×
27.11.2015
216.013.9467

Результат интеллектуальной деятельности: СОСТАВ ДЛЯ ПОЛУЧЕНИЯ КАРБИДНОГО БАРЬЕРНОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ БЕЗУГЛЕРОДИСТОГО ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к составам для получения карбидного барьерного слоя в алюминийсодержащем покрытии, и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности, где используют детали из безуглеродистых сплавов на никелевой основе. Состав для получения карбидного барьерного покрытия на детали из безуглеродистого жаропрочного никелевого сплава содержит тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0, углерод 0,1-0,4, хром 4-25, алюминий 2-12, иттрий 0,001-5,0 и никель - остальное. Обеспечивается защита детали из безуглеродистого жаропрочного никелевого сплава от газовой коррозии в условиях высоких температур (выше 900°C), что позволяет повысить долговечность упомянутой детали. 1 пр.
Основные результаты: Состав для получения карбидного барьерного покрытия на детали из безуглеродистого жаропрочного никелевого сплава, содержащий иттрий, хром, алюминий, никель, отличающийся тем, что дополнительно содержит, мас.%: тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0 и углерод 0,1-0,4 при содержании хрома 4-25, алюминия 2-12, иттрия 0,001-5,0 и никель - остальное.

Изобретение относится к металлургии, в частности к составам для получения карбидного барьерного слоя в алюминийсодержащем покрытии, применяемом для защиты детали из безуглеродистого жаропрочного никелевого сплава от газовой коррозии в условиях высоких температур (выше 900°C), и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности, где используют детали из безуглеродистых сплавов на никелевой основе.

К безуглеродистым жаропрочным никелевым сплавам относят сплавы с содержанием углерода не более 0,05% (А.В. Логунов Тенденции разработки и применения Ni-суперсплавов для лопаток ГТД в современных и перспективных силовых установках авиационного назначения // Технологии легких сплавов. №4, 2011 г, с.11-17).

С одной стороны, использование безуглеродистых жаропрочных никелевых сплавов позволяет повысить температуру на поверхности детали (изделия), в частности использование данных сплавов для турбинных лопаток позволяет повысить температуру рабочего газа перед турбиной и, как следствие, снизить удельную массу двигателя и удельный расход топлива при одновременном увеличении удельной тяги, а с другой стороны особенности элементного состава безуглеродистых жаропрочных никелевых сплавов приводят при действии высоких температур (выше 900°C) к формированию в поверхностном слое детали под алюминидным покрытием, так называемой вторичной реакционной зоны (ВРЗ), в состав которой входят топологически плотно упакованные (ТПУ) - фазы, снижающие характеристики жаропрочности сплавов и долговечности изготавливаемых из них деталей. В связи с этим, на поверхности таких деталей (изделий) необходимо формировать барьерные покрытия, снижающие интенсивность образования вторичной реакционной зоны (ВРЗ) (С.А. Мубояджян и др. Высокотемпературные жаростойкие покрытия и жаростойкие слои для теплозащитных покрытий. Авиационные материалы и технологии №1, 2013, 17-20 с.).

Известен состав для создания карбидного барьерного покрытия на детали из безуглеродистого жаропрочного никелевого сплава, содержащий хром 18-22%, алюминий 11-13%, иттрий 0,3-0,6% и никель - остальное (См. С.А. Мубояджян и др. Высокотемпературные жаростойкие покрытия и жаростойкие слой для теплозащитных покрытий. Авиационные материалы и технологии №1, 2013, 17-20 с).

Недостаток данного состава - недостаточно эффективная защита поверхностного слоя детали, что отрицательно сказывается на долговечности детали.

Технический результат заявленного изобретения - повышение долговечности деталей из безуглеродистых жаропрочных никелевых сплавов.

Указанный технический результат достигается тем, что состав для получения карбидного барьерного покрытия на детали из безуглеродистого жаропрочного никелевого сплава, содержащий иттрий, хром, алюминий, никель, согласно изобретению дополнительно содержит, мас.%: тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0, углерод 0,1-0,4 при содержании (мас.%) хрома 4-25, алюминия 2-12, иттрия 0,001-5,0, никель - остальное до 100%.

Основное назначение хрома в сплаве состоит в формировании карбидов в барьерном слое, которые тормозят диффузию элементов на границе сплав-покрытие и обеспечивают необходимую жаростойкость при сравнительно невысоком содержании алюминия. С этой целью содержание хрома в сплаве должно быть не менее 4%. Такое содержание хрома обеспечивает достаточно высокие барьерные свойства покрытия, прежде всего на безуглеродистых никелевых сплавах, предотвращает рассасывание покрытия и формирование ТПУ-фаз при высокотемпературном окислении. В то же время содержание хрома в сплаве не должно быть выше 25%, так как при чрезмерно высоком содержании хрома возрастает вероятность образования хрупкой σ-фазы и снижается сопротивление покрытия высокотемпературному окислению.

Алюминий, образуя упрочняющую γ′-фазу, обеспечивает хорошую жаростойкость покрытия при высоких температурах газовой среды. Содержание алюминия 2-12 мас.%. При содержании алюминия более 12% ухудшается технологичность покрытия: возрастает количество хрупкой β-фазы в структуре покрытия, снижается адгезия, увеличивается пористость. При содержании алюминия менее 2% существенно снижается жаростойкость покрытия. В конечном итоге наблюдается снижение защитных свойств покрытия и ухудшение характеристик его долговечности.

Тантал обеспечивает увеличение прочности и жаропрочности слоя покрытия путем увеличения прочности атомных связей в структуре покрытия, образует карбиды и тормозит диффузионные процессы на границе сплав-покрытие, тем самым стабилизирует структуру покрытия и подавляет склонность безуглеродистых никелевых сплавов к формированию ВРЗ, содержащей нежелательные ТПУ-фазы. Кроме того, тантал повышает сопротивление покрытия высокотемпературному окислению. Содержание тантала в сплаве менее 0,2% недостаточно для заметного улучшения свойств покрытия, так как он, в основном, содержится в твердом растворе и сопротивление окислению изменяется незначительно. В то же время при использовании сплава с указанной совокупностью элементов при содержании тантала выше 20% образуются хрупкие фазы в структуре покрытия, ухудшающие его долговечность.

Вольфрам вводят с целью дополнительного формирования частиц карбидов вольфрама в составе барьерного карбидного слоя, торможения диффузии элементов на границе покрытия со сплавом, снижения температуры перехода покрытия из хрупкого в пластичное состояние при нагреве. Вольфрам содержится в покрытии в карбидах и во вторичных твердых растворах. Содержание вольфрама должно быть 0,5-9,0 мас.%. При содержании вольфрама менее 0,5% не отмечается заметного улучшения свойств покрытия, а при увеличении его концентрации более 9% возможно образование ТПУ-фаз типа µ, наличие которых отрицательно сказывается на долговечности покрытия.

Кобальт вводят для повышения пластичности и трещиностойкости. При содержании кобальта менее 8% и более 10% ухудшается жаропрочность покрытия.

Гафний, иттрий и кремний обеспечивают улучшение адгезии защитной оксидной пленки с поверхностью покрытия. Усиление защитных свойств оксидной пленки достигается при введении гафния не менее 0,2% и кремния не менее 0,1%. При содержании гафния более 3% и кремния более 5% наблюдается образование ТПУ-фаз, ухудшающих характеристики долговечности покрытия. Положительный эффект от введения иттрия наблюдается при содержании иттрия в количестве не менее 0,001%. Иттрий в количествах больших, чем 5%, вводить нецелесообразно, так как это может заметно снижать сопротивление высокотемпературному окислению.

Углерод вводят для формирования карбидов, образующих барьерный слой на границе между покрытием и поверхностью детали. Основными карбидными фазами, входящими в состав барьерной зоны, являются карбиды типа MeC, Me23C6, Me3C2, Me6C, где Me - Cr, W, Ta, Hf. Наличие карбидов тормозит взаимную диффузию элементов сплава и покрытия, что предотвращает тем самым образование ВРЗ в защищаемом сплаве, содержащей охрупчивающие ТПУ-фазы. При высоком содержании углерода (более 0,4%) происходит нежелательное снижение температуры солидус сплава, а при малом содержании (менее 0,1%) барьерный слой оказывается недостаточно эффективным.

Никель, как основа покрытия, выбран с целью обеспечения формирования слоя тугоплавких алюминидов никеля, обеспечивающих покрытие запасом алюминия, достаточным для надежной защиты изделия от высокотемпературного окисления в течение заданного ресурса.

В качестве примера рассмотрено использование состава при формировании покрытия для рабочей лопатки турбины авиационного газотурбинного двигателя. В то же время ясно, что барьерное покрытие из предложенного состава может быть использовано и на других деталях, например створках реактивного сопла газотурбинного двигателя.

На внешней поверхности рабочей лопатки, отлитой, например, из сплава, содержащего, мас.%: хром 6,1; кобальт 7,4; молибден 0,8; вольфрам 12; алюминий 5,1; титан 1,8; ниобий 1,1; углерод 0,006, никель - остальное до 100%, необходимо сформировать жаростойкое покрытие на основе алюминия.

Для избежания формирования ВРЗ под алюминидным покрытием, на внешней поверхности лопатки создают карбидное барьерное покрытие, например, методом вакуумно-плазменной технологии при температуре нагрева деталей 950°C в течение 3,5 часов путем напыления сплава на основе никеля следующего состава, мас.%: хром 20,3; вольфрам 8,4; тантал 6,2; алюминий 10,8; углерод 0,34; гафний 2,1; кобальт 9,5; кремний 2,4; иттрий 3,0; никель - остальное до 100%. Толщина карбидного барьерного покрытия составляет 0,070-0,075 мм, а его состав соответствует составу напыляемого сплава.

Затем на карбидное барьерное покрытие наносят покрытие на основе алюминия. Это покрытие формируют известным способом, например, путем алитирования газовым методом в среде хлоридов AlCl3, AlCl2, АlСl при температуре 1000°C в течение 6 ч.

Таким образом, на внешней поверхности детали получают комбинированное покрытие, состоящее из двух покрытий: наружное покрытие, состоящее из зерен β- и γ′-фаз, и внутреннее покрытие, состоящее преимущественно из карбидных частиц, распределенных в объеме γ′- и β-фаз. Суммарная толщина комбинированного покрытия составляет 0,085-0,090 мм.

Испытаниями образцов с заявленным покрытием на долговечность при температуре 1050°C установлено, что за 800 ч образцы не имели ВРЗ под покрытием.

Состав для получения карбидного барьерного покрытия на детали из безуглеродистого жаропрочного никелевого сплава, содержащий иттрий, хром, алюминий, никель, отличающийся тем, что дополнительно содержит, мас.%: тантал 0,2-20, вольфрам 0,5-9,0, кобальт 8-10, гафний 0,2-3,0, кремний 0,1-5,0 и углерод 0,1-0,4 при содержании хрома 4-25, алюминия 2-12, иттрия 0,001-5,0 и никель - остальное.
Источник поступления информации: Роспатент

Showing 21-23 of 23 items.
26.08.2017
№217.015.e87d

Способ восстановления бандажных полок лопаток компрессора газотурбинных двигателей (гтд)

Изобретение относится к способу восстановления бандажных полок лопаток компрессора газотурбинных двигателей (ГТД). Определяют линии ремонтного среза бандажных полок. Удаляют по указанной линии их дефектные части. Изготавливают накладки из твердосплавного материала толщиной не более 0,9 мм со...
Тип: Изобретение
Номер охранного документа: 0002627558
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ec22

Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей

Изобретение относится к технологиям и оборудованию для нанесения покрытий на детали при их химико-термической обработке. Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей включает формирование на внутренних...
Тип: Изобретение
Номер охранного документа: 0002628309
Дата охранного документа: 17.08.2017
13.02.2018
№218.016.1f29

Способ нанесения износостойкого покрытия на бандажную полку лопатки турбомашин из никелевых сплавов

Изобретение относится к области сварки и может быть использовано при производстве или ремонте бандажированных лопаток турбин турбомашин, выполненных из жаропрочных никелевых сплавов. Выполняют бандажную полку лопатки турбины. Наносят на подготовленную к наплавке контактную поверхность бандажной...
Тип: Изобретение
Номер охранного документа: 0002641210
Дата охранного документа: 16.01.2018
Showing 31-36 of 36 items.
18.05.2019
№219.017.5b56

Способ химико-термической обработки деталей из никелевых сплавов

Изобретение относится к металлургии, в частности к разделу химико-термической обработки деталей. Проводят насыщение деталей кобальтом и хромом в циркулирующей галогенидной среде с соотношением кобальта и хрома 20-85 мас.% и 15-80 мас.% соответственно при температуре >900°С и не выше температуры...
Тип: Изобретение
Номер охранного документа: 0002462535
Дата охранного документа: 27.09.2012
09.06.2019
№219.017.7c96

Способ очистки топливного коллектора газотурбинного двигателя от коксовых отложений и нагара

Изобретение относится к очистке изделий от коксовых отложений и нагара, в частности к очистке топливного коллектора камеры сгорания и форсажной камеры газотурбинного двигателя физико-химическим методом, и может найти применение в авиадвигателестроении, судостроении, энергетическом...
Тип: Изобретение
Номер охранного документа: 0002325606
Дата охранного документа: 27.05.2008
19.06.2019
№219.017.8812

Способ ремонта лопаток турбины газотурбинного двигателя

Изобретение относится к области ремонта, в частности к ремонту лопаток турбин газотурбинных двигателей химико-термическими методами, и может быть использовано в областях техники, где используются газотурбинные двигатели. Способ включает очистку пера и замка лопаток от эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002367554
Дата охранного документа: 20.09.2009
07.09.2019
№219.017.c8e7

Способ многокомпонентного диффузионного насыщения поверхности деталей из жаропрочных никелевых сплавов

Изобретение относится к способу многокомпонентного диффузионного насыщения поверхности деталей из жаропрочных никелевых сплавов и может быть использовано в энергетическом и/или авиационном двигателестроении или других отраслях народного хозяйства. Многокомпонентное диффузионное насыщение...
Тип: Изобретение
Номер охранного документа: 0002699332
Дата охранного документа: 05.09.2019
01.11.2019
№219.017.dc03

Способ изготовления двухслойного кольцевого жаропрочного уплотнения узлов газотурбинного двигателя

Изобретение относится к области газотурбинных двигателей, их эксплуатации, в частности к средствам герметизации газовоздушного тракта двигателей высокотемпературными уплотнениями. Способ изготовления двухслойного кольцевого жаропрочного уплотнения узлов ГТД заключается в следующем. Вначале...
Тип: Изобретение
Номер охранного документа: 0002704709
Дата охранного документа: 30.10.2019
16.05.2023
№223.018.610b

Способ упрочнения поверхностного слоя лопаток компрессора газотурбинных двигателей

Изобретение относится к способу упрочнения поверхностного слоя лопаток компрессора газотурбинных двигателей. Осуществляют отпуск шариков и заполняют ими рабочую камеру. Осуществляют закрепление в камере лопатки с возможностью взаимодействия ее упрочняемых поверхностей с шариками и обработку...
Тип: Изобретение
Номер охранного документа: 0002743500
Дата охранного документа: 19.02.2021
+ добавить свой РИД