×
20.01.2016
216.013.a0c0

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения теплофизических параметров компонентов силовой электроники и может быть использовано для контроля их качества. Способ заключается в том, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды, постоянным периодом следования и изменяющейся по гармоническому закону длительностью. Импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале транзистора, измеряют и запоминают для каждого греющего импульса напряжение на диоде и вычисляют временную зависимость средней за период следования греющей мощности. В паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра - прямого напряжения на диоде при малом постоянном измерительном токе и вычисляют временную зависимость температуры кристалла в процессе нагрева транзистора, после чего с помощью Фурье-преобразования вычисляют амплитуду основной гармоники температуры кристалла и амплитуду основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса транзистора на частоте модуляции греющей мощности. Затем процесс измерения повторяют на других частотах модуляции, получают частотную зависимость модуля теплового импеданса транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус мощного МДП-транзистора. 4 ил.
Основные результаты: Способ измерения теплового сопротивления переход-корпус мощных МДП-транзисторов, заключающийся в том, что через мощный МДП-транзистор пропускают последовательность импульсов греющего тока, в паузах между ними измеряют и запоминают значения температурочувствительного параметра U при измерительном токе I, вычисляют среднюю рассеиваемую мощность при каждом импульсе греющего тока и соответствующие изменения температурочувствительного параметра, отличающийся тем, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через мощный МДП-транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды I, постоянным периодом следования Т и изменяющейся по гармоническому закону длительностью τ, импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале мощного МДП-транзистора, измеряют и запоминают для каждого греющего импульса напряжение на антипараллельном диоде и вычисляют временную зависимость средней за период следования Т греющей мощности , в паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра U - прямого напряжения на антипараллельном диоде при измерительном токе I и вычисляют временную зависимость температуры T(t) кристалла в процессе нагрева мощного МДП-транзистора, с помощью Фурье-преобразования временных зависимостей T(t) и вычисляют амплитуду Τ основной гармоники температуры кристалла и амплитуду P основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса Z мощного МДП-транзистора на частоте модуляции ω греющей мощности, после чего процесс измерения повторяют на других частотах модуляции ω греющей мощности, получают частотную зависимость модуля теплового импеданса Ζ(ω) мощного МДП-транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус R мощного МДП-транзистора.

Изобретение относится к технике измерения теплофизических параметров компонентов силовой электроники и может быть использовано для контроля их качества.

Среди существующих способов измерения теплового сопротивления полупроводниковых приборов известен способ измерения теплового сопротивления переход-корпус силовых полупроводниковых приборов в корпусном исполнении (RU 2240573, МПК G01R 31/26, опубл. 20.11.2004), заключающийся в том, что полупроводниковый кристалл нагревают путем пропускания через него постоянного тока Ι0 заданной амплитуды и в процессе нагревания измеряют значение его температурочувствительного параметра, в качестве которого используют прямое падение напряжения на кристалле Uп и одновременно измеряют температуру основания корпуса Тк прибора в выбранной точке. Запоминают эти значения, получая их зависимости от времени. Прекращают нагрев полупроводникового кристалла при достижении температуры Тк заданного значения и в режиме естественного охлаждения при подаче на кристалл коротких измерительных импульсов тока с амплитудой, равной значению постоянного греющего тока Ι0, и скважностью, не влияющими на тепловое равновесие прибора, измеряют и запоминают значения температурочувствительного параметра и температуры основания корпуса, получая зависимости Uп(t) и Тк(t) на интервале охлаждения. При этом длительность интервала охлаждения выбирают из условия безусловного выполнения t>>3τ, где τ - наибольшая тепловая постоянная конструкция прибора, определяют момент динамического равновесия на интервале нагрева и по полученным зависимостям вычисляют тепловое сопротивление переход-корпус.

Недостатком способа является большая погрешность измерения, обусловленная тем, что зависимость температурочувствительного параметра от температуры кристалла, измеряемая при большом греющем токе, имеет нелинейный характер.

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ измерения теплового сопротивления переход-корпус транзисторов с полевым управлением (RU 2516609, МПК G01R 31/26, опубл. 27.08.2013), суть которого заключается в следующем. Прибор нагревают путем пропускания через него импульсов тока произвольной формы в открытом состоянии. В паузах между импульсами греющего тока, пропуская через прибор измерительный ток, измеряют и запоминают значения температурочувствительного параметра, в качестве которого используют падение напряжения между стоком и истоком открытого прибора, и температуры корпуса. Периодически измеряют и запоминают значения греющего тока и вызываемого им падения напряжения на приборе. Вычисляют среднюю мощность, рассеиваемую в приборе при пропускании через него импульса греющего тока. Сравнивают вычисленную среднюю мощность потерь на n-м интервале измерения с предварительно установленной максимально допустимой для прибора рассеиваемой мощностью. Когда значение меньше, равно или больше РМАХ, соответственно увеличивают, оставляют неизменным или уменьшают среднее значение греющего тока. По достижении температурой корпуса прибора заданного максимума полностью прерывают протекание греющего тока. Через прибор пропускают измерительный ток и измеряют и запоминают значение температурочувствительного параметра. В режиме естественного охлаждения по достижении термодинамического равновесия периодически измеряют и запоминают значения термочувствительного параметра и температуры корпуса прибора, после чего рассчитывают тепловое сопротивление переход-корпус.

Недостатком прототипа является большая погрешность определения средней мощности, рассеиваемой в приборе при пропускании через него импульса греющего тока произвольной формы, и, как следствие, большая погрешность вычисления теплового сопротивления переход-корпус прибора.

Технический результат - повышение точности измерения теплового сопротивления переход-корпус мощных МДП-транзисторов.

Технический результат достигается тем, что, как и в прототипе, через мощный МДП-транзистор пропускают последовательность импульсов греющего тока, в паузах между ними измеряют и запоминают значения температурочувствительного параметра UТЧП при измерительном токе Iизм, вычисляют среднюю рассеиваемую мощность при каждом импульсе греющего тока и соответствующие изменения температурочувствительного параметра. В отличие от прототипа, в котором нагрев мощного МДП-транзистора осуществляют импульсами греющего тока произвольной формы, пропуская их через открытый канал мощного МДП-транзистора, а в качестве температурочувствительного параметра UТЧП используют напряжение между стоком и истоком мощного МДП-транзистора при открытом канале и измерительном токе Iизм, в заявляемом изобретении нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через мощный МДП-транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды Ιгр, постоянным периодом следования Тсл и изменяющейся по гармоническому закону длительностью τ, импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале мощного МДП-транзистора, измеряют и запоминают для каждого греющего импульса напряжение на антипараллельном диоде и вычисляют временную зависимость средней за период следования Тсл греющей мощности , в паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра UТЧП - прямого напряжения на антипараллельном диоде при измерительном токе Iизм и вычисляют временную зависимость температуры T(t) кристалла в процессе нагрева мощного МДП-транзистора, с помощью Фурье-преобразования временных зависимостей T(t) и вычисляют амплитуду T1 основной гармоники температуры кристалла и амплитуду P1 основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса ΖT мощного МДП-транзистора на частоте модуляции ω греющей мощности, после чего процесс измерения повторяют на других частотах модуляции ω греющей мощности, получают частотную зависимость модуля теплового импеданса ΖT(ω) мощного МДП-транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус RТп-к мощного МДП-транзистора.

Сущность способа поясняют фиг. 1-3. На фиг. 1а показана структура мощного n-канального МДП-транзистора, на фиг. 1б - его условное графическое изображение. Особенностью структуры транзистора является наличие антипараллельного диода, образованного p-областью истока и n-областью стока. При замкнутых между собой затворе и истоке мощного МДП-транзистора напряжение UЗИ между ними равно нулю, проводящий канал между истоком и стоком отсутствует и ток между истоком и стоком протекает через антипараллельный диод по пути, показанному на фиг. 1а стрелками.

На фиг. 2а показана временная зависимость тока I через антипараллельный диод мощного МДП-транзистора, представляющая собой последовательность греющих импульсов с постоянным периодом следования Тсл и изменяющейся по гармоническому закону длительностью. Широтно-импульсная модуляция греющего тока Iгр, осуществляемая по гармоническому закону, вызывает соответствующие изменения рассеиваемой в мощном МДП-транзисторе мощности , график которой показан на фиг. 2б. Модуляция греющей мощности вызывает соответствующие изменения температуры T(t) кристалла мощного МДП-транзистора, сдвинутые по фазе относительно мощности (фиг. 2в). Изменение температуры вызывает соответствующие изменения температурочувствительного параметра UТЧП(t) (фиг. 2г), в качестве которого используют прямое напряжение на антипараллельном диоде, измеряемое в паузах между греющими импульсами при измерительном токе Iизм. Прямое напряжение на диоде линейно зависит от температуры, что позволяет на основе измерения UТЧП(t) определить T(t). Отношение основной гармоники Τ1 температуры кристалла и основной гармоники P1 рассеиваемой в мощном МДП-транзисторе мощности определяет модуль теплового импеданса ΖT мощного МДП-транзистора на частоте модуляции греющей мощности ω.

На фиг. 3 представлена частотная зависимость модуля теплового импеданса ΖT(ω) мощного МДП-транзистора, полученная в результате измерений модуля теплового импеданса ΖT при различных частотах ω модуляции греющей мощности. Значение ΖT на пологом участке частотной зависимости определяет тепловое сопротивление переход-корпус RТп-к мощного МДП-транзистора.

Предлагаемый способ может быть реализован с помощью устройства, структурная схема которого показана на фиг. 4. Устройство содержит источник 1 измерительного тока; формирователь 2 греющих импульсов, управляемый микроконтроллером 3; аналого-цифровой преобразователь 4, вход которого соединен с объектом измерения - мощным МДП-транзистором 5, а выход - с микроконтроллером 3. Затвор и исток мощного МДП-транзистора 5 соединены между собой.

Способ осуществляют следующим образом. С выхода формирователя 2 греющих импульсов через объект измерения - мощный МДП-транзистор 5 - пропускают заданное микроконтроллером 3 количество импульсов греющего тока Iгр, период следования Тсл которых поддерживают постоянным, а длительность модулируют по гармоническому закону. Частота модуляции задается микроконтроллером. В паузах между греющими импульсами измеряют температурочувствительный параметр - прямое напряжение UТЧП на антипараллельном диоде мощного МДП-транзистора 5, возникающее при протекании через него измерительного тока Iизм, сформированного источником 1. Напряжение UТЧП с помощью аналого-цифрового преобразователя 4 преобразуют в цифровой код, поступающий в микроконтроллер 3, в результате чего в памяти микроконтроллера 3 формируют массив значений {UТЧП}, который затем преобразуют в массив температур {Т} кристалла. С помощью Фурье-преобразования вычисляют амплитуду Τ1 основной гармоники температуры кристалла и амплитуду P1 основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса ΖT мощного МДП-транзистора на частоте модуляции греющей мощности ω. Затем процесс измерения повторяют при других частотах модуляции греющей мощности ω, получают частотную зависимость модуля теплового импеданса ΖT(ω) мощного МДП-транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое равно тепловому сопротивлению переход-корпус RТп-к мощного МДП-транзистора.

Повышение точности измерения теплового сопротивления переход-корпус мощных МДП-транзисторов в заявляемом способе достигается за счет того, что, в отличие от прототипа, в нем с более высокой точностью определяются средняя мощность, рассеиваемая в объекте измерения при прохождении через него каждого импульса греющего тока, а также амплитуда основной гармоники температуры кристалла, вычисление которой производится с помощью Фурье-преобразования достаточно большого по объему массива данных.

Способ измерения теплового сопротивления переход-корпус мощных МДП-транзисторов, заключающийся в том, что через мощный МДП-транзистор пропускают последовательность импульсов греющего тока, в паузах между ними измеряют и запоминают значения температурочувствительного параметра U при измерительном токе I, вычисляют среднюю рассеиваемую мощность при каждом импульсе греющего тока и соответствующие изменения температурочувствительного параметра, отличающийся тем, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через мощный МДП-транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды I, постоянным периодом следования Т и изменяющейся по гармоническому закону длительностью τ, импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале мощного МДП-транзистора, измеряют и запоминают для каждого греющего импульса напряжение на антипараллельном диоде и вычисляют временную зависимость средней за период следования Т греющей мощности , в паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра U - прямого напряжения на антипараллельном диоде при измерительном токе I и вычисляют временную зависимость температуры T(t) кристалла в процессе нагрева мощного МДП-транзистора, с помощью Фурье-преобразования временных зависимостей T(t) и вычисляют амплитуду Τ основной гармоники температуры кристалла и амплитуду P основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса Z мощного МДП-транзистора на частоте модуляции ω греющей мощности, после чего процесс измерения повторяют на других частотах модуляции ω греющей мощности, получают частотную зависимость модуля теплового импеданса Ζ(ω) мощного МДП-транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус R мощного МДП-транзистора.
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
Источник поступления информации: Роспатент

Showing 261-262 of 262 items.
19.01.2018
№218.016.0785

Состав шихты для изготовления пеностекла

Изобретение относится к составу шихты для получения пеностекла. Технический результат - повышение теплотехнических и прочностных характеристик пеностекла. Шихта для изготовления пеностекла содержит следующие компоненты, мас. %: стекольный бой 80-87; сульфат натрия 3-5; диатомитовая глина...
Тип: Изобретение
Номер охранного документа: 0002631462
Дата охранного документа: 22.09.2017
19.04.2019
№219.017.3462

Устройство для нагрева нефти при сливе

Устройство предназначено для использования в нефтедобывающей, нефтеперерабатывающей и энергетической промышленности для нагрева нефти и нефтепродуктов при сливе из резервуаров. Устройство содержит резервуар; источник СВЧ энергии с волноводом в районе сливного прибора; радиопрозрачную пластину,...
Тип: Изобретение
Номер охранного документа: 0002460933
Дата охранного документа: 10.09.2012
Showing 421-430 of 432 items.
29.05.2018
№218.016.5551

Способ измерения компонент теплового сопротивления мощных полупроводниковых приборов

Изобретение относится к технике измерения теплофизических параметров полупроводниковых приборов и может быть использовано для контроля их качества. Технический результат – повышение точности. Для этого способ заключается в том, что через мощный полупроводниковый прибор пропускают...
Тип: Изобретение
Номер охранного документа: 0002654353
Дата охранного документа: 17.05.2018
29.12.2018
№218.016.ac93

Способ измерения температуры активной области светодиода

Изобретение относится к области измерительной техники и касается способа измерения температуры активной области светодиода. Способ заключается в том, что через светодиод пропускают греющий ток заданной величины, излучение светодиода подается на два фотоприемника и температуру активной области...
Тип: Изобретение
Номер охранного документа: 0002676246
Дата охранного документа: 26.12.2018
13.04.2019
№219.017.0c29

Способ разделения интегральных схем класса "система на кристалле" по надежности

Использование: для разбраковки ИС класса «система на кристалле» по критерию потенциальной надежности. Сущность изобретения заключается в том, что на представительной выборке ИС класса «система на кристалле» измеряют значения критических напряжений питания (КНП) отдельно для каждого...
Тип: Изобретение
Номер охранного документа: 0002684681
Дата охранного документа: 11.04.2019
19.04.2019
№219.017.3462

Устройство для нагрева нефти при сливе

Устройство предназначено для использования в нефтедобывающей, нефтеперерабатывающей и энергетической промышленности для нагрева нефти и нефтепродуктов при сливе из резервуаров. Устройство содержит резервуар; источник СВЧ энергии с волноводом в районе сливного прибора; радиопрозрачную пластину,...
Тип: Изобретение
Номер охранного документа: 0002460933
Дата охранного документа: 10.09.2012
10.07.2019
№219.017.b01e

Способ измерения теплового импеданса полупроводниковых диодов

Способ предназначен для использования на выходном и входном контроле качества полупроводниковых диодов и оценки их температурных запасов. На исследуемый диод подают импульсы греющего тока постоянной амплитуды. В промежутках между импульсами греющего тока пропускают постоянный начальный ток....
Тип: Изобретение
Номер охранного документа: 0002402783
Дата охранного документа: 27.10.2010
03.08.2019
№219.017.bc4a

Способ неразрушающего контроля качества сверхбольших интегральных схем по значению критического напряжения питания

Изобретение относится к микроэлектронике и может быть использовано для обеспечения качества и надежности сверхбольших интегральных схем (СБИС). Сущность: измеряют критическое напряжение питания при нормальной и повышенной температуре. СБИС предварительно программируют тестирующей программой для...
Тип: Изобретение
Номер охранного документа: 0002696360
Дата охранного документа: 01.08.2019
12.08.2019
№219.017.be42

Способ измерения переходной тепловой характеристики цифровых интегральных схем

Изобретение относится к измерительной технике и может быть использовано для контроля тепловых свойств цифровых интегральных схем (ЦИС). Сущность: для измерения переходной тепловой характеристики (ПТХ) цифровой интегральной схемы нечетное количество логических элементов включают по схеме...
Тип: Изобретение
Номер охранного документа: 0002697028
Дата охранного документа: 08.08.2019
12.10.2019
№219.017.d50f

Сигнализатор температуры

Изобретение относится к области измерения температуры и может быть использовано для регулирования температуры нагрева или охлаждения объекта. Сигнализатор температуры содержит генератор прямоугольных импульсов из нечетного количества инверторов цифровой интегральной микросхемы, соединенных по...
Тип: Изобретение
Номер охранного документа: 0002702685
Дата охранного документа: 09.10.2019
19.11.2019
№219.017.e374

Устройство автоматического повторного включения

Использование: в области электротехники. Технический результат – повышение чувствительности устройства при автоматическом повторном включении после самоустранения короткого замыкания и уменьшение массогабаритных показателей. Устройство автоматического повторного включения содержит...
Тип: Изобретение
Номер охранного документа: 0002706332
Дата охранного документа: 18.11.2019
29.04.2020
№220.018.1a56

Способ измерения тепловых сопротивлений переход-корпус и тепловых постоянных времени переход-корпус кристаллов полупроводниковых изделий в составе электронного модуля

Изобретение относится к технике измерения тепловых параметров кристаллов бескорпусных полупроводниковых изделий в составе электронных модулей и может быть использовано для контроля качества сборки электронных модулей как на этапах разработки и производства электронных модулей, так и на входном...
Тип: Изобретение
Номер охранного документа: 0002720185
Дата охранного документа: 27.04.2020
+ добавить свой РИД