×
10.02.2016
216.014.c481

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ГИДРОКСИАПАТИТА В МИКРОВОЛНОВОМ ПОЛЕ С ИСПОЛЬЗОВАНИЕМ ВЫГОРАЮЩЕЙ ДОБАВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения порошка наноразмерного гидроксиапатита (нГА) в микроволновом поле с использованием агар-агара в качестве выгорающей добавки. Способ получения наноразмерного гидроксиаппатита в микроволновом поле включает приготовление и перемешивание водных растворов нитрата кальция, гидрофосфата аммония, аммиака для поддержания рН смеси 10-11 и навески агар-агара с последующим воздействием СВЧ-излучения в течение 30 минут, отстаиванием маточного раствора в течение 48 часов, сушкой при температуре 100°С в течение 20 часов и прокаливанием при 400°C в течение 2 часов. При этом выгорающая добавка вводится в реакционную смесь одновременно с раствором нитрата кальция. Изобретение позволяет получить наноразмерный гидроксиаппатит с высокой удельной поверхностью и улучшенной биологической активностью. 5 ил., 2 табл.
Основные результаты: Способ получения наноразмерного гидроксиапатита в микроволновом поле с использованием агар-агара в качестве выгорающей добавки, включающий приготовление и перемешивание водных растворов нитрата кальция, гидрофосфата аммония, аммиака для поддержания pH смеси 10-11 и навески агар-агара с последующим воздействием СВЧ-излучения, отстаиванием, сушкой и прокаливанием, отличающийся тем, что выгорающая добавка вводится в реакционную смесь одновременно с раствором нитрата кальция, с воздействием СВЧ-нагрева 30 минут, отстаиванием маточного раствора в течение 48 часов, сушкой при температуре 100°C в течение 20 часов и прокаливанием при 400°C в течение 2 часов, при следующем соотношении компонентов, мас.%:

Изобретение относится к способу получения порошка наноразмерного гидроксиапатита (нГА) в микроволновом поле с использованием агар-агара в качестве выгорающей добавки. Наноразмерный ГА проявляет уникальные свойства биосовместимости и высокой биологической активности, что обуславливает его применение в различных областях медицины, таких как травматология, стоматология, ортопедия и др. Использование СВЧ-излучения во время синтеза обусловлено его хорошей проникающей способностью, в результате чего происходит нагревание облучаемого образца сразу по всему объему. Получение нГА в микроволновом поле характеризуется малым временем процесса синтеза и быстрым нагревом реакционной смеси. Присутствие выгорающей добавки агар-агара обеспечивает наноразмерность гидроксиапатита, препятствуя агрегации его частиц в момент синтеза.

Известен способ получения кремниймодифицированного гидроксиапатита с использованием СВЧ-излучения (патент РФ 2507151, C01B 25/32, опубл. 20.02.2014 г.). Способ включает приготовление и перемешивание водных растворов нитрата кальция, гидрофосфата аммония, аммиака и раствора тетраэтоксисилана в этаноле с последующим воздействием СВЧ-излучения, отстаиванием, сушкой при температуре 90°C в течение 3 часов и прокаливанием при 800°C в течение 1 часа. При этом осуществляют дополнительную СВЧ-обработку после отстаивания смеси. Причем СВЧ-нагрев осуществляют в течение 25-30 минут, мощностью 120 Вт. Соотношение компонентов следующее, в мас.%: нитрат кальция - 5,5, гидрофосфат аммония - 1,66, тетраэтоксисилан - 0,27, этанол - 0,27, аммиак - в количестве, необходимом для поддержания pH смеси 10-11, вода - остальное. Результатом является уменьшение среднего рассчитанного размера кристаллита и дисперсности, что в свою очередь положительно сказывается на растворимости порошка. Недостатком известного способа является высокая температура прокаливания, что ведет к неизбежному снижению удельной поверхности за счет агрегации частиц и увеличению степени кристалличности, что в свою очередь приводит к неизбежной потере биоактивности продукта синтеза. Завышенная температура прокаливания также создает неоправданно высокие энергетические затраты.

Известен способ получения наноразмерного порошка на основе системы трикальцийфосфат-гидроксиапатит для синтеза керамических материалов (патент РФ 2367633, C04B 35/622, опубл. 20.09.2009 г.). Изобретение относится к медицине, в частности к кальцийфосфатным керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Для снижения степени агрегированности и повышения удельной поверхности влажные порошки, полученные в результате химического взаимодействия, промывают органическими жидкостями с целью удаления избытка воды. После сушки и термообработки получают ультрадисперсные кальцийфосфатные порошки с площадью удельной поверхности более 90 м2/г. Состав наноразмерных порошков по своему химическому составу близок к естественной костной ткани (соответствует системе гидроксиапатит - трикальцийфосфат).

Недостатками известного способа являются применение в ходе синтеза в качестве промывающей жидкости толуола, относящегося к классу токсичных веществ, и высокая температура прокаливания порошков, сильно снижающая биологическую активность ГА.

Известен способ получения наногидроксиапатита при взаимодействии водных растворов Ca(NO3)2 и (NH4)2HPO4. Авторами Abdalla Abdal-hay, Faheem А. Sheikh, Jae Kyoo Lim [Abdalla Abdal-hay, Faheem A. Sheikh, Jae Kyoo Lim. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering // J. Colloids and Surfaces B: Biointerfaces. - 2013 - №102. - P. 635-643] описан способ получения наногидроксиапатита при взаимодействии водных растворов Ca(NO3)2 и (NH4)2HPO4 (1 М и 0,6 М соответственно). Реакционную смесь перемешивали, отстаивали в течение 3 часов, затем нагревали до 90°C в течение 1,5 часов. Поддерживали постоянным pH смеси 10-11 с помощью гидроксида аммония. Полученный осадок выдерживали в течение 24 часов при комнатной температуре при постоянном перемешивании. Далее осадок фильтровали, промывали водой и этиловым спиртом до достижения pH 7, затем сушили в вакууме в течение 24 часов, после чего прокаливали при 650°C в течение 4 часов.

Недостатками известного способа являются высокие временные и трудовые затраты, связанные с многостадийностью и сложностью процесса получения ГА, а также с длительной стадией "активного синтеза" (перемешивание реакционной смеси, ее отстаивание в течение 3 ч с последующим нагреванием в течение 1,5 ч, выдерживание осадка в течение 24 ч при постоянном перемешивании, повторная сушка в течение 24 ч и прокаливание в течение 4 ч).

В качестве прототипа выбран способ, описанный авторами Рассказова Л.А., Коротченко Н.М. [Л.А. Рассказова, Н.М. Коротченко. Синтез наноразмерного гидроксиапатита с выгорающими добавками // Материалы Всероссийской с международным участием научной конференции «Полифункциональные химические материалы и технологии». 21-23 ноября 2013. Томск. С. 186-188]. Описан способ получения нГА с агар-агаром, желатином и глицерином в качестве выгорающих добавок. Порошок нГА получали при взаимодействии водных растворов Ca(NO3)2 и (NH4)2HPO4 с использованием СВЧ-излучения. Установлено, что все образцы соответствуют фазе гидроксиапатита со средним размером кристаллитов, оцененным разными методами, лежащим в интервале от 10 до 90 нм для всех порошков нГА.

Недостатком известного прототипа является использование достаточно больших температур прокаливания, что приводит к неоправданным энергозатратам, при этом увеличивается кристалличность порошков с последующим ухудшением их биоактивности.

Задачей настоящего изобретения является получение наноразмерного гидроксиапатита в микроволновом поле с использованием выгорающих добавок с целью повышения удельной поверхности и улучшения биологической активности получаемого продукта.

Целью настоящего изобретения является получение наноразмерного биологически активного с высокой удельной поверхностью гидроксиапатита с использованием выгорающих добавок в микроволновом поле.

Поставленная задача решается тем, что способ получения наноразмерного гидроксиапатита в микроволновом поле с использованием агар-агара в качестве выгорающей добавки включает приготовление и перемешивание водных растворов нитрата кальция, гидрофосфата аммония, аммиака и навески агар-агара с последующим воздействием СВЧ-излучения, отстаиванием, сушкой и прокаливанием, но в отличие от прототипа выгорающая добавка вводится в реакционную смесь одновременно с раствором нитрата кальция, после чего реакционная смесь подвергается воздействию СВЧ-нагрева в течение 30 минут, полученный продукт отстаивается в маточном растворе в течение 48 часов, подвергается сушке при температуре 100°C в течение 20 часов и прокаливанию при 400°C в течение 2 часов, что способствует формированию наночастиц гидроксиапатита. Размер частиц находится в интервале от 10 до 50 нм при следующем соотношении компонентов, мас.%:

Нитрат кальция - 3,44;

Гидрофосфат аммония - 1,66;

Агар-агар - 0,42;

Аммиак - в количестве, необходимом для поддержания pH смеси 10-11;

Вода - остальное.

Морфология поверхности порошков ГА и их дисперсность (согласно прототипу и изобретению) определены по микрофотографиям, полученным с помощью сканирующего электронного микроскопа (СЭМ) JEOL-7500FA (увеличение 100000 и 200000). На рис. 1 представлено СЭМ-изображение поверхности порошка синтетического ГА с добавкой агар-агара (согласно прототипу).

Полученное при двухсоттысячном увеличении СЭМ-изображение показывает, что синтезированный порошок ГА состоит из мелких частиц размером менее 100 нм и позволяет рассчитать (методом секущей) дисперсность порошка синтезированного ГА.

На рис. 2 представлена микрофотография поверхности порошка синтетического ГА с добавкой агар-агара 20% (мас.) (согласно изобретению).

Методом секущей по СЭМ-изображениям определена дисперсность порошка синтезированного гидроксиапатита. На рис. 3 приведена гистограмма распределения частиц ГА с добавкой агар-агара (20%) по размерам.

Для ГА с 20% добавкой агар-агара пик локализован в диапазоне 20-40 нм. Приведенные результаты позволяют классифицировать синтезированный с добавкой агар-агара ГА как наноразмерный.

С помощью автоматического газо-адсорбционного анализатора TriStar II (3020) определены параметры пористой структуры и удельной поверхности образца ГА с добавкой агар-агара (согласно изобретению), позволившие оценить диаметр частиц (Таблица 1).

Методом трилонометрического титрования иона кальция с индикатором эриохромом черным Т найдены произведение растворимости ПР и показатель произведения растворимости рПР полученного ГА в 0,1 М растворе NaCl при 20°C (согласно изобретению):

ПР рПР
1,03·10-60 59,99±0,40

Образцы нГА с выгорающей добавкой, имеющие достаточно высокую растворимость (для сравнения ПР синтетического гидроксиапатита Са10(Р04)6(OH)2 ПР=10-117,2), характеризуются высокой биоактивностью: костные клетки быстро усваивают предложенный им в составе имплантата источник кальция и фосфора; как следствие костная ткань хорошо врастает в керамический имплантат.

Для оценки биологической активности порошка наноГА проведены тесты in vitro в течение 28 дней при 37°C. Подложки из наноГА помещались в SBF-раствор (Simulated Body Fluid), имитирующий минеральный состав, pH и концентрацию ионов внеклеточных жидкостей организма человека.

На рис. 4 (согласно заявленному изобретению) приведены кинетические кривые зависимости кумулятивной суммарной концентрации ионов кальция и магния на поверхности подложек (CCa+Mg, моль/л; τ, сут).

Из рис. 4 видно, что на поверхности подложки, изготовленной из наноразмерного гидроксиапатита в течение 28 суток активно формируется минеральный слой, что свидетельствует о биосовместимости нГА. Большой угол наклона кинетической кривой (высокая скорость процесса) на протяжении почти всего времени биомиметических исследований подтверждает биоактивность нГА. Результаты оценки скорости процесса (ΔС/Δτ, моль/(л·сутки)) представлены в таблице 2.

Оценка скорости формирования кальций-фосфатного слоя показывает активный рост его образования в первые 7 суток выдерживания в SBF-растворе, далее скорость незначительно снижается.

Факт роста кальций-фосфатного слоя на поверхности подложки нГА подтвержден также результатами сканирующей электронной микроскопии (рис. 5).

Эти факты позволяют отнести нГА к биологически активным материалам, способным формировать на своей поверхности кальций-фосфатный слой.

В расчете на 1 г наноразмерного гидроксиапатита, навеску 2,360 г сухого кристаллогидрата нитрата кальция Ca(NO3)2·4H2O растворяют в реакционном сосуде (подходящем для микроволнового излучения) в 20 мл дистиллированной воды. К нему добавляют навеску агар-агара 0,200 г. Навеску 0,792 г сухого гидрофосфата аммония растворяют в 20 мл воды, полученный раствор медленно приливают к смеси раствора нитрата кальция с агар-агаром. Концентрированным раствором аммиака NH4OH pH реакционной смеси поддерживается 10-11. Затем реакционная смесь подвергается СВЧ-воздействию в течение 30 минут мощностью 110 Вт. Полученный раствор отстаивается в течение 48 часов с целью формирования фазы гидроксиапатита, после чего отфильтровывается. Выделенная суспензия переносится в фарфоровую чашку и высушивается при температуре 100°C в течение 20 часов. Полученный порошок прокаливается при температуре 400°C в течение 2 часов для полного удаления выгорающей добавки и улучшения свойств, а именно увеличения степени кристалличности, уменьшения растворимости.

Порошок наноразмерного гидроксиапатита используется в качестве основного компонента при создании биологически активной керамики, гранул для заполнения костных дефектов, а также материала для покрытия различного рода имплантатов.

Преимущества заявленного изобретения заключаются в получении наноразмерного гидроксиапатита с улучшенными морфологическими характеристиками и в значительном повышении его биологической активности. Для полученных образцов нГА определены такие структурные параметры, как удельная поверхность и пористость, имеющие важное значение при использовании ГА в качестве материала в стоматологической и хирургической практике.

Введение агар-агара в качестве выгорающей добавки приводит к уменьшению среднего рассчитанного размера кристаллита (табл. 1) и дисперсности (рис. 3), что в свою очередь положительно сказывается на растворимости порошка нГА, биологической активности и его совместимости с живым организмом. Известно, что увеличение удельной поверхности и пористости биокерамики положительно влияет на кинетику образования кости и, следовательно, улучшает биоактивность (комплекс свойств материала, позволяющий создавать прочный непосредственный контакт с живой костью).

Способ получения наноразмерного гидроксиапатита в микроволновом поле с использованием агар-агара в качестве выгорающей добавки, включающий приготовление и перемешивание водных растворов нитрата кальция, гидрофосфата аммония, аммиака для поддержания pH смеси 10-11 и навески агар-агара с последующим воздействием СВЧ-излучения, отстаиванием, сушкой и прокаливанием, отличающийся тем, что выгорающая добавка вводится в реакционную смесь одновременно с раствором нитрата кальция, с воздействием СВЧ-нагрева 30 минут, отстаиванием маточного раствора в течение 48 часов, сушкой при температуре 100°C в течение 20 часов и прокаливанием при 400°C в течение 2 часов, при следующем соотношении компонентов, мас.%:
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ГИДРОКСИАПАТИТА В МИКРОВОЛНОВОМ ПОЛЕ С ИСПОЛЬЗОВАНИЕМ ВЫГОРАЮЩЕЙ ДОБАВКИ
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ГИДРОКСИАПАТИТА В МИКРОВОЛНОВОМ ПОЛЕ С ИСПОЛЬЗОВАНИЕМ ВЫГОРАЮЩЕЙ ДОБАВКИ
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ГИДРОКСИАПАТИТА В МИКРОВОЛНОВОМ ПОЛЕ С ИСПОЛЬЗОВАНИЕМ ВЫГОРАЮЩЕЙ ДОБАВКИ
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ГИДРОКСИАПАТИТА В МИКРОВОЛНОВОМ ПОЛЕ С ИСПОЛЬЗОВАНИЕМ ВЫГОРАЮЩЕЙ ДОБАВКИ
Источник поступления информации: Роспатент

Showing 91-100 of 174 items.
19.01.2018
№218.016.0d08

Способ получения тонкопленочного покрытия на основе сложных оксидных систем

Изобретение относится к технологии получения тонкопленочных материалов на основе сложных оксидных систем, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, строительной индустрии, в качестве декоративных, фильтрующих и перераспределяющих...
Тип: Изобретение
Номер охранного документа: 0002632835
Дата охранного документа: 10.10.2017
19.01.2018
№218.016.0eac

Катализатор и способ раздельного получения водорода и монооксида углерода из метана

Изобретение относится к катализатору для раздельного получения водорода и монооксида углерода из метана. Катализатор состава 5-15% мас. Ni на γ-AlO или SiO промотирован оксидными соединениями ванадия, в пересчете на VO в количестве 5-20% массовых процентов. Также предложен способ раздельного...
Тип: Изобретение
Номер охранного документа: 0002633354
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1082

Улучшенный способ уничтожения личинок комаров

Изобретение относится к области снижения численности кровососущих комаров на личиночной стадии развития. При осуществлении способа уничтожения личинок комаров вносят в водоем восстановитель для связывания растворенного в воде кислорода. Вносят на поверхность воды слой оксида азота. Внесение...
Тип: Изобретение
Номер охранного документа: 0002633778
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1125

Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ

Изобретение относится к области переработки жидких радиоактивных промышленных отходов, в частности матричной иммобилизации. Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ включает смешивание жидких радиоактивных отходов с керамообразующим материалов и застывание...
Тип: Изобретение
Номер охранного документа: 0002633817
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.19bb

Способ приготовления концентрированного питательного раствора хьюитта

Изобретение относится к области биотехнологии и сельского хозяйства, в частности к гидропонике и растениеводству. Способ включает растворение минеральных солей в дистиллированной воде. При этом компоненты, содержащие кальций и магний, используют в количестве, меньшем относительно прописи...
Тип: Изобретение
Номер охранного документа: 0002636468
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.1fe4

Способ получения квазисферических частиц титана

Изобретение относится к получению порошка титана. Способ включает механическую обработку порошка титана в водоохлаждаемой планетарной шаровой мельнице в инертной атмосфере аргона. Используют порошок чистого титана марки ПТОМ-2. Обработку порошка ведут с активацией поверхности частиц порошка при...
Тип: Изобретение
Номер охранного документа: 0002641428
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.1ffd

Способ повышения прочности стабильной аустенитной стали

Изобретение относится к области металлургии. Для повышения прочностных свойств стали при сохранении пластичности за счет получения структуры с высокой плотностью пакетов микродвойников деформации и субмикро- и наноразмерными фрагментами стабильную аустенитную сталь 02Х17Н14М3 подвергают закалке...
Тип: Изобретение
Номер охранного документа: 0002641429
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.205d

Способ получения вольфрамового изделия послойным нанесением вольфрама и устройство для его осуществления

Изобретение относится к металлургии, а именно к фторидной технологии получения сложных по пространственной конфигурации вольфрамовых изделий. Способ получения вольфрамового изделия послойным нанесением вольфрама характеризуется тем, что проводят сканирование изотермически нагретой...
Тип: Изобретение
Номер охранного документа: 0002641596
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20fa

Способ обработки монокристаллов ферромагнитного сплава conial с содержанием ni 33-35 ат.% и al 29-30 ат.%

Изобретение относится к области металлургии, а именно к обработке монокристаллов ферромагнитного сплава CoNiAl с эффектом памяти формы, и может быть использовано для создания рабочего тела актуатора. Способ обработки монокристалла ферромагнитного сплава CoNiAl с содержанием Ni 33-35 ат. % и Al...
Тип: Изобретение
Номер охранного документа: 0002641598
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.30d0

Способ обработки заготовок ванадиевых сплавов

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002644832
Дата охранного документа: 14.02.2018
Showing 91-100 of 100 items.
19.01.2018
№218.016.0d08

Способ получения тонкопленочного покрытия на основе сложных оксидных систем

Изобретение относится к технологии получения тонкопленочных материалов на основе сложных оксидных систем, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, строительной индустрии, в качестве декоративных, фильтрующих и перераспределяющих...
Тип: Изобретение
Номер охранного документа: 0002632835
Дата охранного документа: 10.10.2017
19.01.2018
№218.016.0eac

Катализатор и способ раздельного получения водорода и монооксида углерода из метана

Изобретение относится к катализатору для раздельного получения водорода и монооксида углерода из метана. Катализатор состава 5-15% мас. Ni на γ-AlO или SiO промотирован оксидными соединениями ванадия, в пересчете на VO в количестве 5-20% массовых процентов. Также предложен способ раздельного...
Тип: Изобретение
Номер охранного документа: 0002633354
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1082

Улучшенный способ уничтожения личинок комаров

Изобретение относится к области снижения численности кровососущих комаров на личиночной стадии развития. При осуществлении способа уничтожения личинок комаров вносят в водоем восстановитель для связывания растворенного в воде кислорода. Вносят на поверхность воды слой оксида азота. Внесение...
Тип: Изобретение
Номер охранного документа: 0002633778
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1125

Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ

Изобретение относится к области переработки жидких радиоактивных промышленных отходов, в частности матричной иммобилизации. Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ включает смешивание жидких радиоактивных отходов с керамообразующим материалов и застывание...
Тип: Изобретение
Номер охранного документа: 0002633817
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.19bb

Способ приготовления концентрированного питательного раствора хьюитта

Изобретение относится к области биотехнологии и сельского хозяйства, в частности к гидропонике и растениеводству. Способ включает растворение минеральных солей в дистиллированной воде. При этом компоненты, содержащие кальций и магний, используют в количестве, меньшем относительно прописи...
Тип: Изобретение
Номер охранного документа: 0002636468
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.1fe4

Способ получения квазисферических частиц титана

Изобретение относится к получению порошка титана. Способ включает механическую обработку порошка титана в водоохлаждаемой планетарной шаровой мельнице в инертной атмосфере аргона. Используют порошок чистого титана марки ПТОМ-2. Обработку порошка ведут с активацией поверхности частиц порошка при...
Тип: Изобретение
Номер охранного документа: 0002641428
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.1ffd

Способ повышения прочности стабильной аустенитной стали

Изобретение относится к области металлургии. Для повышения прочностных свойств стали при сохранении пластичности за счет получения структуры с высокой плотностью пакетов микродвойников деформации и субмикро- и наноразмерными фрагментами стабильную аустенитную сталь 02Х17Н14М3 подвергают закалке...
Тип: Изобретение
Номер охранного документа: 0002641429
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.205d

Способ получения вольфрамового изделия послойным нанесением вольфрама и устройство для его осуществления

Изобретение относится к металлургии, а именно к фторидной технологии получения сложных по пространственной конфигурации вольфрамовых изделий. Способ получения вольфрамового изделия послойным нанесением вольфрама характеризуется тем, что проводят сканирование изотермически нагретой...
Тип: Изобретение
Номер охранного документа: 0002641596
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20fa

Способ обработки монокристаллов ферромагнитного сплава conial с содержанием ni 33-35 ат.% и al 29-30 ат.%

Изобретение относится к области металлургии, а именно к обработке монокристаллов ферромагнитного сплава CoNiAl с эффектом памяти формы, и может быть использовано для создания рабочего тела актуатора. Способ обработки монокристалла ферромагнитного сплава CoNiAl с содержанием Ni 33-35 ат. % и Al...
Тип: Изобретение
Номер охранного документа: 0002641598
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.30d0

Способ обработки заготовок ванадиевых сплавов

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002644832
Дата охранного документа: 14.02.2018
+ добавить свой РИД