×
27.03.2016
216.014.c8a9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к системам обнаружения объектов и определения их местоположения. Технический результат состоит в уменьшении или компенсации ошибок определения направления (пеленга) и местоположения объекта, с которого излучаются оптические сигналы, для этого при определении направления на источник оптического излучения по рассеянной в атмосфере составляющей обнаруживают рассеянное в атмосфере излучение оптической системы сканирования земной поверхности элементами системы из четырех матричных фотоприемников, установленных таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определении линейки элементов, в которых обнаружены сигналы, и решении задачи восстановления угловых координат источника оптического излучения по линии пересечения двух плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях прямоугольного параллелепипеда. 4 ил.
Основные результаты: Способ определения направления на источник оптического излучения по рассеянной в атмосфере составляющей, заключающийся в обнаружении рассеянного в атмосфере оптического излучения элементами системы матричных фотоприемников и формировании изображения луча в каждом из них, отличающийся тем, что четыре матричных фотоприемника устанавливают таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определяют в каждом матричном фотоприемнике линейку элементов, в которых обнаружены и зарегистрированы сигналы, осуществляют построение двух плоскостей, каждая их которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях параллелепипеда, находят линию пересечения этих плоскостей и по этой линии определяют направление на источник оптического излучения.

Изобретение относится к системам обнаружения объектов и определения их местоположения (пеленгаторам), а более конкретно - к способам и устройствам для уменьшения или компенсации ошибок определения направления (пеленга) и местоположения объекта, с которого излучаются оптические сигналы.

Известен способ определения угловых координат (пеленгования) лазерного источника по прямому излучению с помощью совокупности одноэлементных или матричных фотоприемников, объединенных в одно ФПУ - датчик лазерного облучения (ДЛО) объекта. В основу этого способа положены регистрация оптического излучения элементом фотоприемника и определение координат этого элемента [см., например, журналы: Защита и безопасность. - 1999. - №3. - С. 47; Защита и безопасность. - 2002. - №1. - С. 26, 27; Зарубежное военное обозрение. - 1995. - №2. - С. 53-57; Сб. трудов 8-й Всероссийской НТК «Актуальные проблемы защиты и безопасности» (приложение к журналу «Известия РАРАН»). - 2005. - С-Пб. - Т. 3. - С. 131-136; Вестник Воронежского государственного технического университета. - 2009. - Т. 5. - №11. - С. 91-98].

Проведенный в журнале [Вестник Воронежского государственного технического университета. - 2009. - Т. 5. - №11. - С. 91-98] анализ состояния и перспектив развития ДЛО позволил сделать следующие выводы.

Абсолютное большинство (порядка 80%) ДЛО позволяют обнаруживать импульсное излучение лазерных средств, работающих в ближнем инфракрасном (ИК) диапазоне. Основным информативным признаком существующих ДЛО является короткая (до 100 нс) длительность импульсов. Регистрация же непрерывного и квазинепрерывного лазерного излучения, наиболее характерного для лазерно-лучевых систем наведения боеприпасов, невозможна. Кроме того, пороговая чувствительность современных ДЛО, составляющая величину порядка 10-2…10-7 Вт/см2, не позволяет регистрировать импульсные маломощные лазерные сигналы авиационных лазерных систем сканирования земной поверхности. И, наконец, использование ДЛО такого класса в ряде случаев может оказаться неэффективным по следующим соображениям:

1) недостаточной точности пеленгации лазерной системы, составляющей для разных типов датчиков 2…3,75 градуса [см., например, Евдокимов В.И. Неконтактная защита боевой техники. / В.И. Евдокимов, Г.А. Гуменюк, М.С. Андрющенко / Под ред. В.Я. Соколова. - СПб.: Реноме, 2009. - 176 с.; Зарубежное военное обозрение. - 1995. - №2. - С. 53-57];

2) необходимости применения большого количества ДЛО (до сотен штук) для пеленгования лазерных излучений в широком секторе обзора при обеспечении защиты группы объектов, расположенных на больших площадях (в сотни и тысячи квадратных метров) из-за необходимости установки ДЛО на всех защищаемых объектах [см., например, журналы: Радиотехника (журнал в журнале «Информационный конфликт в спектре электромагнитных волн»). - 2005. - №14. - С. 14-18; Радиотехника (журнал в журнале «Информационный конфликт в спектре электромагнитных волн»). - 2007. - №5. - С. 44-46].

Наиболее близким к предлагаемому способу (прототипом) по технической сущности и достигаемому положительному эффекту является способ определения направления на источник оптического излучения по рассеянной в атмосфере составляющей [см. патент РФ №2285275 от 21.06.2006 г. по классу G01S 17/06 по заявке №2005106700 от 09.03 2005 г.]. Этот способ заключается в обнаружении рассеянного в атмосфере оптического излучения элементами системы двух матричных фотоприемников (ФП), расположенных в двух взаимно перпендикулярных плоскостях, формировании изображения луча в каждом из них, осуществлении координатной привязки элементов первого и второго фотоприемников и пространственно-временной обработке этих изображений.

Однако для обеспечения пеленгования оптического луча с высокой точностью (в несколько угловых минут) при применении этого способа, основанного на многопозиционном (триангуляционном) методе пассивной оптической локации рассеянного атмосферой излучения с последующей пространственно-временной обработкой сигналов, требуется размещать матричные фотоприемники на большом удалении друг от друга (сотни и тысячи метров), что невозможно реализовать в случае близко расположенных объектов (например, колонны объектов), а также при размещении пеленгатора только на одном из них. Кроме того, пеленгование авиационных оптических систем со сканированием земной поверхности оптическим лучом является проблематичным [см., например, журнал: Радиотехника (журнал в журнале «Информационный конфликт в спектре электромагнитных волн»). - 2005. - №14. - С. 14-18].

Недостатком прототипа является низкая точность пеленгования оптических систем со сканированием оптическим лучом земной поверхности в случае близко расположенных объектов, а также при размещении пеленгатора только на одном из них.

Техническим результатом заявляемого способа является повышение точности пеленгования систем со сканированием оптическим лучом земной поверхности при размещении пеленгатора на одном объекте.

Технический результат достигается за счет того, что в известном способе определения направления на источник оптического излучения по рассеянной в атмосфере составляющей, заключающемся в обнаружении рассеянного в атмосфере оптического излучения элементами системы матричных фотоприемников и формировании изображения луча в каждом из них, четыре матричных фотоприемника устанавливают таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определяют в каждом матричном фотоприемнике линейку элементов, в которых обнаружены (зарегистрированы) сигналы, осуществляют построение двух плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях параллелепипеда, находят линию пересечения этих плоскостей и по этой линии определяют направление на источник оптического излучения.

Сущность изобретения заключается в обнаружении рассеянного в атмосфере излучения оптической системы сканирования земной поверхности элементами системы из четырех матричных фотоприемников, установленных таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определении линейки элементов, в которых обнаружены сигналы, и решении задачи восстановления угловых координат источника оптического излучения по линии пересечения двух плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях прямоугольного параллелепипеда.

Предлагаемый способ поясняется фиг. 1, на которой показано взаимное расположение системы из четырех матричных фотоприемников и сканирующей оптической системы, находящейся на высоте Н и расстоянии d от системы матричных фотоприемников. С каждым из этих четырех фотоприемников (i-м ФП) связана система координат OiXiYiZi, начало которой совпадает с центром i-го ФП, а плоскость OiXiZi совпадает с плоскостью i-го фотоприемника.

При сканировании оптическим лучом земной поверхности происходит последовательное обнаружение рассеянного атмосферой излучения элементами матричных фотоприемников и формирование изображения луча в каждом из них. Затем в каждом из этих фотоприемников определяют линейку элементов (проекцию изображения оси луча сканирующей оптической системы), соответствующую максимальному числу элементов, в которых зарегистрированы (обнаружены) сигналы с элементов матричных фотоприемников. На фиг. 2 показана динамика изменения положения линейки элементов, в которых обнаружены сигналы, как во времени (в каждом из четырех ФП для трех моментов времени сканирования луча), так и в пространстве (в одном цикле сканирования, но для разных фотоприемников, плоскости которых образуют в пространстве боковые грани параллелепипеда). Определив уравнения, описывающие положения этих линеек элементов в каждом матричном фотоприемнике, осуществляют построение двух плоскостей, проходящих через линейки элементов в двух матричных фотоприемниках, плоскости которых образуют в пространстве боковые грани прямоугольного параллелепипеда, расположенные напротив друг друга. Затем находят линию пересечения проходящих через линейки элементов в двух матричных фотоприемниках плоскостей и по этой линии определяют направление на источник оптического излучения.

Предлагаемый способ может быть реализован, например, с помощью устройства, структурная схема которого показана на фиг. 3, на которой обозначено: 1.1, 1.2, 1.3 и 1.4 - четыре матричных фотоприемника для обнаружения рассеянного в атмосфере излучения оптической системы сканирования земной поверхности, установленные таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой; 2.1, 2.2, 2.3 и 2.4 - четыре многоканальных блока определения линейки элементов (проекции изображения оси луча сканирующей оптической системы), соответствующей максимальному числу элементов, в которых зарегистрированы (обнаружены) сигналы; 3.1 и 3.2 - два многоканальных блока определения плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, плоскости которых образуют в пространстве боковые грани параллелепипеда, расположенные напротив друг друга; 4 - блок определения линии пересечения плоскостей, проходящих через проекции луча в каждой паре матричных фотоприемников, расположенных напротив друг друга.

Устройство содержит четыре матричных фотоприемника 1.1, 1.2, 1.3 и 1.4, выходы элементов каждого из которых соединены со входами соответствующих многоканальных блоков 2.1, 2.2, 2.3 и 2.4 определения линеек элементов, в которых обнаружены (зарегистрированы) сигналы элементами матричных фотоприемников 1.1, 1.2, 1.3 и 1.4, соответственно, причем выходы блоков 2.1 и 2.3 подключены ко входам блока 3.1, а выходы блоков 2.2 и 2.4 соединены со входами блока 3.2.

Первый 3.1 и второй 3.2 многоканальные блоки предназначены для определения плоскостей, каждая из которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных гранях параллелепипеда для пар фотоприемников 1.1 и 1.3 и 1.2 и 1.4, соответственно. Двухвходовой блок 4 служит для определения линии пересечения плоскостей, проходящих через проекции луча в каждой паре матричных фотоприемников, расположенных напротив друг друга, и оценки угловых координат оптической системы сканирования земной поверхности. Входы блока 4 соединены с выходами блоков 3.1 и 3.2.

Устройство, реализующее предлагаемый способ определения направления на источник оптического излучения по рассеянной в атмосфере составляющей, работает следующим образом.

Рассеянное излучение оптической системы сканирования земной поверхности принимается матричными фотоприемниками 1.1, 1.2, 1.3 и 1.4. Затем в многоканальных блоках 2.1, 2.2, 2.3 и 2.4 определяются элементы, в которых обнаружены (зарегистрированы) сигналы, производится определение координат элементов приемников, в каждом из которых наблюдается центр энергетической яркости (максимум числа фотоотсчетов сигнала в этом элементе), и осуществляется построение линеек элементов, в которых обнаружены сигналы в каждом матричном фотоприемнике 1.1, 1.2, 1.3 и 1.4. Блоки 2.1, 2.2, 2.3 и 2.4 могут быть реализованы, например, с помощью устройства, структурная схема построения которого приведена на стр. 155 в журнале «Вестник Воронежского государственного технического университета». - 2007. - Т. 3. - №4, а изображения линеек элементов, в которых обнаружены сигналы, показаны на фиг. 2.

С использованием построенных в многоканальных блоках 2.1, 2.2, 2.3 и 2.4 линеек элементов, в которых обнаружены сигналы в каждом матричном фотоприемнике 1.1, 1.2, 1.3 и 1.4, в блоках 3.1 и 3.2 решаются уравнения, описывающие плоскости, проходящие через линейки элементов в матричных фотоприемниках 1.1 и 1.3 и 1.2 и 1.4, соответственно, расположенных на противоположных боковых гранях параллелепипеда. В блоках 3.1 и 3.2 для решения уравнений, описывающих плоскости, проходящие через линейки элементов в матричных фотоприемниках 1.1 и 1.3 и 1.2 и 1.4, соответственно, может быть реализован алгоритм, описание которого содержится на стр. 157 в журнале «Вестник Воронежского государственного технического университета». - 2007. - Т. 3. - №4.

Затем в блоке 4 с использованием полученных в блоках 3.1 и 3.2 результатов находится линия пересечения этих плоскостей и по этой линии определяется положение оси лазерного луча в пространстве и, соответственно, определяется направление (пеленг) на оптическую систему сканирования земной поверхности. В блоке 4 для решения задачи пересечения плоскостей, проходящих через проекции луча в каждой паре фотоприемников 1.1, 1.3 и 1.2., 1.4, может быть реализован алгоритм, описание которого содержится на стр. 157 в журнале «Вестник Воронежского государственного технического университета». - 2007. - Т. 3. - №4.

Эффективность изобретения выражается в повышении точности пеленгования оптических систем со сканированием лучом земной поверхности при размещении пеленгатора на одном объекте.

Обеспечение повышения точности пеленгования оптической системы со сканированием лучом земной поверхности подтверждается данными моделирования процесса определения положения оптического луча в пространстве. Результаты расчета суммарных среднеквадратических ошибок σ (по азимуту и углу места) определения положения луча в пространстве системой матричных фотоприемников приведены на фиг. 4, на которой показаны зависимости этих ошибок σ от дальности d и высоты Н подсвета земной поверхности.

Из фиг. 4 видно, что реализация предлагаемого способа позволит обеспечить высокоточное (со среднеквадратической ошибкой, не превышающей несколько угловых минут) определение направления на оптическую систему со сканированием лучом земной поверхности при размещении пеленгатора на одном объекте.

Сопоставительный анализ заявленного технического решения с прототипом показывает, что предложенный способ отличается от известного наличием, во-первых, новых действий над сигналом (определяют в каждом из матричных фотоприемников положение проекции изображения оси луча по максимальному числу элементов матричного фотоприемника, в которых зарегистрированы (обнаружены) сигналы), и, во-вторых, новых условий выполнения действий (размещении матричных фотоприемников на боковых гранях прямоугольного параллелепипеда, стороны основания которого равны между собой, построении плоскостей, проходящих через проекции изображений луча пеленгуемой оптической системы в каждой паре матричных фотоприемников, расположенных на противоположных боковых гранях параллелепипеда, и нахождении линии пересечения этих плоскостей).

Таким образом, использование особенностей части операций, выполняемых над сигналами в известном способе, учет информации о расположении плоскостей, проходящих через проекции изображений оси луча пеленгуемой системы в каждой паре матричных фотоприемников в соответствии с предложенными новыми действиями и условиями их выполнения, позволяют сделать вывод о наличии существенных отличий предлагаемого способа от прототипа. Эти действия обеспечивают повышение точности пеленгования систем со сканированием оптическим лучом земной поверхности при размещении пеленгатора на одном объекте.

Способ определения направления на источник оптического излучения по рассеянной в атмосфере составляющей, заключающийся в обнаружении рассеянного в атмосфере оптического излучения элементами системы матричных фотоприемников и формировании изображения луча в каждом из них, отличающийся тем, что четыре матричных фотоприемника устанавливают таким образом, что они представляют собой боковые грани прямоугольного параллелепипеда, стороны основания которого равны между собой, определяют в каждом матричном фотоприемнике линейку элементов, в которых обнаружены и зарегистрированы сигналы, осуществляют построение двух плоскостей, каждая их которых проходит через линейки элементов в двух матричных фотоприемниках, расположенных на противоположных боковых гранях параллелепипеда, находят линию пересечения этих плоскостей и по этой линии определяют направление на источник оптического излучения.
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ПО РАССЕЯННОЙ В АТМОСФЕРЕ СОСТАВЛЯЮЩЕЙ
Источник поступления информации: Роспатент

Showing 101-110 of 196 items.
10.04.2016
№216.015.2efc

Способ измерения коэффициента усиления антенн в натурных условиях

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Способ измерения коэффициента усиления антенн в натурных условиях,...
Тип: Изобретение
Номер охранного документа: 0002580340
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3140

Способ моделирования процессов двухуровневого адаптивного управления и система моделирования для его осуществления

Группа изобретений относится к области моделирования процессов управления и может быть использована для моделирования процессов двухуровневого адаптивного управления техническими средствами (ТС) различного назначения, например охраны, связи, разведки, защиты информации, радиоэлектронной борьбы,...
Тип: Изобретение
Номер охранного документа: 0002580785
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.332f

Датчик давления с цифровым выходом

Изобретение относится к области средств автоматизации. Датчик давления с цифровым выходом содержит основной измерительный блок 1, состоящий из дифференциального реле давления 2 с рабочими плоскостями 3 и 4, разобщенными клапаном 5, и счетчика импульсов 6, двух дополнительных измерительных...
Тип: Изобретение
Номер охранного документа: 0002582305
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.359d

Способ определения износа фрикционных накладок тормозных колодок в автомобиле с гидравлическим приводом тормозной системы

Изобретение относится к области автомобилестроения, в частности к тормозным системам с гидравлическим приводом. Способ определения износа фрикционных накладок заключается в определении количества тормозной жидкости, проходящей через гидравлический привод тормозных колодок колеса при торможении...
Тип: Изобретение
Номер охранного документа: 0002581450
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37bd

Плазменная антенна

Изобретение относится к антенной технике. Плазменная антенна содержит плазменный генератор, формирующий плазменное образование, и первичный источник электромагнитных волн, при этом анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки,...
Тип: Изобретение
Номер охранного документа: 0002582491
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.37f6

Устройство автоматического выравнивания платформ аэродромных грузоподъемных механизмов

Изобретение относится к области применения средств механизации на аэродроме. Устройство автоматического выравнивания платформ аэродромных грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы,...
Тип: Изобретение
Номер охранного документа: 0002582563
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38c6

Частотный детектор

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов. Достигаемый технический результат - увеличение крутизны линейного участка детекторной характеристики. Частотный детектор содержит первый и второй амплитудные детекторы, первый и...
Тип: Изобретение
Номер охранного документа: 0002582552
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38fd

Формирователь последовательности разнополярных прямоугольных импульсов с изменяемой длительностью и интервалом

Изобретение относится к импульсной технике. Техническим результатом является обеспечение возможности формирования последовательности двух разнополярных прямоугольных импульсов, изменения их длительности и интервала между ними в пределах от сотен миллисекунд до единиц-десятков-сотен секунд путем...
Тип: Изобретение
Номер охранного документа: 0002582553
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3985

Транспортное средство для буксировки поврежденных автомобилей

Изобретение относится к автомобильному транспорту. Транспортное средство для буксировки поврежденных автомобилей способом полупогрузки содержит надрамник с опорной стойкой, тяговую лебедку, поворотную телескопическую балку с выдвижной секцией (7) и траверсу (9), оборудованную корзинами (10, 11)...
Тип: Изобретение
Номер охранного документа: 0002582561
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39c9

Способ определения координат местоположения источника радиоизлучения

Изобретение относится к пассивным системам радиомониторинга радиоэлектронных средств, в частности может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Сущность способа определения координат местоположения ИРИ заключается в доставке в предполагаемый район...
Тип: Изобретение
Номер охранного документа: 0002582592
Дата охранного документа: 27.04.2016
Showing 101-110 of 197 items.
10.04.2016
№216.015.2db5

Устройство для удаления растительности

Изобретение относится к области сельского хозяйства и может быть использовано для удаления нежелательной и сорной растительности на садовых участках, а также на взлетных полосах аэродромов. Устройство содержит n генераторов СВЧ, n источников питания, n антенных трактов, камеру СВЧ,...
Тип: Изобретение
Номер охранного документа: 0002579365
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2efc

Способ измерения коэффициента усиления антенн в натурных условиях

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Способ измерения коэффициента усиления антенн в натурных условиях,...
Тип: Изобретение
Номер охранного документа: 0002580340
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3140

Способ моделирования процессов двухуровневого адаптивного управления и система моделирования для его осуществления

Группа изобретений относится к области моделирования процессов управления и может быть использована для моделирования процессов двухуровневого адаптивного управления техническими средствами (ТС) различного назначения, например охраны, связи, разведки, защиты информации, радиоэлектронной борьбы,...
Тип: Изобретение
Номер охранного документа: 0002580785
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.332f

Датчик давления с цифровым выходом

Изобретение относится к области средств автоматизации. Датчик давления с цифровым выходом содержит основной измерительный блок 1, состоящий из дифференциального реле давления 2 с рабочими плоскостями 3 и 4, разобщенными клапаном 5, и счетчика импульсов 6, двух дополнительных измерительных...
Тип: Изобретение
Номер охранного документа: 0002582305
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.359d

Способ определения износа фрикционных накладок тормозных колодок в автомобиле с гидравлическим приводом тормозной системы

Изобретение относится к области автомобилестроения, в частности к тормозным системам с гидравлическим приводом. Способ определения износа фрикционных накладок заключается в определении количества тормозной жидкости, проходящей через гидравлический привод тормозных колодок колеса при торможении...
Тип: Изобретение
Номер охранного документа: 0002581450
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37bd

Плазменная антенна

Изобретение относится к антенной технике. Плазменная антенна содержит плазменный генератор, формирующий плазменное образование, и первичный источник электромагнитных волн, при этом анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки,...
Тип: Изобретение
Номер охранного документа: 0002582491
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.37f6

Устройство автоматического выравнивания платформ аэродромных грузоподъемных механизмов

Изобретение относится к области применения средств механизации на аэродроме. Устройство автоматического выравнивания платформ аэродромных грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы,...
Тип: Изобретение
Номер охранного документа: 0002582563
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38c6

Частотный детектор

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов. Достигаемый технический результат - увеличение крутизны линейного участка детекторной характеристики. Частотный детектор содержит первый и второй амплитудные детекторы, первый и...
Тип: Изобретение
Номер охранного документа: 0002582552
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38fd

Формирователь последовательности разнополярных прямоугольных импульсов с изменяемой длительностью и интервалом

Изобретение относится к импульсной технике. Техническим результатом является обеспечение возможности формирования последовательности двух разнополярных прямоугольных импульсов, изменения их длительности и интервала между ними в пределах от сотен миллисекунд до единиц-десятков-сотен секунд путем...
Тип: Изобретение
Номер охранного документа: 0002582553
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3985

Транспортное средство для буксировки поврежденных автомобилей

Изобретение относится к автомобильному транспорту. Транспортное средство для буксировки поврежденных автомобилей способом полупогрузки содержит надрамник с опорной стойкой, тяговую лебедку, поворотную телескопическую балку с выдвижной секцией (7) и траверсу (9), оборудованную корзинами (10, 11)...
Тип: Изобретение
Номер охранного документа: 0002582561
Дата охранного документа: 27.04.2016
+ добавить свой РИД