×
10.04.2016
216.015.2b79

Результат интеллектуальной деятельности: УСИЛИВАЮЩИЙ СВЕРХПРОВОДЯЩИЙ МЕТАМАТЕРИАЛ

Вид РИД

Изобретение

Аннотация: Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с участием двух или более джозефсоновских контактов, элементарные ячейки образуют в своей совокупности двухмерную равномерно распределенную в пространстве решетку, метаповерхность, а магнитное поле усиливаемого сигнала создается близко расположенной низкодобротной линией передачи, которая распределяет сигнал между всеми ячейками метаматериала. Технический результат: обеспечение возможности увеличить мощность насыщения и расширить частотный диапазон усиления. 6 ил.
Основные результаты: Усиливающий сверхпроводящий метаматериал, состоящий из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с участием двух или более джозефсоновских контактов, отличающийся тем, что элементарные ячейки образуют в своей совокупности двухмерную равномерно распределенную в пространстве решетку, метаповерхность, а магнитное поле усиливаемого сигнала создается близко расположенной низкодобротной линией передачи, которая распределяет сигнал между всеми ячейками метаматериала.

Изобретение «Усиливающий сверхпроводящий метаматериал» может использоваться в различного рода приемных устройствах (детекторах) для сверхмалошумящего усиления слабых радиотехнических сигналов.

Аналогом усиливающего сверхпроводящего метаматериала является сверхпроводящий квантовый интерферометр со смещением по постоянному току (ПТ-сквид) (Джон Кларк, Михаэль Мюк, Марк-Оливер Андрэ, Йост Гэйл, Кристоф Хайден, «Микрополосковый усилитель на основе ПТ-сквида», Микроволновая Сверхпроводимость, в.375, 2001, стр. 473-504). ПТ-сквид представляет собой датчик магнитного поля, состоящий из двух джозефсоновских контактов, включенных в сверхпроводящее кольцо, индуктивно связанное с электромагнитной катушкой. Принцип использования ПТ-сквида для линейного усиления токов основан на предварительном линейном преобразовании входного сигнала в магнитное поле указанной катушки, которая создает магнитный поток, приложенный к петле сквида, который приводит к возникновению в сквиде сверхпроводящего тока. При наличии смещения постоянным напряжением приложение сигнала в виде магнитного поля приводит к возникновению экранирующего тока, на величину которого уменьшается измеряемый критический ток сквида. Поскольку вольт-амперная характеристика (ΒΑΧ) сквида зависит от критического тока, происходит модуляция рабочей точки ΒΑΧ с частотой сигнала; это является откликом сквида на переменный во времени внешний магнитно-токовый сигнал. Усиление и широкополосность ПТ-сквида зависят от амплитудно-частотной характеристики (АЧХ) коэффициента связи по магнитному полю между сигнальной катушкой, генерирующей магнитное поле, и ПТ-сквидом. Фактически, мы имеем дело с трансформатором магнитного потока с отношением более 100, на конструкцию которого наложены значительные ограничения геометрического характера, связанные с технологией изготовления схем с джозефсоновскими контактами. Например, методами напыления тонких пленок, которые используются для изготовления сквидов, затруднительно изготовить вложенные катушки, наподобие традиционных низкочастотных трансформаторов, имеющих коэффициент связи по потоку, близкий к 100%. В силу технологических особенностей предпочтение отдается однослойным спиральным катушкам, которые имеют значительное поле рассеивания. Связь с такой катушкой трудно сделать эффективной из-за очень низкой индуктивности петли сквида (единицы пГн). Попытки увеличить коэффициент связи путем увеличения числа и плотности витков спиральной катушки приводят к появлению паразитных эффектов, таких как межвитковая емкость и распределенный характер токов, что ведет к возникновению нежелательных высокодобротных резонансов в полосе сигнала и невозможности создания широкополосного усилителя. В приведенной выше работе, демонстрирующей рекордную чувствительность сверхвысокочастотного усилителя на основе ПТ-сквида, используется именно высокодобротный резонанс сигнальной катушки. На сегодняшний день получение широкополосного усиления на ПТ-сквидах остается нерешенной проблемой.

Недостатками приведенного аналога являются: узкая полоса рабочих частот (не более 10% от центральной частоты), низкий уровень мощности насыщения (единицы пВт) и наличие джонсоновского шума резистивных шунтов джозефсоновских туннельных контактов, которые необходимы для получения безгестерезисной ΒΑΧ и желаемой вольт-потоковой характеристики ПТ-сквида.

Вторым аналогом усиливающего сверхпроводящего метаматериала является параметрический сквид-усилитель (Дж.Ю. Матус, Т.С. Уайт, Р. Барендс, «Джозефсоновский параметрический усилитель с сильной внешней связью», Письма в Журнал Прикладной Физики, 104, 263513, 2014). Он работает на основе параметрического эффекта модуляции нелинейной индуктивности сверхпроводящего тока в петле, содержащей один или несколько джозефсоновских контактов в режиме смещения током, не превышающим критический ток джозефсоновских контактов. Концептуально, параметрический сквид-усилитель имеет параметры, по порядку величины сходные с ПТ-сквидом (усиление, ширина полосы, квантовый уровень шума при сверхнизких температурах); отличия от усилителя на ПТ-сквиде состоят в необходимости накачки от специального высокочастотного генератора, а также в отсутствии постоянного напряжения смещения на контактах.

К недостаткам параметрического усилителя можно отнести низкий уровень мощности насыщения (на уровне единиц пВт), необходимость использования специально генератора сигнала накачки, а также узкую полосу рабочих частот (не более 10% от центральной частоты).

Прототипом устройства является последовательно включенная цепочка ПТ-сквидов (Вэлти, Р.П., Мартинис Джон М., «Последовательная цепочка ПТ-сквидов», Труды Международного Общества Электронных Инженеров в Области Магнетизма, т. 27, в. 2, стр. 2924-2926, 2002). Последовательное включение N ПТ-сквидов позволяет увеличить размах предельного выходного напряжения и соответственно увеличить мощность насыщения системы в N раз по сравнению с одиночным ПТ-сквидом.

Недостатком этого устройства является сильное влияние технологического разброса нормальных сопротивлений и критических токов отдельных сквидов, что не позволяет реализовать для всех последовательно включенных сквидов оптимальное (одинаковое) по току и по напряжению смещение. Например, для смещения такой цепочки возникают затруднения в установке оптимальной рабочей точки в центре линейного участка ΒΑΧ для каждого сквида. Такая ситуация неизбежно ведет к снижению мощности насыщения индивидуальных звеньев и в сумме снижает эффективность всей системы, вплоть до превращения части звеньев в балласт.

Технический результат выражается в том, что усиливающий сверхпроводящий метаматериал позволяет, в отличие от его прототипа, теоретически неограниченно увеличивать мощность насыщения. Открывается возможность расширять частотный диапазон усиления (до 20-30% от центральной частоты, f, а теоретически даже шире), сохраняя при этом шумовую температуру на уровне квантового предела , что подразумевает охлаждение прибора до температуры T, которая удовлетворяет условию kT<nf.

Технический результат достигается тем, что используется усиливающий сверхпроводящий метаматериал, состоящий из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с участием двух или более джозефсоновских контактов, отличающийся тем, что элементарные ячейки образуют в своей совокупности двухмерную равномерно распределенную в пространстве решетку, метаповерхность, а магнитное поле усиливаемого сигнала создается близко расположенной низкодобротной линией передачи, которая распределяет сигнал между всеми ячейками метаматериала.

Изобретение поясняется чертежом, где 1 - сигнальный СВЧ вход, подсоединенный к металлическому полоску, 2 - сверхпроводящий электрод подачи смещения и вывода усиленного сигнала, 3 - вывод СВЧ и ПТ заземления, 4 - настроечные конденсаторы, 5 - джозефсоновские контакты, 6 - подложка, 7 - контуры квантования магнитного поля сквидов. Фигура 1 в порядке слева направо поясняет качественный переход от аналога и прототипа к усиливающему сверхпроводящему метаматериалу: от одиночного ПТ-сквида к цепочке последовательно или параллельно включенных сквидов и далее к последовательно-параллельному включению сквидов, являющемуся вариантом описанной выше двухмерной решетки. В силу сильной связи всех ячеек такой структуры возникает синхронизация частоты джозефсоновского тока во всех ячейках и происходит автоматическое выравнивание напряжений на всех контактах даже при наличии определенного разброса параметров.

Фигура 2 представляет собой эскиз технической реализации активной области устройства с применением технологии тонких пленок и является трехмерным изображением электромагнитной модели, с помощью которой могут быть подтверждены заявленные электродинамические свойства устройства. Внешние по отношению к устройству электродинамические цепи - волноводы и проводники смещения - не показанны, так как они могут иметь стандартные решения и не претендуют на оригинальность. В нижнем слое располагается прямоугольная решетка джозефсоновских контактов размерностью N∗M. В соответствии с формализмом электромагнитного моделирования, импедансы джозефсоновских контактов представлены в виде высокочастотных портов, параметры которых отражают электрофизические свойства выбранного типа джозефсоновских контактов. В верхнем слое располагается сверхпроводящий полосок в форме меандра, наводящий кольцевые токи в элементарных ячейках решетки. Как показывают проведенные нами расчеты, правильным выбором числа элементарных ячеек и парциального поглощения каждого из них можно добиться того, что мощность сигнала, подведенная к полоску, практически полностью (на 70-80%) поглощается решеткой.

Фигура 3 демонстрирует результаты моделирования S-параметров электромагнитной модели, представленной в виде фигуры 2: показаны частотные зависимости коэффициента отражения входа S11 и коэффициента обратного прохождения S21 (изоляция выхода). Передаточная характеристика S21 не вычислялась, она определяется токополевой характеристикой петли сквида и предполагается такой же, как у обычного ПТ-сквида, то есть она полагается стандартным параметром и, по нашему мнению, ее точное значение не имеет решающего влияния на работу предлагаемого устройства.

Из анализа данных фигуры 3 видно, что в полосе более 2 ГГц (более 20% от центральной частоты) в области частоты 10 ГГц сигнал хорошо поглощается структурой, при этом паразитное прохождение сигнала между входом и выходом очень мало и в силу математической симметрии модели в расчете не превышает - 110 дБ.

Фигура 4 показывает адмиттанс портов электромагнитной модели в точках включения джозефсоновских переходов. Приведенные кривые подтверждают отсутствие упомянутых выше паразитных резонансов в системе сквид-сигнальный индуктор, по крайней мере, до частоты 300 ГГц. Это означает гладкость ΒΑΧ джозефсоновских переходов, а максимальная ожидаемая удвоенная амплитуда неискаженного выходного сигнала может достигать 600 мкВ. Это означает мощность насыщения джозефсоновского контакта, нагруженного на 50 Ом около 0,8 нВт. Для всего устройства, имеющего размерность Μ∗Ν=100, мощность насыщения можно оценить в 80 нВт (-41 дБм), что делает такой усилитель сравнимым по этому параметру с сверхмалошумящими слаботочными полупроводниковыми охлаждаемыми усилителями.

На фигуре 5 показан чертеж устройства чипа: 1 - сигнальный СВЧ вход, подсоединенный к металлическому полоску, 2 - сверхпроводящий электрод подачи смещения и вывода усиленного сигнала, 3 - вывод СВЧ и ПТ заземления, 4 - настроечные конденсаторы, 5 - джозефсоновские контакты, 6 - подложка, 7 - контура квантования магнитного поля сквидов.

На фигуре 6 представлена безгистерезисная ΒΑΧ типичного джозефсоновского перехода, пригодного для использования в сверхпроводящем усиливающем метаматериале. Ic - критический ток джозефсоновского перехода. Полный ток, текущий через контакт, образуется из сверхпроводящей и нормальной составляющих Is и In, соответственно. Vc - критическое напряжение джозефсоновского контакта (несколько сот микровольт).

Изобретение осуществляется следующим образом. Методами тонкопленочной технологии изготавливается чип, имеющий несколько специализированных электрических выводов, показанных на фигуре 5: 1 - сигнальный СВЧ вход, подсоединенный к металлическому полоску, 2 - сверхпроводящий электрод подачи смещения и вывода усиленного сигнала, 3 - вывод СВЧ и ПТ заземления, 4 - настроечные конденсаторы, 5 - джозефсоновские контакты, 6 - подложка тонкопленочной структуры, 7 - контуры квантования магнитного поля сквидов. Точки 1 и 2 подсоединены к высокочастотным линиям входа и выхода соответственно. Металлические сверхпроводящие слои, в которых изготовлены геометрические фигуры 2 и 3, разделены слоем диэлектрика везде, кроме специальных окошек, в которых сформированы джозефсоновские контакты 5; в принципе, геометрические фигуры 2 и 3 могут быть изготовлены в одном физическом слое в зависимости от конкретной технологии изготовления (от типа) джозефсоновского перехода. Слои, содержащие геометрические фигуры 2, 3 и джозефсоновские переходы, отделены слоем диэлектрика от геометрической фигуры 1, которая представляет собой металлический полосок, а конденсаторы 4 сформированы между геометрическими фигурами 1 и 3. Видно, что топологически число периодов структуры (число элементарных ячеек) может быть увеличено и по горизонтали, и по вертикали, и таким образом фигура 5 является одним из примеров реализации устройства. Принцип действия устройства состоит в том, что сигнал с СВЧ входа 1 подается в металлический полосок, находящийся в низкодобротном резонансе с конденсаторами 4 и решеткой джозефсоновских переходов. Ток, возникающий в полоске, создает магнитное поле, возбуждающее кольцевые токи в ячейках решетки. Энергия сигнала поглощается решеткой в соответствии импедансами кольцевых токов ячеек (парциальных сквидов), что продемонстрированно на фигуре 3. На электрод смещения 2 подается постоянный ток, обеспечивающий смещение рабочей точки джозефсоновских контактов на напряжение порядка 300 микровольт. Около точки смещения происходит модуляция ΒΑΧ джозефсоновских переходов в соответствии с мгновенным полем сигнала в полосковой линии 1. Вследствие сильной связи соседних ячеек системы будет происходить синхронизация джозефсоновских токов, и при этом устанавливается строгое равенство частот (напряжений) на всех синхронизированных контактах, что позволяет оптимизировать вклад в общее усиление всех ячеек устройства. Усиленный сигнал снимается с электрода 2 в виде высокочастотной модуляции тока смещения. Емкость конденсаторов 4 выбирается в соответствии с заданной центральной частотой усилителя. В устройстве должны быть использованы джозефсоновские переходы с безгистерезисной ΒΑΧ изображенной, как пример, на фигуре 6.

Усиливающий сверхпроводящий метаматериал, состоящий из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с участием двух или более джозефсоновских контактов, отличающийся тем, что элементарные ячейки образуют в своей совокупности двухмерную равномерно распределенную в пространстве решетку, метаповерхность, а магнитное поле усиливаемого сигнала создается близко расположенной низкодобротной линией передачи, которая распределяет сигнал между всеми ячейками метаматериала.
УСИЛИВАЮЩИЙ СВЕРХПРОВОДЯЩИЙ МЕТАМАТЕРИАЛ
УСИЛИВАЮЩИЙ СВЕРХПРОВОДЯЩИЙ МЕТАМАТЕРИАЛ
УСИЛИВАЮЩИЙ СВЕРХПРОВОДЯЩИЙ МЕТАМАТЕРИАЛ
УСИЛИВАЮЩИЙ СВЕРХПРОВОДЯЩИЙ МЕТАМАТЕРИАЛ
УСИЛИВАЮЩИЙ СВЕРХПРОВОДЯЩИЙ МЕТАМАТЕРИАЛ
УСИЛИВАЮЩИЙ СВЕРХПРОВОДЯЩИЙ МЕТАМАТЕРИАЛ
Источник поступления информации: Роспатент

Showing 171-180 of 323 items.
04.04.2018
№218.016.30b6

Способ извлечения металлов при газификации твердого топлива в политопливном газогенераторе

Изобретение относится к комплексной переработке углеродсодержащих материалов, таких как угли, торф, горючие сланцы, углеродсодержащих техногенных материалов, таких как отходы углеобогащения, отходы деревообработки, твердые коммунальные отходы, и может найти применение в энергетике, химической...
Тип: Изобретение
Номер охранного документа: 0002644892
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.30ed

Литниковая система для заливки лопаток из жаропрочных сплавов для газотурбинного двигателя в формы, изготовленные автоматизированным способом

Изобретение относится к литейному производству. Литниковая система содержит приемную чашу 1, вертикальный колодец 2 с дросселирующим элементом 3 и зумпфом 4. От вертикального колодца 2 отходят нижние 5 и верхние 7 питатели, соединенные кольцевыми коллекторами 8. Нижние питатели 5 направлены...
Тип: Изобретение
Номер охранного документа: 0002644868
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3108

Катализатор и способ получения ацетальдегида с его использованием

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида....
Тип: Изобретение
Номер охранного документа: 0002644770
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3124

Автоматический нейросетевой настройщик параметров пи-регулятора для управления нагревательными объектами

Автоматический нейросетевой настройщик параметров ПИ-регулятора для управления нагревательными объектами содержит уставку по температуре, ПИ-регулятор, объект управления, два блока задержки сигналов, нейросетевой настройщик, соединенные определенным образом. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002644843
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.425c

Способ выплавки стали в агрегате печь-ковш

Изобретение относится к области электрометаллургии стали, а конкретнее, к выплавке стали в электросталеплавильном агрегате печь-ковш. В способе осуществляют загрузку металлизованного сырья, сыпучих и порошкообразных материалов через полые графитированные электроды, при этом технологические...
Тип: Изобретение
Номер охранного документа: 0002649476
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.46bd

Многослойные магниторезистивные нанопроволоки

Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации. Многослойные магниторезистивные нанопроволоки состоят из чередующихся ферромагнитных и медных слоев, при этом в качестве ферромагнитных...
Тип: Изобретение
Номер охранного документа: 0002650658
Дата охранного документа: 16.04.2018
Showing 171-179 of 179 items.
04.04.2018
№218.016.30b6

Способ извлечения металлов при газификации твердого топлива в политопливном газогенераторе

Изобретение относится к комплексной переработке углеродсодержащих материалов, таких как угли, торф, горючие сланцы, углеродсодержащих техногенных материалов, таких как отходы углеобогащения, отходы деревообработки, твердые коммунальные отходы, и может найти применение в энергетике, химической...
Тип: Изобретение
Номер охранного документа: 0002644892
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.30ed

Литниковая система для заливки лопаток из жаропрочных сплавов для газотурбинного двигателя в формы, изготовленные автоматизированным способом

Изобретение относится к литейному производству. Литниковая система содержит приемную чашу 1, вертикальный колодец 2 с дросселирующим элементом 3 и зумпфом 4. От вертикального колодца 2 отходят нижние 5 и верхние 7 питатели, соединенные кольцевыми коллекторами 8. Нижние питатели 5 направлены...
Тип: Изобретение
Номер охранного документа: 0002644868
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3108

Катализатор и способ получения ацетальдегида с его использованием

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида....
Тип: Изобретение
Номер охранного документа: 0002644770
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3124

Автоматический нейросетевой настройщик параметров пи-регулятора для управления нагревательными объектами

Автоматический нейросетевой настройщик параметров ПИ-регулятора для управления нагревательными объектами содержит уставку по температуре, ПИ-регулятор, объект управления, два блока задержки сигналов, нейросетевой настройщик, соединенные определенным образом. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002644843
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
24.05.2019
№219.017.5e02

Бесконтактный датчик микрорельефа

Изобретение может использоваться для выявления и измерения микрорельефа поверхности из металлов и диэлектриков, а также с целями дефектоскопии поверхности и обнаружения неоднородности приповерхностных слоев. Бесконтактный датчик микрорельефа состоит из одного или нескольких микроволновых...
Тип: Изобретение
Номер охранного документа: 0002688902
Дата охранного документа: 22.05.2019
+ добавить свой РИД