×
27.08.2015
216.013.7442

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КМОП ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Вид РИД

Изобретение

Аннотация: Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления, при этом греющий логический элемент переключается высокочувствительными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре. Технический результат: обеспечение возможности уменьшения времени измерения и погрешности измерения температурочувствительного параметра. 2 ил.
Основные результаты: Способ измерения теплового сопротивления КМОП цифровых интегральных микросхем, включающий подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления с использованием измеренного изменения температурочувствительного параметра, греющей мощности и температурного коэффициента температурочувствительного параметра, отличающийся тем, что греющий логический элемент переключается высокочастотными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре, причем температурный коэффициент длительности периода следования низкочастотных импульсов определен путем нагрева в термостате контролируемой микросхемы при сохранении неизменной температуры образцовой микросхемы с пассивными элементами.

Изобретение относится к измерительной технике и может быть использовано для контроля качества цифровых интегральных микросхем с КМОП логическими элементами (ЛЭ) и оценки их температурных запасов.

Известен способ измерения теплового сопротивления цифровых интегральных микросхем RT, в котором микросхему нагревают переключением частотно-модулированными импульсами ЛЭ, выбранного в качестве источника тепла, измеряют изменение температурочувствительного параметра (ТЧП) ЛЭ, выбранного в качестве датчика температуры, определяют греющую мощность и определяют тепловое сопротивление с использованием измеренного изменения ТЧП, греющей мощности и известного температурного коэффициента ТЧП (см. а.с. 1310754 СССР. Способ измерения теплового сопротивления переход-корпус цифровых интегральных микросхем / В.А. Сергеев, Г.Ф. Афанасьев, Б.Н. Романов, В.В. Юдин. Опубл. 15.05.87. Бюл. №18). В качестве ТЧП используют напряжение логической единицы на выходе ЛЭ.

Недостатком указанного способа является большое время измерения напряжения ТЧП селективным вольтметром, что ограничивает автоматизацию контроля тепловых сопротивлений микросхем при массовом производстве.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ определения теплового сопротивления цифровых интегральных микросхем, в котором нагревают ЛЭ, выбранный в качестве источника тепла, путем подачи на его вход высокочастотных переключающих импульсов, модулированных последовательностью низкочастотных импульсов по форме меандра, определяют греющую мощность, измеряют изменение ТЧП ЛЭ, выбранного в качестве датчика температуры, и определяют тепловое сопротивление по измеренному изменению ТЧП, греющей мощности и известному температурному коэффициенту ТЧП (см. патент №2463618. Способ определения теплового импеданса КМОП цифровых интегральных микросхем / Сергеев В.А., Ламзин В.А., Юдин В.В. Опубл. 10.10.2012), принятый за прототип.

Недостатком известного способа, принятого за прототип, является также большое время измерения напряжения ТЧП селективным вольтметром и большая погрешность измерения ТЧП.

Технический результат заключается в уменьшении времени измерения и погрешности измерения ТЧП.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе измерения теплового сопротивления КМОП цифровых интегральных микросхем, включающем переключение логического состояния греющего логического элемента последовательностью высокочастотных импульсов, определение греющей мощности, измерение изменения температурочувствительного параметра, вычисление теплового сопротивления как отношение измеренного изменения температурочувствительного параметра к греющей мощности и температурному коэффициенту температурочувствительного параметра, особенность заключается в том, что в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре, причем температурный коэффициент длительности периода следования низкочастотных импульсов определен путем нагрева в термостате контролируемой микросхемы при сохранении неизменной температуры образцовой микросхемы с пассивными элементами.

Сущность изобретения заключается в следующем. Нагрев КМОП цифровых интегральных микросхем осуществляют подачей на вход одного ЛЭ, выбранного в качестве источника тепла, высокочастотных переключающих импульсов (см., например, Тилл, У. Интегральные схемы. Материалы, приборы, изготовление: пер. с англ. / У. Тилл, Дж. Лаксон. - М.: Мир, 1985. - стр.474-475). Греющая мощность определяется из выражения

где - напряжение питания контролируемой микросхемы; f - частота следования высокочастотных импульсов греющегося ЛЭ; Сн - емкость нагрузки греющегося ЛЭ.

За счет теплопроводности тепло передается другим элементам микросхемы и изменяет их электрические характеристики. Тепловую связь между ЛЭ в цифровых интегральных микросхемах используют для определения теплового сопротивления (см. Закс Д.И. Параметры теплового режима полупроводниковых микросхем. М.: Радио и связь, 1983, с.31-32). Задавая приращение электрической мощности ΔP греющегося ЛЭ, измеряют изменение ТЧП ЛЭ, используемого в качестве датчика температуры. Тепловое сопротивление RT определяют по формуле:

где Δθ - приращение температуры ЛЭ, используемого в качестве датчика температуры; KU - температурный коэффициент ТЧП.

Кроме тепловой связи между ЛЭ существует электрическая связь из-за наличия паразитного сопротивления общей шины питания логических элементов микросхемы (см., например, а.с. №1613978 авторов Сергеев В.А., Юдин В.В., Горюнов H.H. «Способ измерения теплового сопротивления цифровых интегральных микросхем и устройство для его осуществления», опубл. 15.12.90. Бюл. №46). В прототипе в качестве ТЧП используют напряжение логической единицы , чувствительное к изменению напряжения питания ЛЭ. Микросхема в прототипе находится в двух разделенных по времени последовательно чередующихся состояниях: в состоянии нагрева и в состоянии измерения . Каждому состоянию соответствует свое напряжение питания ЛЭ, выбранного в качестве датчика температуры. В состоянии измерения напряжение питания повышается скачком относительно напряжения питания в состоянии нагрева на величину падения напряжения тока нагрева на паразитном сопротивлении в цепи питания ΔUэл. Напряжение также увеличивается. Скачкообразное изменение напряжения за счет влияния электрической связи ΔUэл алгебраически складывается с приращением напряжения спадающего у КМОП микросхем по экспоненте, за счет влияния тепловой связи, что значительно увеличивает погрешность измерения ТЧП.

На практике электрическую составляющую исключают путем измерения переменного напряжения , выбранного в качестве ТЧП, на низкой частоте при длительности периода следования Тнч>>τ и на высокой частоте при Твч<<τ, где τ - тепловая постоянная времени кристалла микросхемы. При Твч<<τ изменение напряжения обусловлено только влиянием электрической составляющей ΔUэл. Истинную величину обусловленную только изменением за счет тепловой связи, определяют путем вычитания (см., например, Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. Учебн. пособие для специальностей полупроводниковой техники вузов, М., «Высшая школа», 1975, стр.246). Двойное измерение на двух частотах увеличивает время измерения.

Чтобы исключить погрешность измерения ТЧП, вносимую электрической связью между ЛЭ, и уменьшить время измерения теплового сопротивления выберем в качестве ТЧП длительность периода T низкочастотных колебаний мультивибратора с одной времязадающей RC цепью. Одним плечом мультивибратора является ЛЭ1 контролируемой микросхемы 1, выбранный в качестве датчика температуры. Вторым плечом является ЛЭ2 образцовой микросхемы 2, температура которой вместе с внешней времязадающей RC цепью в процессе измерения остается постоянной (см. фиг.1). Один из ЛЭ контролируемой микросхемы, выбранный в качестве источника тепла, нагревают переключающими высокочастотными импульсами Uвч (см. фиг.2а). Для усиления нагрева выход ЛЭ нагружают на емкость нагрузки Cн. Выбрав емкость нагрузки из условия Сн>>Свых, где Свых - внутренняя емкость на выходе ЛЭ, то греющая мощность, определяемая по формуле (1), будет одинакова для всех микросхем. В процессе нагрева контролируемой микросхемы будет происходить изменение порогового напряжения Uпор переключения, напряжения и падение напряжения Uрп на защитном диоде логического элемента ЛЭ1. Изменение напряжений ЛЭ1 преобразуется в изменение частоты колебаний Uм мультивибратора. Длительность периода колебания Т мультивибратора имеет вид (см., например, Зельдин Е.А. Импульсные устройства на микросхемах. - М.: Радио и связь, 1991. - стр.84-85):

Измерение длительности периода следования низкочастотных импульсов T проводят в начале времени цикла tц нагрева (см. фиг.2д) - T1, и в конце цикла нагрева - Tm. Время цикла нагрева задается сигналом цикла нагрева Uц, как показано на фиг.2в. Вычисляют приращение периода следования:

и тепловое сопротивление по формуле (2).

При такой последовательности измерения периода следования низкочастотных импульсов, когда и нагрев, и измерение проводят одновременно, напряжение питания ЛЭ1 и напряжение , входящее в формулу (3), изменяться скачком не будут из-за отсутствия изменения напряжения на паразитном сопротивлении контролируемой микросхемы 1. Погрешность измерения ТЧП при этом существенно уменьшается.

Оценим методическую погрешность, обусловленную нагревом контролируемой микросхемы 1 за первый период следования импульса. Примем экспоненциальный закон изменения температуры нагрева. Приращение температуры за первый период следования импульса мультивибратора Δθ1 и по окончании цикла нагрева Δθц будет иметь вид:

где T1 - длительность первого периода следования импульсов мультивибратора; tц - длительность цикла нагрева; τ - тепловая постоянная времени кристалла микросхемы. Методическая погрешность измерения δ будет равна:

При этом должно выполняться неравенство T1<<τ<<tц. Для микросхем средней степени интеграции погрешность δ не превышает 1%.

Погрешность и время измерения длительности периода Т намного меньше погрешности и времени измерения напряжения , выбранного в прототипе в качестве ТЧП.

Температурный коэффициент длительности периода Кт определяют путем нагрева в термостате контролируемой микросхемы 1 при сохранении неизменной температуры образцовой микросхемы 2 с пассивными элементами (времязадающей RC цепью).

На фиг.1 представлен измеритель, реализующий способ определения теплового сопротивления КМОП цифровых интегральных микросхем.

На фиг.2 представлены эпюры напряжения схемы, реализующей способ определения теплового сопротивления КМОП цифровых интегральных микросхем.

Измеритель содержит исследуемую микросхему 1, образцовую микросхему 2, источник питания 3 исследуемой и образцовой микросхем, генератор высокочастотных импульсов нагрева 4, первый формирователь 5 импульса старта, триггер 6, первый логический элемент 2И 7, инвертор 8, регистр 9, второй логический элемент 2И 10, третий логический элемент 2И 11, генератор счетных импульсов 12, первый счетчик 13, второй счетчик 14, вычитатель 15, второй формирователь 16 импульсов сброса, четвертый логический элемент 2И 17.

Измеритель работает следующим образом. В исходном состоянии контролируемая микросхема 1 и образцовая микросхема 2 подключены к общему источнику питания 3 (см. фиг.1). На выходе триггера 6 сразу после включения питания измерителя присутствует произвольный уровень логического напряжения. Работа схемы начинается с подачи стартового импульса Uф1 низкого логического уровня (см. фиг.2б) с формирователя импульса 5 на вход сброса триггера 6 через логический элемент 2И 6, на вход сброса регистра 9 и счетчиков 14 и 15. При этом на выходе триггера 6 и на первом выходе регистра 9 устанавливается уровень логического нуля, происходит обнуление счетчиков 13 и 14. Уровень логического нуля на выходе триггера 6 блокирует первый логический элемент 2И 7 и логический элемент ЛЭ2 образцовой микросхемы 2 в составе мультивибратора. После окончания времени действия стартового импульса Uф1 по его заднему фронту на выходе триггера 6 (фиг.2в) и первом выходе регистра 9 (фиг.2е) устанавливаются уровни логической единицы Uц и Uр1. Логическая схема 2И 7 пропускает высокочастотные импульсы Uвч (фиг.2а) с генератора высокочастотных импульсов нагрева 4 на вход ЛЭ, выбранного в качестве источника тепла контролируемой микросхемы 1. Мультивибратор на логических элементах ЛЭ1 контролируемой микросхемы 1 и ЛЭ2 образцовой микросхемы 2 начинает генерировать низкочастотные импульсы Uм (фиг.2д). Генерированные импульсы мультивибратора снимаются с ЛЭ2. Первый период низкочастотных импульсов T1 начинается с низкого логического уровня. В результате нагрева контролируемой микросхемы, ее температура повышается по экспоненциальному закону, как показано на фиг.2г, а длительность периода Ti генерируемых мультивибратором низкочастотных импульсов увеличивается при неизменных значениях сопротивления R и емкости C времязадающей цепи. Генерируемые импульсы мультивибратора инвертируются инвертором 8 и сдвигают уровень логической единицы на выходах регистра 9. До прихода второго импульса мультивибратора с ЛЭ2 на вход регистра 9 импульсы генератора 12 счетных импульсов Uсч поступают через второй логический элемент 2И 10 на вход первого счетчика 13 (фиг.2з) и записывается количество прошедших импульсов. Это время соответствует началу разогрева контролируемой микросхемы 1. В дальнейшем происходит сдвиг импульсами мультивибратора логической единицы на выходе регистра до выбранного разряда m. Последний по счету m импульс регистра 9 Uрm (фиг.2ж) разрешает проходу счетных импульсов с генератора 12 через третий логический элемент 2И 11 на вход счетчика 14 (фиг.2з) и также происходит запись количества импульсов «горячей» контролируемой микросхемы 1 с длительностью периода следования Tm. Вычитатель 15 вычисляет разность Δn импульсов, записанных в счетчиках 13 и 14. С приходом очередного импульса мультивибратора, второй формирователь 16 формирует импульс Uф2 с уровнем логического нуля (фиг.2и), который завершает полное время цикла tц измерения (фиг.2в) путем сброса триггера 6 через четвертый логический элемент 2И 17.

Приращение длительности периода следования импульсов ΔT=Tm-T1=Δn·τсч, где τсч - длительность периода следования счетных импульсов Uсч. Тепловое сопротивление определяют по формуле (2)

RT=ΔT/КТΔP,

где КТ - известный температурный коэффициент длительности периода следования мультивибратора.

Способ измерения теплового сопротивления КМОП цифровых интегральных микросхем, включающий подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления с использованием измеренного изменения температурочувствительного параметра, греющей мощности и температурного коэффициента температурочувствительного параметра, отличающийся тем, что греющий логический элемент переключается высокочастотными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре, причем температурный коэффициент длительности периода следования низкочастотных импульсов определен путем нагрева в термостате контролируемой микросхемы при сохранении неизменной температуры образцовой микросхемы с пассивными элементами.
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КМОП ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КМОП ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
Источник поступления информации: Роспатент

Showing 251-260 of 269 items.
25.08.2017
№217.015.d2cc

Устройство подачи топлива в цилиндр двигателя внутреннего сгорания

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложено устройство подачи топлива в цилиндр ДВС, содержащее форсунку непосредственного впрыска, включающую корпус 1, в котором выполнены две гидравлические полости 2 и 8 с подпружиненным...
Тип: Изобретение
Номер охранного документа: 0002621445
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d2d8

Теплофикационная турбоустановка

Изобретение относится к области теплоэнергетики. Теплофикационная турбоустановка содержит теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор, охладитель пара уплотнений турбины, трубопровод основного конденсата турбины с включенными в...
Тип: Изобретение
Номер охранного документа: 0002621437
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d349

Пассажирское транспортное средство повышенной безопасности

Изобретение относится к средствам повышения безопасности пассажиров транспортных средств общественного пользования. Пассажирское транспортное средство повышенной безопасности включает в себя салон, который заполнен рядами кресел 1, состоящих из сиденья 2 и спинки 3 с подголовником 4, оснащенных...
Тип: Изобретение
Номер охранного документа: 0002621837
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d34c

Блок активной безопасности пассажиров транспортного средства

Изобретение относится к области обеспечения безопасности пассажиров транспортных средств. Блок содержит выполненную с тыльной стороны спинки 1 полость, в которой установлен гаситель движения сидящего сзади пассажира, выполненный в виде установленной на одной стороне поворотной рамки 6 мягкой...
Тип: Изобретение
Номер охранного документа: 0002621813
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d375

Регулируемое ограждение на пешеходном переходе

Перекресток с дорожными полотнами (1), тротуарами (2) и дорожными переходами (3) выполнен регулируемым с помощью светофоров (4). Тротуары отделены от дорожного полотна ограждениями (5) в виде декоративных решеток, имеющих проходы (6) для входа на переход. В ограждении в месте входа размещена...
Тип: Изобретение
Номер охранного документа: 0002621831
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d38c

Котельная установка

Изобретение относится к области теплоэнергетики. Котельная установка содержит котел с подключенным к нему газоходом уходящих газов, разделенным после котла на основной и байпасный газоходы, которые соединены в общий газоход перед дымососом, установленный в основном газоходе...
Тип: Изобретение
Номер охранного документа: 0002621443
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3b1

Способ очистки поверхностей нагрева экономайзеров паровых котлов

Изобретение относится к котельной технике и может быть использовано в паровых котлах котельных установок для повышения их экономичности и надежности путем использования в качестве обмывочного агента менее ценного теплоносителя - продувочной воды. Представлен способ очистки поверхностей нагрева...
Тип: Изобретение
Номер охранного документа: 0002621441
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.dc7b

Способ измерения теплового импеданса светодиодов

Изобретение относится метрологии, в частности к технике измерения тепловых параметров светодиодов. Через светодиод пропускают последовательность импульсов греющего тока I, широтно-импульсно модулированную по гармоническому закону, с частотой модуляции Ω и глубиной модуляции ; во время действия...
Тип: Изобретение
Номер охранного документа: 0002624406
Дата охранного документа: 03.07.2017
20.11.2017
№217.015.ef93

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способу получения многослойного покрытия на режущем инструменте и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002629131
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.fa06

Способ измерения переходной тепловой характеристики полупроводниковых изделий

Использование: для контроля тепловых характеристик полупроводниковых приборов и интегральных схем. Сущность изобретения заключается в том, что разогревают полупроводниковое изделие путем подачи на вход (на определенные выводы) полупроводникового изделия, подключенного к источнику питания,...
Тип: Изобретение
Номер охранного документа: 0002639989
Дата охранного документа: 25.12.2017
Showing 251-260 of 443 items.
20.06.2015
№216.013.56e5

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении,...
Тип: Изобретение
Номер охранного документа: 0002553775
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56e7

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении,...
Тип: Изобретение
Номер охранного документа: 0002553777
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56e8

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, хрома и ниобия при их соотношении, мас....
Тип: Изобретение
Номер охранного документа: 0002553778
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56fe

Ограждение автомобильной дороги

Ограждение предназначено для повышения безопасности движения. Ограждение содержит заглубленные в грунт дорожного полотна вертикальные стойки, попарно соединенные привернутыми к ним винтами горизонтальными упругими стальными полосами. Полосы отодвинуты от наружной поверхности стоек и...
Тип: Изобретение
Номер охранного документа: 0002553800
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.57d2

Антитравматические качели

Антитравматические качели относятся к оборудованию детских игровых площадок, в частности к изготовлению подвесных качелей с повышенной безопасностью эксплуатации. Качели содержат раму с основанием, механизм горизонтального раскачивания пассажирской платформы, подвешенной на цепях на валу....
Тип: Изобретение
Номер охранного документа: 0002554012
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.57d3

Антитравматические качели

Антитравматические качели относятся к оборудованию детских игровых площадок, а именно - к подвесным качелям с повышенной безопасностью эксплуатации. Качели содержат раму, состоящую из двух опорных стоек, связанных между собой в верхней части поперечиной, и жесткое пассажирское сиденье с двумя...
Тип: Изобретение
Номер охранного документа: 0002554013
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.57d4

Способ работы открытой системы теплоносителя

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения. Способ работы открытой системы теплоснабжения, по которому сетевую воду готовят на ТЭЦ и по подающему трубопроводу теплосети через тепловой пункт направляют в трубопроводы систем отопления и...
Тип: Изобретение
Номер охранного документа: 0002554014
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.58c7

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, хрома и ниобия при их соотношении,...
Тип: Изобретение
Номер охранного документа: 0002554268
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a88

Седельно-сцепное устройство автопоезда

Изобретение относится к транспортному машиностроению. Седельно-сцепное устройство автопоезда включает корпус, закрытый крышкой, жестко прикрепленный к опорной раме полуприцепа. В корпусе установлена втулка, в которую запрессован сцепной шкворень. Между корпусом и втулкой размещены...
Тип: Изобретение
Номер охранного документа: 0002554717
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c98

Ремень безопасности для транспортного средства

Изобретение относится к ремню безопасности для транспортного средства. Ремень безопасности включает натяжитель ремня 2, установленный на средней стойке кузова с помощью зажимной гайки 5, размещенной на выступающей наружу из корпуса 6 натяжителя ламинированной стальной полосе 7 с фальцами 8....
Тип: Изобретение
Номер охранного документа: 0002555245
Дата охранного документа: 10.07.2015
+ добавить свой РИД