×
20.10.2015
216.013.8525

Результат интеллектуальной деятельности: СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ПРОТОНПРОВОДЯЩЕГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области производства материалов для электрохимического и электрофизического приборостроения, а именно к технологии получения полимерных протонпроводящих композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных электрохимических приборов и устройств, в том числе суперконденсаторов, электрохромных приборов и оптоэлектронных преобразователей, топливных элементов и др. Состав для получения полимерного протонпроводящего композиционного материала включает водный 2-9% раствор поливинилового спирта, протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты, наночастицы полититаната калия и пластификатор в виде глицерина, при следующем соотношении компонентов, мас. %: водный раствор поливинилового спирта 38-64; фосфорно-вольфрамовая кислота 19-50; полититанат калия 0,1-5,0; глицерин остальное. Способ получения полимерного протонпроводящего композиционного материала из предлагаемого состава включает смешивание наночастиц полититаната калия с водным 2-9%-ным раствором поливинилового спирта, гомогенизацию полученной смеси в течение не менее 3 часов с последующим добавлением в смесь навески фосфорно-вольфрамовой кислоты и перемешиванием в течение 8-12 ч до полного растворения кислоты, добавление в полученную смесь глицерина и ее выдерживание в течение 2-3 суток при комнатной температуре при постоянном перемешивании до полной гомогенизации, нанесение полученной смеси на основание с последующим выдерживанием при температуре не более 40°С в течение времени, обеспечивающего полимеризацию смеси с получением композиционного материала в виде пленки или пленочного покрытия. При этом наночастицы полититаната калия имеют среднее значение эффективного диаметра не более 600 нм, предпочтительно не более 300 нм, и толщину не более 40 нм, предпочтительно 20 нм. Изобретение позволяет получить полимерный протонпроводящий композиционный материал, обладающий высокой ионной проводимостью и относительно низкой составляющей электронной проводимости, а также характеризуемый высокой диэлектрической проницаемостью и высокой скоростью полимеризации при использовании материала в производственных технологических процессах. 2 н. и 2 з.п. ф-лы, 2 табл.

Изобретение относится к области производства материалов для электрохимического и электрофизического приборостроения, а именно к технологии получения полимерных протонпроводящих композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных электрохимических приборов и устройств, в том числе суперконденсаторов, электрохромных приборов и оптоэлектронных преобразователей, топливных элементов и др.

Полимерные протонпроводящие композиционные материалы (полимерные электролиты), приготовленные по растворной технологии с использованием твердых электролитов, диспергированных в полимерной матрице, широко применяются для изготовления электролитических (электрохимических) конденсаторов высокой емкости.

Из заявки на патент США №5986878 (МКП: H01G 9/02; H01G 9/025; H01G 9/04; H01G 9/042) известен твердый электролит, используемый в электрохимическом конденсаторе в виде нанесенного на электроды пленочного покрытия и включающий водный раствор поликислоты с массовой долей не менее 60%.

Известен также состав для получения электролита, используемого в электролитическом конденсаторе (JPH 09115784 (А), МКП: H01G 9/035) и обладающего высокой электрической проводимостью, включающий поликислоту (вольфрамофосфорную, вольфрамокремниевую, фосфорномолибденовую, кремниймолибденовую, кремнийвольфрамомолибденовую, фосфорновольфрамомолибденовую или фосфорнованадиймолибденовую) и электролит, приготовленный растворением амидной соли карбоновой (карбоксиловой) кислоты.

Из патента Японии JPH 0748458 (В2) (МПК: H01G 9/02; H01G 9/035) известен способ приготовления высокоэффективного электролита, согласно которому фосфорную кислоту и фосфористую кислоту или одну из их солей, борную кислоту или ее соль, полисахарид, такой как маннит, сорбит или подобные соединения, фосфорновольфрамовую кислоту, кремнийвольфрамовую кислоту или их соли, добавляют к электролиту, главным растворителем которого является гамма-бутиролактон и главным компонентом раствора - органическая соль амина.

Из заявок на патенты Кореи №20120050302 (МКП: C07F 11/00; C08J 7/04; Н01В 1/06; Н01М 8/02) и №20080022675 (МКП: C08J 5/22; C08K 3/00; C08K 3/34; C08L 61/00) известна композитная органическая-неорганическая полимерная мембрана, приготовленная с добавлением различных гетерополикислот для увеличения проводимости при использовании в топливных элементах.

Однако известные технические решения не позволяют достичь высокой ионной проводимости готового композиционного материала, что не дает возможности использовать их в качестве твердых электролитов в конденсаторах высокой емкости. Кроме того, данные технические решения характеризуются высокой себестоимостью, сложным синтезом, а также использованием токсичных веществ в качестве сырьевых материалов и компонентов.

Из патента РФ №2400294 (МПК: B01D 71/38, C08L 29/04, Н01М 8/02) известен состав для приготовления полимерного протонпроводящего электролита на основе полимерной линейной матрицы, полученной из водного 5% раствора поливинилового спирта с добавлением в нее протонпроводящего твердого электролита в виде фосфорно-вольфрамовой кислоты и пластификатора - глицерина, при следующем соотношении компонентов (мас. %): поливиниловый спирт 66,6-85,7; фосфорно-вольфрамовая кислота 6,25-18,75, глицерин остальное.

Также в статье C.W. Lin, R. Thangamulhu, C.J. Yang, Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMPC applications // Journal of membrane science, may 2005, v. 253, р. 23-31 было отмечено увеличение протонной проводимости в протонпроводящих мембранах на основе поливинилового спирта (ПВС) за счет увеличения содержания в ней фосфорно-вольфрамовой кислоты (ФВК).

В статье С.С. Иванчева, С.В. Мякина «Полимерные мембраны для топливных элементов: получение структуры, модифицирование, свойства» // Успехи химии, 2010, т. 79, №2, с. 117-134, показано, что гетерополикислота ФВК обладает высокой протонной проницаемостью и может способствовать образованию полимерных протонпроводящих композиций с хорошей протонной проводимостью (~10-2 См/см).

Наиболее близкими к заявляемым техническим решениям являются состав и способ получения полимерного протонпроводящего композиционного материала на основе полимерной линейной матрицы, модифицированной наночастицами серебра, известные из патента РФ №2529187 (МПК: C08L 29/04, B01D 71/38, H01G 9/025, Н01М 8/02). Состав для получения композиционного материала включает водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л, протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатор - глицерин, при следующем соотношении компонентов (мас. %): поливиниловый спирт 38-69 мас. %; фосфорно-вольфрамовая кислота 19-50 мас. %, глицерин остальное. Для получения полимерного композита поливиниловый спирт растворяют в дистиллированной воде, содержащей наночастицы серебра. В полученный раствор добавляют навеску фосфорно-вольфрамовой кислоты, перемешивают до растворения кислоты и в полученный раствор добавляют глицерин. Все компоненты тщательно перемешивают, полученную смесь выдерживают в течение 2-3 суток при комнатной температуре при постоянном перемешивании и затем наносят на подложку для получения эластичной пленки.

Основным недостатком известных технических решений, представленных в вышеперечисленных статьях и патентах, является длительное время полимеризации (отверждения) состава композита и сравнительно высокое значение электронной проводимости получаемого композиционного материала, что осложняет его применение в технологическом процессе при производстве суперконденсаторов и других электрохимических и электрофизических приборов.

Задачей изобретения является разработка состава и способа получения полимерного протонпроводящего композиционного материала (твердого электролита), обладающего высокой ионной проводимостью и относительно низкой составляющей электронной проводимости (т.е. характеризуемого пониженной величиной тока утечки), а также обладающего высокой диэлектрической проницаемостью и высокой скоростью полимеризации (отверждения) при его использовании в производственных технологических процессах.

Техническим результатом является повышение скорости полимеризации за счет введения в заявляемый состав наноразмерных частиц полититаната калия, имеющих слоистую структуру и являющихся центрами полимеризации. Кроме того, частицы слоистого титаната калия способны интенсивно поглощать воду из раствора полимера при его просушивании, что ускоряет процесс отверждения композиции. В то же время, частицы слоистого титаната калия за счет своей высокой поляризуемости увеличивают значение диэлектрической постоянной (ε) получаемого композита при неизменном значении эффективной ионной проводимости, а также снижают значение электронной составляющей проводимости, выступая также и ловушками для электронов.

Поставленная задача решается тем, что состав для получения полимерного протонпроводящего композиционного материала включает водный 2-9% раствор поливинилового спирта, протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты, наночастицы полититаната калия и пластификатор в виде глицерина, при следующем соотношении компонентов, мас. %:

Водный раствор поливинилового спирта 38-64
Фосфорно-вольфрамовая кислота 19-50
Полититанат калия 0,1-5,0
Глицерин остальное

При этом наночастицы полититаната калия имеют среднее значение эффективного диаметра не более 600 нм, предпочтительно не более 300 нм, и толщину не более 40 нм, предпочтительно 20 нм.

Поставленная задача также решается тем, что способ получения полимерного протонпроводящего композиционного материала из состава по п.1 включает смешивание наночастиц полититаната калия с водным 2-9%-ным раствором поливинилового спирта, гомогенизацию полученной смеси в течение не менее 3 часов, с последующим добавлением в смесь навески фосфорно-вольфрамовой кислоты и перемешиванием в течение 8-12 ч до полного растворения кислоты, добавление в полученную смесь глицерина и ее выдерживание в течение 2-3 суток при комнатной температуре при постоянном перемешивании до полной гомогенизации, нанесение полученной смеси на основание с последующим выдерживанием при температуре не более 40°С в течение времени, обеспечивающего полимеризацию смеси с получением композиционного материала в виде пленки или пленочного покрытия.

При этом в качестве наночастиц полититаната калия берут частицы со средним значением эффективного диаметра не более 600 нм, предпочтительно не более 300 нм, и толщиной не более 40 нм, предпочтительно 20 нм.

Полимерный протонпроводящий композит с использованием заявляемого состава получают следующим образом.

Приготавливают водный 2-9%-ный раствор поливинилового спирта (ПВС) (2-9 г ПВС растворяют в 90 мл дистиллированной воде и доводят конечный объем раствора до 100 мл), для чего ПВС предварительно оставляют набухать в течение суток в дистиллированной воде, а затем, для полного его растворения, подвергают перемешиванию, например, с помощью магнитной мешалки марки ПЭ-6110, при температуре 80-90°С в течение 8-16 часов. В полученный раствор добавляют навеску слоистых наночастиц полититаната калия (ПТК), имеющих среднее значение эффективного диаметра не более 600 нм (предпочтительно не более 300 нм) и толщину не более 40 нм (предпочтительно 20 нм). Наночастицы добавляют в раствор в виде сухой смеси или в виде водной дисперсии. При этом наночастицы в водной дисперсии могут присутствовать в количестве от 30 мас. % до 60 мас. % (предпочтительно 40 мас. %). Полученную смесь гомогенизируют в течение не менее 3 часов. Далее, в полученный раствор добавляют навеску фосфорно-вольфрамовой кислоты (ФВК), например, марки чда, и полученную смесь также подвергают интенсивному перемешиванию. После полного растворения ФВК в течение 8-12 ч в полученный раствор добавляют глицерин. Полученную смесь выдерживают в течение 2-3 суток при комнатной температуре при постоянном перемешивании для полной гомогенизации. Весь процесс приготовления композиционного материала осуществляют непрерывно с использованием магнитной мешалки, например, марки ПЭ-6110, на которой осуществляют перемешивание компонентов состава. Гомогенизированную композицию наносят, например, поливным способом, на твердую подложку (например, титановый электрод) и высушивают в сушильном шкафу при температуре не более 40°С (для предотвращения образования пузырей) в течение 8-10 ч до полимеризации (отверждения) композиции с образованием эластичной пленки толщиной от 500 мкм до 1 мм.

В таблице 1 приведены значения ионной и электронной проводимости композитов, полученных согласно техническому решению, выбранному за прототип (патент РФ №2529187), а также представлены средние значения времени отверждения пленок этой композиции, содержащей наночастицы серебра, снижающие величину электронной составляющей проводимости. Композиты получали путем введения наночастиц серебра в количестве 50 мг на 1 литр 5% раствора ПВС с добавлением 12 масс. % глицерина. При этом за время отверждения принимали время выдержки пленки, полученной поливным способом, при температуре 23°С, необходимое для того, чтобы полученную пленку можно было отделить от поверхности без нарушения ее целостности и необратимой деформации.

Параметры ионной и электронной проводимости определяли методом импедансной спектрометрии с использованием импедансметра Novocontrol в интервале частот от 0.01 Hz до 1 MHz на двухэлектродных симметричных ячейках с Ti контактами при температуре 298 К и относительной влажности Н=52% с последующим анализом полученных годографов импеданса графоаналитическим методом.

В таблице 2 представлены значения ионной и электронной проводимости, а также диэлектрической проницаемости композитных пленок толщиной 500 мкм, полученных согласно заявляемому техническому решению, а также среднее время их отверждения, зафиксированное в условиях, аналогичных полученным для прототипа. Для получения композитных пленок использовали составы с различным содержанием компонент (примеры 1-7), при этом в качестве раствора поливинилового спирта использовали 5%-ный водный раствор, а наночастицы полититаната калия добавляли в раствор поливинилового спирта в виде водной дисперсии с содержанием наночастиц 40 мас. %.

Как видно из приведенных результатов (таблица 2), протонпроводящие полимерные композиты, приготовленные с добавлением наночастиц полититаната калия, обладают более низкой, по сравнению с прототипом (таблица 1), электронной проводимостью, не превышающей (1,0-6,1)·10-10 Ом-1 см-1; высокой ионной проводимостью, имеющей значения порядка 10-2 Ом-1см-1; и высоким значением диэлектрической постоянной 8, достигающей особо высоких значений ~106-107. Механические свойства полученного полимер-матричного композитного электролита удовлетворяют техническим условиям его применения при изготовлении суперконденсаторов, при этом время отверждения пленки снижается в 6-9 раз.

Величина добавки ПТК ниже заявляемого предельного значения резко увеличивает время отверждения композиции и увеличивает электронную составляющую проводимости, а увеличение добавки выше заявляемого значения приводит к росту электронной проводимости и не улучшает другие характеристики полученного твердого электролита.

Таким образом, представленное техническое решение позволяет, за счет замены добавки наночастиц серебра на добавку наночастиц полититаната калия, получить композиционный материал, в котором не только сохраняется высокая ионная проводимость, но и достигается более низкое значение электронной составляющей проводимости. Подобный эффект позволяет улучшить не только мощностные характеристики суперконденсаторов или других приборов твердотельной электроники на основе полученных твердых электролитов, но и увеличить длительность сохранности их заряда. При этом увеличивается диэлектрическая проницаемость получаемого композита и существенно (с 48-51 до 8-10 часов) сокращается время его полимеризации (отверждения), что особенно важно для промышленного производства.

Источник поступления информации: Роспатент

Showing 61-70 of 107 items.
20.09.2015
№216.013.7c31

Способ приготовления бактерицида для обеззараживания воды

Изобретение относится к области дезинфекции воды. Предложен способ получения бактерицида для обеззараживания воды. Способ включает обработку ионообменной смолы на основе четвертичного аммониевого основания йодсодержащим раствором. До начала обработки смолу заливают насыщенным раствором NaOH,...
Тип: Изобретение
Номер охранного документа: 0002563390
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d01

Датчик линейных перемещений на основе пленки vo

Изобретение относится к оптическим датчикам, предназначенным для измерения линейных перемещений объекта наблюдения. Датчик линейных перемещений содержит источник света и подложку. На последней размещены две прямолинейные шкалы в виде первого и второго рядов полосок, разделенных общей проводящий...
Тип: Изобретение
Номер охранного документа: 0002563598
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.832e

Состав для огнезащитной отделки полиакрилонитрильных волокон

Изобретение относится к производству химических волокон, а именно к технологии огнезащитной отделки свежесформованного полиакрилонитрильного (ПАН) волокна. Состав для огнезащитной отделки ПАН волокна включает фосфорсодержащее соединение и воду. В качестве...
Тип: Изобретение
Номер охранного документа: 0002565185
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8656

Способ выделения веретеноподобных паттернов по временным данным электроэнцефалограмм

Изобретение относится к области медицины, а именно к электрофизиологии. Регистрируют сигнал ЭЭГ и осуществляют непрерывное вейвлетное преобразование. Определяют мгновенное и интегральное распределения энергии вейвлетного спектра по временным масштабам, которые соответствуют частотным диапазонам...
Тип: Изобретение
Номер охранного документа: 0002565993
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8be2

Способ нанесения покрытий на обработанные поверхности изделий из титана и его сплавов

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида...
Тип: Изобретение
Номер охранного документа: 0002567417
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8eba

Гироскоп-акселерометр с электростатическим подвесом ротора и полной первичной информацией

Изобретение относится к области приборостроения и может быть использовано в системах ориентации, навигации и управления подвижными объектами (ПО). Гироскоп-акселерометр с электростатическим подвесом ротора и полной первичной информацией дополнительно содержит измерительные цепочки, электроды,...
Тип: Изобретение
Номер охранного документа: 0002568147
Дата охранного документа: 10.11.2015
10.12.2015
№216.013.9673

Способ правки шлифовального круга бесцентрового шлифовального станка

Изобретение относится к области абразивной обработки и может быть использовано для правки шлифовального круга бесцентрового шлифовального станка. Производят вращение в противоположных друг другу направлениях основного шлифовального круга и правящего ролика от отдельных приводов. В качестве...
Тип: Изобретение
Номер охранного документа: 0002570135
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97f0

Упорно-радиальный подшипник качения

Изобретение относится к машиностроению, а именно к упорно-радиальным подшипникам, преимущественно используемым в верхней опоре передних стоек автомобилей. Подшипник содержит верхний и нижний пластмассовые кожухи, образующие по внутреннему и наружному диаметрам защитные соединения, с...
Тип: Изобретение
Номер охранного документа: 0002570516
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9a1f

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине и заключается в способе нанесения биокерамических покрытий на имплантат. При осуществлении способа смешивают порошок гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, наносят...
Тип: Изобретение
Номер охранного документа: 0002571080
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9bb3

Шариковый подшипник

Изобретение относится к машиностроению и может быть использовано в различных механизмах и машинах, в частности в шариковых подшипниках качения. Шариковый подшипник состоит из колец, на дорожках качения которых выполнены канавки, и расположенных между ними шариков. Канавки расположены вдоль...
Тип: Изобретение
Номер охранного документа: 0002571484
Дата охранного документа: 20.12.2015
Showing 61-70 of 124 items.
20.08.2015
№216.013.7092

Способ удаления глазо-двигательных артефактов на электроэнцефаллограммах

Изобретение относится к области биомедицинских технологий. Регистрируют сигналы электроэнцефаллограмм и электроокулограмм. Нормируют сигналы электроокулограмм, характеризующие вертикальные и горизонтальные движения глаз, в интервале [1.5, 5] с. Осуществляют процедуру вычитания из исходного...
Тип: Изобретение
Номер охранного документа: 0002560388
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.710a

Способ насыщения пористого покрытия эндопротезов

Изобретение относится к медицине, а именно к травматологии и ортопедиии, и может быть использовано при костно-пластических операциях для доставки лекарственных средств в зону дефекта и их пролонгированного воздействия в очаге поражения. Способ насыщения пористого покрытия эндопротезов включает...
Тип: Изобретение
Номер охранного документа: 0002560508
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.718b

Составное поршневое кольцо для двигателя внутреннего сгорания или компрессора

Изобретение относится к машиностроению и может быть использовано в качестве компрессионного поршневого кольца для двигателей внутреннего сгорания или компрессоров. Составное поршневое кольцо для двигателя внутреннего сгорания и компрессоров состоит из пластинчатых колец толщиной 1 мм. Между...
Тип: Изобретение
Номер охранного документа: 0002560637
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7317

Устройство для пропитки пористых изделий

Изобретение относится к оборудованию по пропитке пористых материалов и изделий широкого промышленного назначения. Устройство содержит рабочую камеру, подключенную к ней вакуумную систему, систему нагнетания и слива пропиточного раствора, а также устройство для размещения пористых изделий. При...
Тип: Изобретение
Номер охранного документа: 0002561033
Дата охранного документа: 20.08.2015
20.09.2015
№216.013.7c31

Способ приготовления бактерицида для обеззараживания воды

Изобретение относится к области дезинфекции воды. Предложен способ получения бактерицида для обеззараживания воды. Способ включает обработку ионообменной смолы на основе четвертичного аммониевого основания йодсодержащим раствором. До начала обработки смолу заливают насыщенным раствором NaOH,...
Тип: Изобретение
Номер охранного документа: 0002563390
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d01

Датчик линейных перемещений на основе пленки vo

Изобретение относится к оптическим датчикам, предназначенным для измерения линейных перемещений объекта наблюдения. Датчик линейных перемещений содержит источник света и подложку. На последней размещены две прямолинейные шкалы в виде первого и второго рядов полосок, разделенных общей проводящий...
Тип: Изобретение
Номер охранного документа: 0002563598
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.832e

Состав для огнезащитной отделки полиакрилонитрильных волокон

Изобретение относится к производству химических волокон, а именно к технологии огнезащитной отделки свежесформованного полиакрилонитрильного (ПАН) волокна. Состав для огнезащитной отделки ПАН волокна включает фосфорсодержащее соединение и воду. В качестве...
Тип: Изобретение
Номер охранного документа: 0002565185
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8656

Способ выделения веретеноподобных паттернов по временным данным электроэнцефалограмм

Изобретение относится к области медицины, а именно к электрофизиологии. Регистрируют сигнал ЭЭГ и осуществляют непрерывное вейвлетное преобразование. Определяют мгновенное и интегральное распределения энергии вейвлетного спектра по временным масштабам, которые соответствуют частотным диапазонам...
Тип: Изобретение
Номер охранного документа: 0002565993
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8be2

Способ нанесения покрытий на обработанные поверхности изделий из титана и его сплавов

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида...
Тип: Изобретение
Номер охранного документа: 0002567417
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8eba

Гироскоп-акселерометр с электростатическим подвесом ротора и полной первичной информацией

Изобретение относится к области приборостроения и может быть использовано в системах ориентации, навигации и управления подвижными объектами (ПО). Гироскоп-акселерометр с электростатическим подвесом ротора и полной первичной информацией дополнительно содержит измерительные цепочки, электроды,...
Тип: Изобретение
Номер охранного документа: 0002568147
Дата охранного документа: 10.11.2015
+ добавить свой РИД