирующую желудочную (0.05 М НСl, рН=1.2), минимально. В среду, имитирующую кишечную (Na фосфатный буфер, рН=8.0), СОД высвобождается на 60% за 24 часа, что обеспечивает пролонгированное действие препарата. Кривые высвобождения СОД в модельную кишечную среду из двухуровневой системы, а также из АМК без карбонатных ядер и только из СаСО3 - системы первого уровня приведены на фиг. 1. Видно, что карбонатные ядра практически не задерживают СОД в кишечной среде. Сравнение профилей высвобождения СОД из заявляемой двухуровневой системы и АМК о более значительной пролонгации процесса в первом случае.

Пример 2. Отличается от Примера 1 тем, что на первом уровне инкапсулирования проводили совместное соосаждение СОД и ОМ.

Этот пример приведен для сравнения эффективности систем доставки различной конфигурации в присутствии ингибитора протеолитических ферментов.

Испытания активности АМК, содержащих СОД, полученных по заявленному изобретению (Пример 1), и по методикам, приведенным в Примере 2, проводились in vitro. Активность СОД определяли с помощью набора реагентов Ransod (SD125) производства фирмы Randox. Расчет активности СОД осуществляли по величине ингибирования реакции образования формазана в результате окисления хромогена (2-(4-иодофенил)-3-(4-нитрофенол)-5-фенилтетразолий хлорид) кислородными радикалами, генерируемыми ксантиноксидазой в ходе окисления ксантина. Измерения оптической плотности растворов осуществляли с использованием планшетного фотометра FLx800 (Biotek). Пробы разводили в 3000 раз 10 мМ натрий-фосфатным буфером. В 96-луночный планшет вносили по 6 мкл разведенной пробы или стандартов и 200 мкл реагента 1 (ксантин) и перемешивали. Затем добавляли 30 мкл реагента 2, содержащего ксантиноксидазу, перемешивали и измеряли начальную оптическую плотность Ан при длине волны 505 нм. Через 8 минут инкубации измеряли конечную оптическую плотность Ак. Все измеренные значения для стандартов и проб (средние из двух измерений) переводили в проценты ингибирования: Ing=100-[dAH/dAK]·100%. В качестве калибровочной кривой использовали кривую зависимости ингибирования реакции образования формазана от логарифма (Log10) активности СОД в стандарте, выраженной в Ед/мл. Временные профили изменения активности СОД при высвобождении фермента из двухуровневых АМК различного состава, соответствующего Примерам 1-2, в модельную кишечную среду, а именно: в 0.07М Фосфатный буфер, рН=7,8, содержащий трипсин в концентрации 0.125 мг/мл, приведены на фиг. 2. Попытка ввести пептидазный ингибитор ОМ в CaCO3 ядра совместно с СОД (Пример 2) не привела к ожидаемому результату. Не исключено взаимодействие белков в ходе процедуры формирования системы инкапсулирования.

Предпочтительной является микрокапсулированная форма СОД, полученная по способу, описанному в Примере 1, когда ОМ включен в СаСО3 ядра независимо от СОД. Такая конфигурация системы пероральной доставки эффективно сохраняет активность СОД in vitro в присутствии кишечного фермента трипсина. Высвобождение СОД в среду, имитирующую желудочную (рН=1.2), минимально. В среду, имитирующую кишечную (фосфатный буфер, рН=8.0), СОД высвобождается на 60% за 24 часа, что обеспечивает пролонгированное действие препарата.

В заявленном способе весь технологический процесс проводится с применением водных растворов, экологически безвреден, пожаробезопасен. Это позволяет получить препарат, обладающий следующими положительными характеристиками: пероральная форма приема препарата СОД намного удобнее, чем парентеральная как для пациента, так и для персонала. При производстве пероральных форм требования к стерильности производства менее жесткие, чем при производстве парентеральных форм. При прохождении желудочно-кишечного тракта пероральная микрокапсулированная форма СОД обеспечивает защиту терапевтического белка в желудочной среде и обеспечивает ее постепенное высвобождение в среду кишечника. Пролонгированное действие препарата позволяет сократить количество приемов лекарственного средства. Благодаря оптимальному варианту включения ингибитора кишечных пептидаз предлагаемый препарат сохраняет активность терапевтического белка СОД в присутствии кишечного фермента трипсина.

Способ получения микрокапсулированной формы терапевтического белка супероксиддисмутазы для перорального применения, включающий формирование двухуровневой микрокапсулы, содержащей внутри целевой белок и ингибитор пептидаз, отличающийся тем, что целевой белок супероксиддисмутаза, как и овомукоид - ингибитор пептидазной активности в кишечной среде, вводят независимо друг от друга в пористые кальций карбонатные (СаСО) ядра методом соосаждения равных объемов 0.33 М растворов NaCO и CaCl×2HO, в последнем содержатся белки СОД или ОМ в концентрации 2-3 мг/мл, при перемешивании в течение 30 с, после созревания суспензии в течение 15 мин ядра промывают на фильтре Шотта №16 водой, отфильтровывают, затем промывают ацетоном и сушат в термостате при Т=40-50°C; в дальнейшем альгинатные микрокапсулы, служащие наружной оболочкой для обоих типов ядер, формируют методом ионотропной сшивки, согласно следующей процедуре: дисперсию ядер в 3% растворе альгината натрия не более 200 мг ядер в 1 мл раствора вводят при перемешивании по каплям в осадительную ванну, содержащую 1% раствор CaCl в 0.2-0.5% растворе хитозана в 1% уксусной кислоте, затем фильтруют на воронке Бюхнера, промывают водой и сушат при комнатной температуре; размеры полученных таким способом альгинатных микрокапсул составляют 800-900 мкм, включение супероксиддисмутазы и овомукоида в них составляет 10-30 мкг/мг и 5-20 мкг/мг соответственно.
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННОЙ ФОРМЫ ТЕРАПЕВТИЧЕСКОГО БЕЛКА СУПЕРОКСИДДИСМУТАЗЫ ДЛЯ ПЕРОРАЛЬНОГО ПРИМЕНЕНИЯ
Источник поступления информации: Роспатент

Showing 11-20 of 58 items.
27.08.2014
№216.012.ed80

Способ получения (2r,4r)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот

Изобретение относится к способу получения производных (2R,4R)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот - потенциальных антигипертензивных веществ, ингибиторов ангиотензинпревращающего фермента (АПФ). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002526619
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f851

Способ дистанционной регистрации и обработки электрокардиограммы и дыхания человека и животных

Изобретение относится к медицине и может использоваться для оперативной регистрации и дистанционной передачи физиологических параметров сердечно-сосудистой и дыхательной систем человека или животных в эксперименте. Для этого используют приемник, состоящий из трех блоков-регистраторов съема и...
Тип: Изобретение
Номер охранного документа: 0002529406
Дата охранного документа: 27.09.2014
27.11.2014
№216.013.0a9a

Термостойкие адгезивы для соединения кристаллов и металлов с полиимидным основанием

Изобретение относится к термостойким адгезивам для соединения кристаллов и металлов с полиимидным основанием. Адгезивы (составы) содержат в качестве полимерного связующего новый преполимер - поли(о-гидроксиамид) - продукт реакции поликонденсации 3,3′-дигидрокси-4,4′-диаминодифенилметана и...
Тип: Изобретение
Номер охранного документа: 0002534122
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.181f

Полимер-неорганические нанокомпозиционные материалы на основе полиметилметакрилата с настраиваемым спектром фотолюминесценции

Изобретение относится к полимер-неорганическим композиционным материалам на основе полиметилметакрилата и наночастиц твердых растворов ZrO с лантанидами, выбранными из Eu, Tb и Tm. Такие нанокомпозиты предназначены для использования в оптике и оптоэлектронике, в частности могут быть применены в...
Тип: Изобретение
Номер охранного документа: 0002537603
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
27.02.2015
№216.013.2dd7

Первапорационная мембрана для разделения смеси простейших моно- и двухатомных спиртов

Изобретение относится к мембранным технологиям, составу и структуре мембран, предназначенных для разделения смеси простейших моно- и двухатомных спиртов методом первапорации. В качестве материала мембраны используют композицию, включающую поли(2,6-диметил-1,4-фениленоксид) и гибридный...
Тип: Изобретение
Номер охранного документа: 0002543203
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3f87

Мембрана для разделения смеси метанол - метилацетат

Изобретение относится к области химии высокомолекулярных соединений, конкретно к нано- и гибридным функциональным материалам. Мембрана получена из полимерного материала с преобладающей проницаемостью для метанола. В качестве полимерного материала мембраны использован нанокомпозит на основе...
Тип: Изобретение
Номер охранного документа: 0002547751
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f8a

Полимерная порошковая композиция для супергидрофобного покрытия и способ получения супергидрофобного покрытия

Изобретение относится к области химии, а именно к полимерным порошковым композициям для супергидрофобного покрытия и способам получения супергидрофобных покрытий. Композиция в качестве основы содержит термореактивную порошковую композицию с эпоксиполиэфирным или эпоксидным, или полиэфирным,...
Тип: Изобретение
Номер охранного документа: 0002547754
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4d5b

Способ иммобилизации химотрипсина на наночастицах селена или серебра

Изобретение относится к области биотехнологии, биохимии и медицины. Предложен способ иммобилизации химотрипсина на наночастицах селена или серебра. К раствору химотрипсина с концентрацией от 1·10 до 1 мас.% добавляют раствор селенистой кислоты в интервале концентраций 1,3·10 - 1,5 мас.% или...
Тип: Изобретение
Номер охранного документа: 0002551317
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d5d

Способ деструкции рибонуклеиновых кислот

Изобретение относится к области биотехнологии. Предложен способ деструкции рибонуклеиновых кислот. Раствор, содержащий рибонуклеиновую кислоту, пропускают через макропористый полиметакрилатный сорбент монолитного типа, содержащий иммобилизованную рибонуклеазу А, а затем через макропористый...
Тип: Изобретение
Номер охранного документа: 0002551319
Дата охранного документа: 20.05.2015
Showing 11-20 of 55 items.
20.08.2014
№216.012.ec9c

Способ получения композитного волокна на основе гидролизного лигнина с полиакрилонитрилом

Изобретение относится к области получения композиционного волокна на основе гидролизного лигнина с полиакрилонитрилом и может быть использовано для формирования прекурсорных композитных волокон в качестве исходного материала для образования углеродных волокон повышенной прочности и...
Тип: Изобретение
Номер охранного документа: 0002526380
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ed80

Способ получения (2r,4r)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот

Изобретение относится к способу получения производных (2R,4R)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот - потенциальных антигипертензивных веществ, ингибиторов ангиотензинпревращающего фермента (АПФ). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002526619
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f851

Способ дистанционной регистрации и обработки электрокардиограммы и дыхания человека и животных

Изобретение относится к медицине и может использоваться для оперативной регистрации и дистанционной передачи физиологических параметров сердечно-сосудистой и дыхательной систем человека или животных в эксперименте. Для этого используют приемник, состоящий из трех блоков-регистраторов съема и...
Тип: Изобретение
Номер охранного документа: 0002529406
Дата охранного документа: 27.09.2014
27.11.2014
№216.013.0a9a

Термостойкие адгезивы для соединения кристаллов и металлов с полиимидным основанием

Изобретение относится к термостойким адгезивам для соединения кристаллов и металлов с полиимидным основанием. Адгезивы (составы) содержат в качестве полимерного связующего новый преполимер - поли(о-гидроксиамид) - продукт реакции поликонденсации 3,3′-дигидрокси-4,4′-диаминодифенилметана и...
Тип: Изобретение
Номер охранного документа: 0002534122
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.181f

Полимер-неорганические нанокомпозиционные материалы на основе полиметилметакрилата с настраиваемым спектром фотолюминесценции

Изобретение относится к полимер-неорганическим композиционным материалам на основе полиметилметакрилата и наночастиц твердых растворов ZrO с лантанидами, выбранными из Eu, Tb и Tm. Такие нанокомпозиты предназначены для использования в оптике и оптоэлектронике, в частности могут быть применены в...
Тип: Изобретение
Номер охранного документа: 0002537603
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a7f

Способ получения углеводсодержащих полимеров

Изобретение относится к органической химии и предназначено для синтеза гомо- и сополимеров N-гликозидов винилсодержащих аминов посредством радикально-инициируемой полимеризации. Предложен способ получения углеводсодержащих полимеров на основе N-гликозидов винилсодержащих аминов радикальной...
Тип: Изобретение
Номер охранного документа: 0002538211
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
27.02.2015
№216.013.2dd7

Первапорационная мембрана для разделения смеси простейших моно- и двухатомных спиртов

Изобретение относится к мембранным технологиям, составу и структуре мембран, предназначенных для разделения смеси простейших моно- и двухатомных спиртов методом первапорации. В качестве материала мембраны используют композицию, включающую поли(2,6-диметил-1,4-фениленоксид) и гибридный...
Тип: Изобретение
Номер охранного документа: 0002543203
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3f87

Мембрана для разделения смеси метанол - метилацетат

Изобретение относится к области химии высокомолекулярных соединений, конкретно к нано- и гибридным функциональным материалам. Мембрана получена из полимерного материала с преобладающей проницаемостью для метанола. В качестве полимерного материала мембраны использован нанокомпозит на основе...
Тип: Изобретение
Номер охранного документа: 0002547751
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f8a

Полимерная порошковая композиция для супергидрофобного покрытия и способ получения супергидрофобного покрытия

Изобретение относится к области химии, а именно к полимерным порошковым композициям для супергидрофобного покрытия и способам получения супергидрофобных покрытий. Композиция в качестве основы содержит термореактивную порошковую композицию с эпоксиполиэфирным или эпоксидным, или полиэфирным,...
Тип: Изобретение
Номер охранного документа: 0002547754
Дата охранного документа: 10.04.2015
+ добавить свой РИД