×
11.05.2023
223.018.53e2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО МЕЛКОДИСПЕРСНОГО МЕТАЛЛИЧЕСКОГО КОМПОЗИЦИОННОГО ПОРОШКА НА ОСНОВЕ АЛЮМИНИЕВОГО СПЛАВА, АРМИРОВАННОГО ЧАСТИЦАМИ КАРБИДА КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ включает приготовление смеси порошков матричного алюминиевого сплава и армирующих частиц карбида кремния, составляющих 15-20% по объему в приготовленной смеси порошков. Приготовленную смесь загружают в аттриторное устройство и осуществляют механическое легирование в атмосфере аргона в течение от 40 до 90 часов. Перед приготовлением смеси порошков предварительно проводят их вакуумную сушку при температуре 180-220°С, при этом используют армирующие частицы с размером от 2 до 10 мкм. Обеспечивается получение металлического композиционного порошка заданного гранулометрического состава с низким содержанием газовых примесей и с равномерным распределением армирующих частиц. 1 табл., 4 пр.

Изобретение относится к порошковой металлургии, а именно к получению мелкодисперсного металлического композиционного порошка заданного гранулометрического состава на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенным для изготовления деталей газотурбинных двигателей (ГТД) методом аддитивного производства.

Постоянно растущие требования к снижению массы и увеличению тяговых характеристик, а также показателей экологичности перспективных ГТД обуславливают необходимость замены традиционных марочных сталей и сплавов на новые классы материалов. Металлические композиционные материалы на основе алюминия и его сплавов, армированные керамическими частицами, например, карбидом кремния, обладают требуемым сочетанием высокой удельной прочности и низкой плотности, а также высокими показателями малоцикловой и многоцикловой усталости, что делает данную группу материалов перспективной для применения в деталях ГТД.

Одними из наиболее перспективных производственных процессов изготовления деталей ГТД являются аддитивные технологии, в частности, технология селективного лазерного сплавления, где в качестве исходного сырья может быть использован мелкодисперсный металлический композиционный порошок, который должен обладать заданным уровнем технологических характеристик.

Известен способ получения композиционных порошков для аддитивных технологий, заключающийся в предварительном механическом смешивании частиц материала матрицы размером 20-40 мкм, представляющего собой либо чистый металл (Fe, Al, Ni, Ti), либо сплав на их основе, и частиц армирующего компонента размером 60-800 нм, представляющего собой смесь частиц карбидов и оксидов, а затем в механическом легировании полученной смеси в шаровой мельнице в течение 6-8 часов (CN105583401B, опуб. 18.05.2016 г.).

К недостатку данного способа относится неравномерность структуры композиционного материала за счет применения микронных частиц матричного сплава и наноразмерных частиц армирующего компонента, а также недостаточного времени механического легирования для получения гомогенной структуры.

Известен способ получения металлического композиционного материала для компактирования, который состоит из частиц пластичного материала матрицы, представляющий собой алюминий или сплав на его основе и частиц упрочняющего материала в количестве от 0,2 до 30% по объему, заключающийся в механическом легировании порошковых материалов таким образом, чтобы обеспечить обволакивание материалом матрицы каждой частицы упрочняющего материала с созданием связей между частицами матричного материала и упрочняющих частиц (US 4623388, С22С 29/12, опубл. 18.11.1986 г.).

К недостатку данного способа относится получение частиц металлического композиционного материала гранулометрическим составом, непригодным для использования в аддитивных технологиях, за счет недостаточного времени механического легирования и высокого содержания органических примесей из-за введения поверхностно-активных веществ, а именно стеариновой кислоты и углеродо-силиконовой добавки.

Наиболее близким аналогом является способ получения металлического композиционного материала для аддитивных технологий, заключающийся в механическом легировании частиц материала матрицы размером 15-30 мкм, представляющего собой сплав на основе алюминия, и армирующих частиц карбида кремния 3-10% по объему и размером 40-60 нм (CN103045914A опубл. 17.04.2013 г.).

К недостатку данного способа относится неравномерность структуры металлического композиционного материала за счет применения микронных частиц матричного сплава и наноразмерных частиц армирующего компонента, а также недостаточного времени механического легирования для получения гомогенной структуры. Также к недостатку данного способа относится получение частиц композиционного материала с высоким содержанием вредных газовых примесей из-за отсутствия предварительной сушки порошков.

Технической задачей настоящего изобретения является разработка получения высокочистого металлического композиционного порошка заданного гранулометрического состава на основе алюминиевого сплава, армированного частицами карбида кремния, для применения в аддитивных технологиях.

Техническим результатом настоящего изобретения является разработка способа получения высокочистого металлического композиционного порошка заданного гранулометрического состава, обеспечивающего равномерное распределение армирующего компонента, низкое содержание газовых примесей (кислорода и водорода).

Для достижения поставленного технического результата предложен способ получения высокочистого мелкодисперсного металлического композиционного порошка, включающий в себя приготовление смеси порошков матричного алюминиевого сплава и армирующих частиц карбида кремния, загрузку приготовленной смеси в аттриторное устройство, и последующее механическое легирование в инертной среде упомянутой смеси порошков, при этом армирующие частицы составляют 15-20% по объему в приготовленной смеси порошков и имеют размер от 2 до 10 мкм, причем предварительно перед приготовлением смеси упомянутых порошков проводят их вакуумную сушку при температуре 180-220°С, а механическое легирование проводят в атмосфере аргона в течение от 40 до 90 часов.

Применение армирующих частиц карбида кремния микронного размера 2-10 мкм обеспечивает высокую технологичность процесса механического легирования за счет отсутствия эффекта слипания и комкования частиц армирующего компонента, который наблюдается у наноразмерных частиц за счет высокой развитой поверхности, что в свою очередь обеспечивает получение равномерного распределения армирующего компонента в получаемом порошке. При использовании армирующих частиц размером менее 2 мкм наблюдаются эффекты слипания и комкования, а также повышается содержание кислорода в получаемом композиционном материал. При использовании армирующих частиц размером более 10 мкм происходит их неравное измельчение в процессе механического легирования, что ведет к снижению равномерности их распределения в получаемом порошке.

Предварительная вакуумная сушка порошков матричного сплава и карбида кремния проводится при температуре 180-220°С, так как в данном интервале температур происходит наиболее интенсивное испарение частиц влаги с поверхности частиц порошков, что позволяет снизить уровень содержания кислорода и водорода в получаемом металлическом композиционном композиционном материале. При температуре ниже 180°С снижается эффективность удаления влаги с поверхности частиц, при температуре выше 220°С могут происходить структурные изменения в материале алюминиевого сплава.

Проведение механического легирования в течение 40 - 90 часов позволяет получать композиционный порошок с равномерным распределением карбида кремния в алюминиевой матрице, в сочетании с заданным гранулометрическим составом композиционных частиц, так как данный интервал времени соответствует установившейся стадии процесса механического легирования, при котором происходит разрушение крупных агломератов со слоистой структурой. При времени механического легирования менее 40 ч получаются крупные агломераты частиц с неравномерной структурой. Нецелесообразно увеличивать время механического легирования более 90 ч, так как при подобном увеличении не происходят изменения фракционного состава частиц получаемого композиционного материала.

Примеры осуществления изобретения

Пример 1

В качестве матричного материала использовали порошок свариваемого алюминиевого сплава системы Al-Si-Mg с размером частиц менее 30 мкм. В качестве армирующего компонента использовались частицы карбида кремния дисперсностью 2 мкм.

Приготовление смеси порошков алюминиевого сплава и карбида кремния производилось из расчета объемного содержания карбида кремния 15% в приготовленной смеси порошков загружали в аттриторное устройство, например, в шаровую мельницу. Проводили предварительную вакуумную сушку порошков алюминиевого сплава и карбида кремния при температуре 180°С. Смесь подвергали механическому легированию в инертной среде в течение 40 часов.

Основная фракция полученного композиционного порошка составила менее 160 мкм, средний размер частиц - 60 мкм. Содержание карбида кремния и концентрацию водорода в порошке композиционного материала определяли методом синхротронного излучения, который обеспечивает высокую точность исследований. Содержание карбида кремния составило 15 об.%, а концентрация газовых примесей водорода и кислорода - 3,1 ppm и 750 ppm соответственно. Исследование равномерности распределения частиц карбида кремния в матрице методом секущих показало, что среднеквадратичное отклонение от среднего значения расстояния между частицами составило - 18, что является показателем равномерной структуры.

Пример 2

В качестве матричного материала использовали порошок свариваемого алюминиевого сплава системы Al-Si-Mg с размером частиц менее 30 мкм. В качестве армирующего компонента использовались частицы карбида кремния дисперсностью 6 мкм.

Приготовление смеси порошков алюминиевого сплава и карбида кремния производилось из расчета содержания карбида кремния 17,5% в приготовленной смеси порошков и загружали в аттриторное устройство, например, в шаровую мельницу. Проводили предварительную вакуумную сушку порошков алюминиевого сплава и карбида кремния при температуре 200°С. Смесь подвергали механическому легированию в инертной среде в течение 65 часов. Основная фракция полученного композиционного порошка составила менее 150 мкм, средний размер частиц - 55 мкм. Содержание карбида кремния составило 17,5 об.%, а концентрация газовых примесей водорода и кислорода - 3,0 ppm и 800 ppm соответственно. Исследование равномерности распределения частиц карбида кремния в матрице методом секущих показало, что среднеквадратичное отклонение от среднего значения расстояния между частицами составило - 15, что является показателем равномерной структуры.

Пример 3

В качестве матричного материала использовали порошок свариваемого алюминиевого сплава системы Al-Si-Mg с размером частиц менее 30 мкм. В качестве армирующего компонента использовались частицы карбида кремния дисперсностью 10 мкм.

Приготовление смеси порошков алюминиевого сплава и карбида кремния производилось из расчета содержания карбида кремния 20% в приготовленной смеси порошков загружали в аттриторное устройство, например, в шаровую мельницу. Проводили предварительную вакуумную сушку порошков алюминиевого сплава и карбида кремния при температуре 220°С. Смесь подвергали механическому легированию в инертной среде в течение 90 часов. Основная фракция полученного композиционного порошка составила менее 140 мкм, средний размер частиц - 50 мкм. Содержание карбида кремния составило 20,00 об.%, а концентрация газовых примесей водорода и кислорода - 3,2 ppm и 815 ppm соответственно. Исследование равномерности распределения частиц карбида кремния в матрице методом секущих показало, что среднеквадратичное отклонение от среднего значения расстояния между частицами составило - 19, что является показателем равномерной структуры.

Пример 4 (прототип)

В качестве матричного материала использовали свариваемый алюминиевый сплав марки AlSi10Mg, размер частиц данного сплава составил 15-30 мкм. В качестве армирующий частиц использовались порошок карбида кремния дисперсностью 40-60 нм.

Приготовление смеси порошков алюминиевого сплава и карбида кремния производилось из расчета объемного содержания карбида кремния 10%. Смесь подвергали механическому легированию в среде аргона в течение 8 часов.

Основная фракция полученного композиционного порошка составила более 500 мкм, средний размер частиц - 250 мкм. Содержание водорода в порошке композиционного материала составило 50 ppm, а кислорода 3010 ppm. Исследование равномерности распределения частиц карбида кремния в матрице методом секущих показало, что среднеквадратичное отклонение от среднего значения расстояния между частицами составило -2050, данный показатель говорит о том, что значение расстояния между частицами карбида кремния в образце не однородно, а, следовательно, структура композиционных частиц не является равномерной.

Для оценки равномерности распределения частиц карбида кремния в алюминиевой матрице использовался метод секущих, оценивалось расстояние между соседними частицам. Количественной характеристикой равномерности распределения частиц в данном случае будет являться среднеквадратичное отклонение от среднего значения расстояния между частицами. Чем эта величина меньше, тем выше степень равномерности распределения частиц.

Результаты исследования фракционного состава, содержания газовых примесей и равномерность распределения частиц карбида кремния в алюминиевой матрице композиционного материала, изготовленного способом и способом, известным из прототипа, приведены в таблице 1

Из данных таблицы видно, что композиционный порошок, полученный по предлагаемому способу в различных вариантах исполнения, имеет размер фракции порошка в 3,1-3,5 раза меньше, чем по прототипу. Содержание кислорода в композиционном порошке, полученном по предлагаемому способу в различных вариантах исполнения, не превышает 1000 ppm, что в 3 раза меньше, чем по прототипу. Показатель среднеквадратичного отклонения от среднего значения расстояния между частицами SiC, являющийся критерием равномерности их распределения, для частиц композиционного порошка, полученных по предлагаемому способу в различных вариантах исполнения, не превышает 20, что в 100 раз меньше, чем по прототипу.

Таким образом, в отличие от прототипа, предлагаемый способ позволяет получать высокочистый композиционный материал заданного гранулометрического состава с равномерным распределением частиц карбида кремния в алюминиевой матрице.

Способ получения металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, включающий приготовление смеси порошков матричного алюминиевого сплава и армирующих частиц карбида кремния, составляющих 15-20% по объему в приготовленной смеси порошков, загрузку приготовленной смеси в аттриторное устройство и последующее механическое легирование в инертной среде упомянутой смеси порошков, отличающийся тем, что перед приготовлением смеси упомянутых порошков предварительно проводят их вакуумную сушку при температуре 180-220°С, используют армирующие частицы с размером от 2 до 10 мкм, а механическое легирование проводят в атмосфере аргона в течение от 40 до 90 часов.
Источник поступления информации: Роспатент

Showing 1-4 of 4 items.
12.04.2023
№223.018.426b

Теплостойкий плёночный клей

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой. Полимерная основа представляет собой имидообразующую смесь, включающую по меньшей мере один диалкоксиэфир тетракарбоновой...
Тип: Изобретение
Номер охранного документа: 0002760127
Дата охранного документа: 22.11.2021
20.05.2023
№223.018.67af

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, предназначенным для литья деталей горячего тракта газотурбинных двигателей и установок, например соплового аппарата турбин, работающих в газовой среде при высоких напряжениях и температурах до...
Тип: Изобретение
Номер охранного документа: 0002794496
Дата охранного документа: 19.04.2023
21.05.2023
№223.018.695c

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 750°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002794497
Дата охранного документа: 19.04.2023
21.05.2023
№223.018.695e

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 750°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002794497
Дата охранного документа: 19.04.2023
Showing 1-10 of 330 items.
10.01.2013
№216.012.18ce

Клеевая композиция

Изобретение относится к клеевой композиции для крепления резин на основе полярных и неполярных каучуков между собой и к металлам в изделиях авиационной, автомобильной промышленности и судостроения. Клеевая композиция включает бутадиеннитрильный каучук, фенолоформальдегидный олигомер,...
Тип: Изобретение
Номер охранного документа: 0002471842
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18fb

Способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения жаростойких хромоалюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении. Проводят насыщение поверхности внутренней полости лопатки углеродом путем заполнения внутренней полости...
Тип: Изобретение
Номер охранного документа: 0002471887
Дата охранного документа: 10.01.2013
20.03.2013
№216.012.2f66

Способ вакуумной термической дегазации гранул жаропрочных сплавов в подвижном слое

Изобретение относится к порошковой металлургии, в частности к способу термической дегазации гранул жаропрочных сплавов и подготовке их к компактированию. Камеру дегазации вакуумируют до давления не более 1·10 мм рт.ст. и осуществляют дозированную подачу гранул на наклонную поверхность, нагретую...
Тип: Изобретение
Номер охранного документа: 0002477669
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.30c4

Способ производства порошка из титановых сплавов

Изобретение относится к порошковой металлургии, в частности к получению порошка титановых сплавов. Торец цилиндрической вращающейся заготовки расплавляют потоком плазмы в среде инертного газа, при этом применяют дополнительное охлаждение камеры с помощью отдельной, не зависимой от плазмотрона...
Тип: Изобретение
Номер охранного документа: 0002478022
Дата охранного документа: 27.03.2013
20.04.2013
№216.012.36e0

Эпоксидная композиция холодного отверждения

Изобретение относится к области создания двухкомпонентных эпоксидных композиций холодного отверждения для изготовления препрегов, которые могут быть использованы в строительстве, а также в авиационной, машиностроительной, судостроительной и других областях техники. Предлагаемая эпоксидная...
Тип: Изобретение
Номер охранного документа: 0002479601
Дата охранного документа: 20.04.2013
10.06.2013
№216.012.489b

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству сплавов на основе интерметаллида NiАl и изделиям, получаемым из них методом направленной кристаллизации, с монокристаллической или столбчатой структурами, например лопаток газовых турбин, работающих при температурах до 1200°С....
Тип: Изобретение
Номер охранного документа: 0002484167
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5951

Способ изготовления полых изделий из композиционных материалов

Изобретение относится к области технологии формования конструкций из полимерных композиционных материалов, предназначенных для изготовления быстровозводимых арочных мостов, при сооружении тоннелей, ангаров и других строительных конструкций. Согласно способу заполняют газом надувную внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002488486
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.59cf

Эпоксидная композиция для изготовления изделий из полимерных композиционных материалов методом вакуумной инфузии

Изобретение относится к эпоксидным композициям холодного отверждения и может быть использовано для изготовления конструкций, в том числе крупногабаритных, из полимерных композиционных материалов (ПКМ) методом вакуумной инфузии в областях техники. Эпоксидная композиция включает эпоксидную...
Тип: Изобретение
Номер охранного документа: 0002488612
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.670b

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к литейному производству и может быть использовано для получения лопаток стационарных ГТД и ГТУ, створок и проставок реактивного сопла, дисковых заготовок. Устройство содержит вакуумную камеру с торцевыми крышками, индукционную плавильную печь, печь подогрева литейных...
Тип: Изобретение
Номер охранного документа: 0002492026
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.670d

Способ получения металлического порошка

Изобретение относится к порошковой металлургии, а именно к получению мелкодисперсных металлических порошков заданного гранулометрического состава. Может использоваться для соединения, ремонта и изготовления деталей газотурбинных двигателей (ГТД), двигателей внутреннего сгорания, применяемых в...
Тип: Изобретение
Номер охранного документа: 0002492028
Дата охранного документа: 10.09.2013
+ добавить свой РИД