×
10.02.2016
216.014.c393

Результат интеллектуальной деятельности: МАЛОДЕФОРМАЦИОННАЯ ЗАКАЛКА АЛЮМИНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термической обработки металлов и сплавов, а именно к закалке сложноконтурных деталей и полуфабрикатов из сплавов на основе алюминия, широко используемых в авиационной и ракетной технике и других изделиях машиностроения в качестве конструкционных основных элементов. Малодеформационная закалка алюминиевого сплава включает высокотемпературный нагрев алюминиевого сплава и перенос алюминиевого сплава в охлаждающую среду на водной основе, содержащую два полимера низкой концентрации - высокомолекулярный полиэтиленоксид и поверхностно-активное вещество, при этом закалку проводят в охлаждающей среде, которая дополнительно содержит ингибитор коррозии при следующем соотношении компонентов, мас.%: высокомолекулярный полиэтиленоксид 0,08-0,15, поверхностно-активное вещество 0,5-2,0, ингибитор коррозии 0,1-1,0, вода - остальное. Техническим результатом изобретения является повышение качества закалки, отсутствие дальнейшей правки листовых, прессованных, кованых элементов, повышение механических и коррозионных свойств. 5 з.п. ф-лы, 1 пр., 4 табл.

Изобретение относится к области термической обработки металлов и сплавов, а именно к закалке сложноконтурных деталей и полуфабрикатов из сплавов на основе алюминия, широко используемых в авиационной и ракетной технике и других изделиях машиностроения в качестве конструкционных основных элементов (листовых обшивок, листовых и прессованных стрингеров, деталей типа лонжеронов, шпангоутов, стоек из штамповок и паковок).

При закалке изделий сложной конфигурации (листовых и прессованных деталей, штамповок, поковок и деталей из них) остается актуальной насущная производственная проблема - их коробление при закалке и правка, и она решается практически только использованием «мягких» охлаждающих сред. Поэтому используется недостаточно эффективная закалка в подогретой (горячей) воде. В последнее время для этих целей стали применять в качестве «мягких» закалочных сред водные растворы полимеров с обратной растворимостью.

В США и Западной Европе для малодеформационной закалки в основном применяют высококонцентрированную (10-40%) среду с широким интервалом содержания полимера типа полиалкиленгликоля («Ucon») разработки корпорации «Union Corbide» (Патент США, 3,220,893, Nov. 30, 1965; G.E. Totten and D.S. Mackenzie. Aluminum Quenching Technology: A.Review. Proc. of ICAA - 7, 2000, p.p 589-594).

Недостатки этой закалочной полимерной среды очевидны и заключаются в следующем:

- большой расход полимеров и, как следствие, повышенная стойкость за счет высокой концентрации полимеров;

- повышенная трудность смывки остатков (пленки) полимеров с закаливаемых деталей и полуфабрикатов (может потребоваться двойная промывка);

- повышенная сложность переработки при сливе растворов;

- недостаточная степень снижения коробления листовых деталей, отличающихся развитой поверхностью.

К одной из задач закалочных сред на основе высокомолекулярного ПЭО является нестабильность (связанная с уменьшением вязкости раствора) обусловлена предотвращением деструкции полимера в водных растворах и соответственно с уменьшением молекулярной массы. Деструкция полимера катализируется, в том числе, солями железа, присутствующими в водопроводной воде, используемой для приготовления закалочного раствора, и ржавчиной, образующейся на стенках закалочного бака и крепежных деталей (О.Н. Дымет и др. Гликоли и другие производные окиси этилена и пропилена, «Химия», 1976).

Известна среда для закалки листовых деталей из алюминиевых сплавов на водной основе, содержащая только один высокомолекулярный полиэтиленоксид (ПЭО) с низкой концентрацией 0,05-2,0 мас.% (А.с. СССР, №600190, 11.06.1975). Но эта среда приводит к довольно высокой степени коробления, низкой скорости охлаждения, плохой смываемости пленки полимера образующейся на поверхности закаливаемой детали.

Показано, что охлаждающие среды, содержащие дополнительно к ПЭО поверхностно-активные вещества (ПАВ) также невысокой концентрации (вспомогательное биологически мягкое вещество ОП-10 типа синтанола ДС-10 0,5-10,0% по массе), отличаются значительным уменьшением коробления и достаточным уровнем скорости охлаждения для достижения необходимых механических и коррозионных характеристик (А.с. СССР №817074, 03.05.1979, патент №1708878, опубл. 30.01.1992 г.). К недостаткам этих двухкомпонентных сред следует отнести отсутствие в их составе ингибитора коррозии, что приводит к коррозионному воздействию охлаждающих сред с полимерными добавками на закаливаемые алюминиевые детали и оборудование для закалки.

При закалке изделий сложной конфигурации (листовых и прессованных деталей, штамповок, поковок и деталей из них) остается актуальной насущная производственная проблема - их коробление при закалке и правка, и она решается практически только использованием «мягких» охлаждающих сред. Поэтому используется недостаточно эффективная закалка в подогретой (горячей) воде. В последнее время для этих целей стали применять в качестве «мягких» закалочных сред водные растворы полимеров с обратной растворимостью (И.И. Новиков. Теория термической обработки металлов. М.: Металлургия, 1986, 480 с., данный источник взят за прототип).

Технической задачей настоящего изобретения является разработка и осуществление малодеформационной закалки, приводящей к существенному снижению закалочных деформаций (коробления и остаточных напряжений) сложноконтурных деталей и полуфабрикатов из алюминиевых сплавов и, соответственно, объемов их дальнейшей правки (в том числе нерегулируемой, ручной) с помощью охлаждающей среды с добавками полимером низкой концентрации, которая сохраняет эксплуатационные свойства закаливаемых изделий и относительно нейтральна к ним и оборудованию для закалки.

Техническим результатом настоящего изобретения является повышение качества закалки, отсутствие дальнейшей правки листовых, прессованных, кованых элементов, снижение трудоемкости процессов изготовления деталей планера самолетов и ракет, а также других изделий машиностроения. Дополнительным преимуществом является повышение механических и коррозионных свойств.

Для достижения поставленного технического результата предложена малодеформационная закалка алюминиевого сплава, включающая высокотемпературный нагрев алюминиевого сплава и перенос алюминиевого сплава в охлаждающую среду на водной основе, содержащую два полимера низкой концентрации - высокомолекулярный полиэтиленоксид и поверхностно-активное вещество, отличающаяся тем, что закалку проводят в охлаждающей среде, которая дополнительно содержит ингибитор коррозии при следующем соотношении компонентов, мас.%:

Высокомолекулярный полиэтиленоксид 0,08-0,15
Поверхностно-активное вещество 0,5-2,0
Ингибитор коррозии 0,1-1,0
Вода Остальное

Предпочтительно, в качестве поверхностно-активного вещества используют оксиэтилированный алифатический спирт.

Предпочтительно, в качестве поверхностно-активного вещества используют оксиэтилированный алкилфенол.

Предпочтительно, в качестве ингибитора коррозии используют себациновокислый натрий.

Предпочтительно, в качестве ингибитора коррозии используют нитрит натрия.

Предпочтительно, используют дистилированную воду. Предпочтительно, охлаждающая среда имеет водородный показатель в интервале 6-8.

В охлаждающей среде для малодеформационной закалки требуется совместное присутствие двух полимеров: с максимальной концентрацией 2,2 мас.% - высокомолекулярного полиэтиленоксида и поверхностно-активного вещества с повышенной биоразлагаемостью в виде оксиэтилированного алифатического спирта (типа синтанол ДС-10). При этом обеспечивается большой эффект снижения коробления и остаточных напряжений, а также скорости охлаждения, необходимой для достижения требуемого комплекса механических и коррозионных свойств.

При введении ингибиторов коррозии оценивалась общая коррозионная стойкость образцов из поковок В95пчТ2 по потере предела прочности (σВ) в соответствии с ГОСТ 9.017-74 после малодеформационной закалки в охлаждающей среде с полимерными добавками, с выдержкой в течение одного месяца, и обшивочных листов закалочного бака из углеродистой стали марки СТ 3 толщиной 3,0 мм в соответствии с ГОСТ 9.040-74, после выдержки в течение одного года с охлаждающим раствором (учитывая длительность эксплуатации охлаждающего раствора), данные представлены в таблице 4.

При введении ингибитора коррозии сохраняется эффективность малодеформационной закалки (в отношении коробления и остаточных напряжений) и охлаждающая способность среды для достижения эксплуатационных характеристик (механических и коррозионных свойств), при этом не изменяя вязкость раствора (таблицы 3, 4).

Для снижения коррозионной активности охлаждающей среды и предотвращения ее взаимодействия с поверхностью закалочных баков и крепежных деталей в состав среды предложено вводить ингибитор коррозии типа себациновокислый натрий или нитрит натрия при концентрации 0,1-1,0% по массе (таблица 4).

Для стабилизации раствора полиэтиленоксида и избежания его деструкции, которая ускоряется в кислых средах (что характерно для обычной воды), рекомендуется использовать дистиллированную (деионезированную) воду при разведении закалочного раствора, а водородный показатель поддерживать в интервале 6-8 рН. Установлено, что закалочный раствор наиболее стабилен в течение длительного хранения при приготовлении на дистиллированной воде (таблица 3).

Примеры осуществления

Охлаждающие среды испытаны в лабораторных и в опытно-промышленных условиях авиационного производства при малодеформационной закалке сложноконтурных штамповок и поковок толщиной до 100 мм из алюминиевых сплавов В95пч, 1933, АК4-1ч, АК6, листовых обшивок толщиной до 2,0 мм из сплавов 1163, Д16ч и до 6,0 мм из сплава В95пч.

Охлаждающие среды для испытаний были приготовлены в специальном баке емкостью ~200 л, растворением высокомолекулярного ПЭО и ПАВ - Синтанола ДС-10 в деионизованной воде в присутствии солей железа.

Состав охлаждающих сред представлен в таблице 1.

В таблице 2 показано изменение кинематической вязкости охлаждающих сред, приготовленных растворением компонентов в водопроводной и в деионизованной воде с добавлением ингибитора коррозии - себациновокислого натрия в присутствии солей железа.

Максимальную величину коробления оценивали на пластинах из сплава Д16ч размером 1,0×50×200 мм (10 шт. на точку). Пластины помещали в муфельную печь с автоматическим регулированием температуры и закаливали с температуры 495°С после 10 мин выдержки. Степень коробления определяли по наибольшему отклонению пластин от горизонтальной плоскости.

Остаточные закалочные напряжения (σост.) исследовали рентгеновским методом в излучении Со (Κα) на японском анализаторе напряжений PFS-3M фирмы «Rigaku» после малодеформационной закалки массивных штамповок и поковок толщиной до 100 мм, из которых детали были подвержены наибольшим поводкам.

Средняя скорость охлаждения (Vcp.) определялась в критическом температурном интервале 400-260°С на современной автоматизированной установке с регистрацией кривых охлаждения и кривых зависимости скорости охлаждения от температуры, на цилиндрических образцах ⌀30×50 мм. Эти образцы приняты для определения показателей охлаждающей способности среды при закалке кованых изделий.

Механические свойства при растяжении (предел прочности, предел текучести, относительное удлинение) определяли на круглых образцах с диаметром рабочей части d0=5 мм из штамповок и поковок алюминиевых сплавов в продольном направлении согласно ГОСТ 1497.

Коррозионные свойства изучали по:

- удельной электропроводимости (1/ρ), для оценки критических показателей коррозии, вихретоковым неразрушающим методом по ОСТ 1 92133;

- сопротивлению коррозионному растрескиванию под напряжением (КР) - по времени до разрушения высотных цилиндрических образцов ⌀12×40 мм при напряжении σкр=250 МПа и других условиях по ГОСТ 9.019.

Механические и коррозионные свойства представлены для алюминиевого сплава В95пч в состоянии «Т2».

Кинематическую вязкость закалочного раствора определяли с помощью вискозиметра типа ВПЖ-4 с диаметром капилляра 0,6 мм по времени истечения раствора.

Неоднократные замеры коробления на типовой установке показали, что после охлаждений при закалке в холодной воде контрольные образцы в виде пластин с относительно развитой поверхностью испытывали сильное коробление, а после охлаждения в предложенных средах коробление практически отсутствовало и было ~ в 2 раза меньше, чем в высококонцентрированной среде «Ucon».

Таким образом, предложенный способ малодеформационной закалки обеспечивает повышение качества закалки и снижение трудоемкости процессов изготовления деталей.

Способ малодеформационной закалки предназначен для сложноконтурных деталей и полуфабрикатов основных элементов (листовых обшивок, листовых и прессованных стрингеров, деталей типа лонжеронов, шпангоутов, стоек из штамповок и поковок) авиационной и ракетной техники, применительно к самолетостроительному, металлургическому и другому машиностроительному производству.

Источник поступления информации: Роспатент

Showing 351-360 of 369 items.
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
10.07.2019
№219.017.ab21

Защитное покрытие

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного и технологического назначения, в изделиях авиационно-космической и машиностроительной промышленности....
Тип: Изобретение
Номер охранного документа: 0002290371
Дата охранного документа: 27.12.2006
10.07.2019
№219.017.ac1f

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, таким как сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие...
Тип: Изобретение
Номер охранного документа: 0002349662
Дата охранного документа: 20.03.2009
10.07.2019
№219.017.acc0

Защитное технологическое покрытие для бериллия

Изобретение относится к покрытиям для защиты от окисления при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из бериллия. Технический результат изобретения заключается в создании защитного покрытия для бериллия, обладающего повышенной термостойкостью и...
Тип: Изобретение
Номер охранного документа: 0002317954
Дата охранного документа: 27.02.2008
10.07.2019
№219.017.acc1

Способ изготовления многослойной панели

Изобретение относится к области изготовления панелей путем формования в автоклаве при повышенном давлении и может найти применение в аэрокосмической, судостроительной и других отраслях промышленности. Предложен способ изготовления многослойной панели, состоящей из слоистой обшивки и...
Тип: Изобретение
Номер охранного документа: 0002317210
Дата охранного документа: 20.02.2008
10.07.2019
№219.017.acd7

Устройство для пропитки волокнистого длинномерного материала связующим

Изобретение относится к устройствам для пропитки волокнистого длинномерного материала связующим. Устройство для пропитки содержит пропитывающий узел, выполненный в виде емкости с отверстиями для подачи связующего на материал, патрубки для подачи связующего в пропитывающий узел. На наружной...
Тип: Изобретение
Номер охранного документа: 0002318610
Дата охранного документа: 10.03.2008
10.07.2019
№219.017.adfd

Состав для покрытия

Изобретение относится к составу, предназначенному для декоративной окраски элементов конструкций, приборов из алюминиевых сплавов, полимерных композиционных материалов и пластических масс, в том числе для окраски элементов кабины пилотов, панелей светопроводов и других деталей. Состав включает...
Тип: Изобретение
Номер охранного документа: 0002335521
Дата охранного документа: 10.10.2008
11.07.2019
№219.017.b2a9

Способ получения полуфабрикатов из высокопрочных никелевых сплавов

Изобретение относится к области металлургии. Способ получения полуфабрикатов из высокопрочного никелевого сплава системы Ni-Fe-Co включает выплавку слитка в вакуумно-дуговой печи, деформацию слитка, предварительную горячую прокатку и окончательную холодную прокатку. После выплавки слитка...
Тип: Изобретение
Номер охранного документа: 0002694098
Дата охранного документа: 09.07.2019
13.07.2019
№219.017.b3e4

Защитное технологическое покрытие

Изобретение относится к защитным покрытиям от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей в машиностроении и в других отраслях народного хозяйства. Технический результат изобретения заключается в создании защитного...
Тип: Изобретение
Номер охранного документа: 0002379238
Дата охранного документа: 20.01.2010
Showing 331-339 of 339 items.
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
20.05.2023
№223.018.67af

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, предназначенным для литья деталей горячего тракта газотурбинных двигателей и установок, например соплового аппарата турбин, работающих в газовой среде при высоких напряжениях и температурах до...
Тип: Изобретение
Номер охранного документа: 0002794496
Дата охранного документа: 19.04.2023
21.05.2023
№223.018.695c

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 750°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002794497
Дата охранного документа: 19.04.2023
21.05.2023
№223.018.695e

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 750°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002794497
Дата охранного документа: 19.04.2023
+ добавить свой РИД