×
27.08.2015
216.013.7441

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЭЛЕМЕНТОВ МНОГОЭЛЕМЕНТНЫХ НЕРЕЗОНАНСНЫХ ЛИНЕЙНЫХ ДВУХПОЛЮСНИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый n-элементный двухполюсник подают напряжение в виде случайного сигнала, имеющего равномерный амплитудный спектр в диапазоне частот, перекрывающем диапазон частот, за пределами которого модуль импеданса двухполюсника можно считать не зависящим от частоты с заданной погрешностью. На образцовом резисторе, включенном последовательно с двухполюсником, измеряют напряжение, пропорциональное току двухполюсника. По двум параллельным каналам записывают в память ЭВМ временные реализации сигналов, подаваемого на двухполюсник и снимаемого с образцового резистора, после чего рассчитывают спектральные плотности напряжения и тока, рассчитывают частотные зависимости модуля и фазы импеданса двухполюсника, определяют характерные частоты. Составляют и решают систему из n уравнений относительно параметров эквивалентной схемы замещения n-элементного линейного двухполюсника. Технический результат заключается в сокращении времени измерения параметров эквивалентных схем замещения многоэлементных линейных двухполюсников. 2 ил.
Основные результаты: Способ измерения параметров элементов многоэлементных нерезонансных линейных двухполюсников, состоящий в том, что на контролируемый n-элементный двухполюсник подают напряжение в виде случайного сигнала, имеющего равномерный амплитудный спектр в диапазоне частот, перекрывающем диапазон частот, за пределами которого модуль импеданса двухполюсника можно считать не зависящим от частоты с заданной погрешностью, и на образцовом резисторе, включенном последовательно с двухполюсником, измеряют напряжение, пропорциональное току двухполюсника, по двум параллельным каналам записывают в память ЭВМ временные реализации сигналов, подаваемого на двухполюсник и снимаемого с образцового резистора, после чего рассчитывают спектральные плотности напряжения и тока, рассчитывают частотные зависимости модуля и фазы импеданса двухполюсника, определяют характерные частоты, составляют и решают систему из n уравнений относительно параметров эквивалентной схемы замещения n-элементного линейного двухполюсника.

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов.

Известен способ определения параметров элементов многоэлементных двухполюсников, заключающийся в том, что на полюса контролируемого двухполюсника, состоящего из n элементов с неизвестными параметрами, и на полюса эталонного двухполюсника, например резистора сопротивлением RЭТ, поочередно подают синусоидальное напряжение на n частотах, измеряют комплексный ток через контролируемый двухполюсник и эталон на n частотах и по фиксированным результатам измерения на каждой из n заданных частот, используя информацию об амплитуде комплексных токов, производят расчет параметров контролируемого двухполюсника по схеме его замещения путем решения соответствующей системы уравнений (см. Патент №2260809 РФ G01R 27/14).

Недостатком известного способа является большое время измерения, обусловленное необходимостью поочередного измерения комплексных токов через контролируемый двухполюсник и эталонный двухполюсник на n различных частотах.

Известно (см. Кнеллер В.Ю., Боровских Л.П. Определение параметров многоэлементных двухполюсников. - М.: Энергосггокиздат, 1986. - 144 с.), что погрешность определения параметров элементов двухполюсника сильно зависит от выбора частот тестового сигнала, для которых составляется и решается система уравнений, и при произвольном (неоптимальном) выборе частот может достигать десятков процентов. В общем случае для определения параметров элементов произвольного n-элементного двухполюсника с известной эквивалентной схемой замещения в отсутствие априорной информации о диапазоне изменения параметров его элементов необходимо измерять параметры импеданса двухполюсника во всем возможном диапазоне частот.

Известен способ измерения импеданса пассивного двухполюсника на заданной частоте путем измерения протекающего через двухполюсник переменного тока при подсоединении двухполюсника к генератору известного переменного напряжения (Мирский Г.Я. Электронные измерения. - М.: Радио и связь, 1986. - 440 с.). В известном способе с генератора синусоидального напряжения подают сигнал заданной амплитуды U0 и частоты на измеряемый двухполюсник с неизвестным комплексным импедансом , преобразователь ток-напряжение формирует пропорциональное комплексному току через двухполюсник напряжение, которое измеряет фазочувствительный вольтметр. Комплексный импеданс получают по закону Ома: .

Недостатком известного способа является большое время измерения, обусловленное необходимостью проводить измерения на нескольких частотах переменного напряжения, и невысокая точность, поскольку параметры двухполюсника определяются из решения системы нелинейных уравнений, точность решения которой определяется выбором частот измерения.

Прототипом предлагаемого способа является способ оценивания амплитудных и фазовых характеристик систем по наблюдениям входных и выходных случайных процессов (см. Бендат Дж., Пирсол А. Применения корреляционного и спектрального анализа: Пер. с англ. - М.: Мир, 1983. - 312 с.). Суть способа заключается в том, что на вход системы, имеющей комплексную частотную характеристику H(jω), подается случайный процесс UBX(t) со спектральной плотностью мощности GXX(jω), на выходе системы регистрируется случайный процесс UВЫХ(t) со спектральной плотностью мощности GYY(jω) (фиг.1) и частотная характеристика системы определяется из соотношения:

H(jω)=|H(ω)|e-jφ(ω)=GXY(jω)/GXX(jω),

где |Н(ω)| и φ(ω) - амплитудная и фазовая частотные характеристики системы соответственно; GXY(jω) - взаимная спектральная плотность мощности входного и выходного случайных процессов.

В данном методе оценивания под случайным процессом подразумевается множество (ансамбль) функций времени. Как известно (см. Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: Радио и связь, 1986. - 512 с.) усреднение по ансамблю амплитудного и фазового спектров реализаций, получаемых прямым Фурье-преобразованием, приводит к нулевому спектру процесса из-за случайности и независимости фаз спектральных составляющих в различных реализациях. В связи с этим для оценки характеристик случайных процессов используется спектральная плотность мощности случайного процесса. Однако если провести одновременную запись входного UBX(t) и выходного UВЫХ(t) сигналов, например, с использованием ЭВМ, и после этого осуществлять их математические преобразования, то такие сигналы можно считать детерминированными, и для анализа прохождения сигнала через систему (в случае ее линейности) можно использовать спектральный метод анализа прохождения детерминированного сигнала через линейные цепи, тем самым сокращая время вычисления (см. Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: Радио и связь, 1986. - 512 с.).

Технический результат - сокращение времени измерения параметров эквивалентных схем замещения многоэлементных линейных двухполюсников.

Технический результат достигается тем, что на контролируемый n-элементный двухполюсник подают напряжение в виде случайного сигнала, имеющего равномерный амплитудный спектр в диапазоне частот, перекрывающем диапазон частот, за пределами которого модуль импеданса двухполюсника можно считать не зависящим от частоты с заданной погрешностью, и на образцовом резисторе, включенном последовательно с двухполюсником, измеряют напряжение, пропорциональное току двухполюсника, по двум параллельным каналам записывают в память ЭВМ временные реализации сигналов, подаваемого на двухполюсник и снимаемого с образцового резистора, после чего рассчитывают спектральные плотности напряжения и тока, рассчитывают частотные зависимости модуля и фазы импеданса двухполюсника, определяют характерные частоты, составляют и решают систему из n уравнений относительно параметров эквивалентной схемы замещения n-элементного линейного двухполюсника.

Сущность способа состоит в следующем.

Шумовой сигнал UBX(t) с равномерным амплитудным спектром подается на делитель, составленный из контролируемого n-элементного линейного двухполюсника и образцового токосъемного резистора сопротивлением RОБР, и параллельно подается на первый канал устройства сбора данных. При измерении параметров эквивалентной схемы полупроводниковых диодов, представляемых двухполюсником, задается рабочая точка (I0; U0) от дополнительного источника смещения. С образцового резистора снимается выходной сигнал UВЫХ(t) и подается на второй канал устройства сбора данных. Сигналы UBX(t) и UВЫХ(t) подвергаются аналого-цифровому преобразованию и сохраняются в память компьютера в виде дискретной последовательности отсчетов UBX(iΔt) и UВЫХ(iΔt), где интервал Δt определяется частотой дискретизации: Δt=1/FД. Известно, что снизить погрешность оценивания спектральной плотности шумового сигнала можно путем усреднения оценок по ансамблю (см. Бендат Дж., Пирсол А. Применения корреляционного и спектрального анализа: Пер. с англ. - М.: Мир, 1983. - 312 с.). Поскольку белый шум является стационарным эргодическим процессом, то ансамбль реализаций можно получить путем разбиения (в том числе, с перекрытием по времени) исходных последовательностей отсчетов UBX(iΔt) и UВЫХ(iΔt) на K последовательностей и (1≤m≤K), состоящих из N отсчетов и имеющих длительность (N-1)Δt каждая. Применяя прямое Фурье-преобразование к каждой последовательности, получают K комплексных спектральных плотностей входного и выходного сигналов:

Для каждой m-й реализации ансамбля рассчитывается импеданс двухполюсника:

после чего вычисляются модуль и фаза импеданса:

Затем проводится усреднение полученных частотных характеристик по ансамблю:

Расчет параметров {Xi} n-элементного двухполюсника осуществляется на основании информации о структуре эквивалентной схемы двухполюсника путем составления и решения системы из n уравнений вида:

где Ф(ω,X) и Ψ(ω,X) - функциональные зависимости модуля и фазы импеданса от частоты и параметров элементов двухполюсника соответственно. С целью минимизации погрешности определения параметров n-элементного двухполюсника, обусловленной случайной погрешностью измерения частотных зависимостей модуля и фазы импеданса, частоты ωk и ωl выбираются в характерных точках частотной зависимости модуля и фазы импеданса: минимум фазы, точка перегиба модуля импеданса (см., например, A. Wadsworth. The Parametric Measurement Handbook. Third Edition. - USA: Agilent Technologies, Inc. 2012. - 214 p.) или определяются по алгоритму нахождения оптимальных частот (см. Кнеллер В.Ю., Боровских Л.П. Определение параметров многоэлементных двухполюсников. - М.: Энергоатомиздат, 1986. - 144 с.). В общем случае частоты ωk и ωl могут совпадать, поэтому n/2≤k+l≤n.

При использовании гармонического сигнала для сканирования импеданса двухполюсника в частотном диапазоне ΔF с фиксированным разрешением по частоте Δf минимальное время сканирования составляет . Минимальное время сканирования импеданса двухполюсника предложенным способом определяется нижней частотой заданного диапазона ΔF: . Таким образом, выигрыш по времени сканирования составляет .

Способ может быть реализован с помощью устройства, структурная схема которого показана на фиг.2. Устройство содержит две клеммы 1 и 3 для подключения контролируемого двухполюсника 2, источника шумового сигнала 4, источника напряжения смещения 5, сумматора напряжений 6, образцового резистора 7, двухканального блока аналого-цифрового преобразования 8 и компьютера 9.

Шумовой тестовый сигнал UШ(t) с выхода генератора шума 4 и постоянное напряжение смещения U0 от источника напряжения смещения 5 поступают на сумматор напряжений 6. С выхода сумматора напряжений 6 напряжение UBX(t)=UШ(t)+U0 подается на делитель, составленный из исследуемого двухполюсника 2 и образцового резистора 7 с сопротивлением RОБР. Параллельно по опорному каналу напряжение UBX(t) поступает на первый канал блока аналого-цифрового преобразования 8. С токосъемного резистора RОБР напряжение UВЫХ(t) поступает на второй канал блока аналого-цифрового преобразования 8. По сигналу запуска производится измерение сигналов UBX(t) и UВЫХ(t) и пересылка оцифрованных данных UBX(iΔt) и UВЫХ(iΔt) в компьютер, где осуществляется расчет параметров элементов n-элементного двухполюсника по изложенному алгоритму.

Сопротивление образцового резистора RОБР выбирается из условия RОБР<<|Z(ω)| во всем диапазоне частот, при этом величина сопротивления RОБР должна быть такой, чтобы обеспечить требуемую чувствительность блока аналого-цифрового преобразования.

Способ измерения параметров элементов многоэлементных нерезонансных линейных двухполюсников, состоящий в том, что на контролируемый n-элементный двухполюсник подают напряжение в виде случайного сигнала, имеющего равномерный амплитудный спектр в диапазоне частот, перекрывающем диапазон частот, за пределами которого модуль импеданса двухполюсника можно считать не зависящим от частоты с заданной погрешностью, и на образцовом резисторе, включенном последовательно с двухполюсником, измеряют напряжение, пропорциональное току двухполюсника, по двум параллельным каналам записывают в память ЭВМ временные реализации сигналов, подаваемого на двухполюсник и снимаемого с образцового резистора, после чего рассчитывают спектральные плотности напряжения и тока, рассчитывают частотные зависимости модуля и фазы импеданса двухполюсника, определяют характерные частоты, составляют и решают систему из n уравнений относительно параметров эквивалентной схемы замещения n-элементного линейного двухполюсника.
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЭЛЕМЕНТОВ МНОГОЭЛЕМЕНТНЫХ НЕРЕЗОНАНСНЫХ ЛИНЕЙНЫХ ДВУХПОЛЮСНИКОВ
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЭЛЕМЕНТОВ МНОГОЭЛЕМЕНТНЫХ НЕРЕЗОНАНСНЫХ ЛИНЕЙНЫХ ДВУХПОЛЮСНИКОВ
Источник поступления информации: Роспатент

Showing 251-259 of 259 items.
19.01.2018
№218.016.0031

Газотурбинный двигатель

Изобретение относится к энергетике и машиностроению и может использоваться в двигателестроении. Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором с подачей электролита в поток забираемого в...
Тип: Изобретение
Номер охранного документа: 0002629309
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0063

Способ работы котельной установки теплоэлектроцентрали

Изобретение относится к энергетике. Способ работы котельной установки теплоэлектроцентрали, по которому нагрев воздуха, поступающего в топку котельного агрегата паротурбинной установки, осуществляется последовательно в калорифере и воздухоподогревателе котельного агрегата, в качестве греющей...
Тип: Изобретение
Номер охранного документа: 0002629319
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.007a

Газотурбинный двигатель с внешним теплообменником

Газотурбинный двигатель с внешним теплообменником содержит корпус и герметизирующую вход в корпус крышку, компрессор, камеру сгорания, систему подачи электролита через форсунку с кавитатором, воспламеняющее устройство, турбину и электролизер. Герметизирующая вход в корпус крышка выполнена с...
Тип: Изобретение
Номер охранного документа: 0002629304
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0086

Котельная установка

Изобретение относится к котельным установкам, работающим на природном газе. Котельная установка содержит котел с газоходом уходящих газов, дымососом и дымовой трубой, деаэратор с трубопроводами отвода и подвода десорбирующего агента, подвода исходной и отвода деаэрированной воды. Деаэратор...
Тип: Изобретение
Номер охранного документа: 0002629321
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0089

Газотурбинный двигатель с паровыми форсунками

Газотурбинный двигатель с паровыми форсунками содержит корпус и герметизирующую вход в корпус крышку, компрессор, камеру сгорания, систему подачи электролита через форсунку с кавитатором, воспламеняющее устройство, турбину и электролизер. Герметизирующая вход в корпус крышка выполнена с...
Тип: Изобретение
Номер охранного документа: 0002629305
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.02ca

Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности

Использование: для измерения теплофизических параметров полупроводниковых диодов. Сущность изобретения заключается в том, что способ заключается в предварительном определении ватт-амперной характеристики объекта измерения - полупроводникового диода, пропускании через диод последовательности...
Тип: Изобретение
Номер охранного документа: 0002630191
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.04bb

Устройство для предотвращения захвата самолёта

Изобретение относится к авиации. Устройство для предотвращения захвата самолета содержит усиленные пуленепробиваемые дверь (1) и стенки (2) кабины экипажа и прямоугольную, открытую сверху полость с дном (4) и боковыми стенками. Указанная полость выполнена в полу (6) салона непосредственно...
Тип: Изобретение
Номер охранного документа: 0002630881
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0785

Состав шихты для изготовления пеностекла

Изобретение относится к составу шихты для получения пеностекла. Технический результат - повышение теплотехнических и прочностных характеристик пеностекла. Шихта для изготовления пеностекла содержит следующие компоненты, мас. %: стекольный бой 80-87; сульфат натрия 3-5; диатомитовая глина...
Тип: Изобретение
Номер охранного документа: 0002631462
Дата охранного документа: 22.09.2017
19.04.2019
№219.017.3462

Устройство для нагрева нефти при сливе

Устройство предназначено для использования в нефтедобывающей, нефтеперерабатывающей и энергетической промышленности для нагрева нефти и нефтепродуктов при сливе из резервуаров. Устройство содержит резервуар; источник СВЧ энергии с волноводом в районе сливного прибора; радиопрозрачную пластину,...
Тип: Изобретение
Номер охранного документа: 0002460933
Дата охранного документа: 10.09.2012
Showing 421-430 of 431 items.
29.12.2018
№218.016.ac93

Способ измерения температуры активной области светодиода

Изобретение относится к области измерительной техники и касается способа измерения температуры активной области светодиода. Способ заключается в том, что через светодиод пропускают греющий ток заданной величины, излучение светодиода подается на два фотоприемника и температуру активной области...
Тип: Изобретение
Номер охранного документа: 0002676246
Дата охранного документа: 26.12.2018
13.04.2019
№219.017.0c29

Способ разделения интегральных схем класса "система на кристалле" по надежности

Использование: для разбраковки ИС класса «система на кристалле» по критерию потенциальной надежности. Сущность изобретения заключается в том, что на представительной выборке ИС класса «система на кристалле» измеряют значения критических напряжений питания (КНП) отдельно для каждого...
Тип: Изобретение
Номер охранного документа: 0002684681
Дата охранного документа: 11.04.2019
19.04.2019
№219.017.3462

Устройство для нагрева нефти при сливе

Устройство предназначено для использования в нефтедобывающей, нефтеперерабатывающей и энергетической промышленности для нагрева нефти и нефтепродуктов при сливе из резервуаров. Устройство содержит резервуар; источник СВЧ энергии с волноводом в районе сливного прибора; радиопрозрачную пластину,...
Тип: Изобретение
Номер охранного документа: 0002460933
Дата охранного документа: 10.09.2012
10.07.2019
№219.017.b01e

Способ измерения теплового импеданса полупроводниковых диодов

Способ предназначен для использования на выходном и входном контроле качества полупроводниковых диодов и оценки их температурных запасов. На исследуемый диод подают импульсы греющего тока постоянной амплитуды. В промежутках между импульсами греющего тока пропускают постоянный начальный ток....
Тип: Изобретение
Номер охранного документа: 0002402783
Дата охранного документа: 27.10.2010
03.08.2019
№219.017.bc4a

Способ неразрушающего контроля качества сверхбольших интегральных схем по значению критического напряжения питания

Изобретение относится к микроэлектронике и может быть использовано для обеспечения качества и надежности сверхбольших интегральных схем (СБИС). Сущность: измеряют критическое напряжение питания при нормальной и повышенной температуре. СБИС предварительно программируют тестирующей программой для...
Тип: Изобретение
Номер охранного документа: 0002696360
Дата охранного документа: 01.08.2019
12.08.2019
№219.017.be42

Способ измерения переходной тепловой характеристики цифровых интегральных схем

Изобретение относится к измерительной технике и может быть использовано для контроля тепловых свойств цифровых интегральных схем (ЦИС). Сущность: для измерения переходной тепловой характеристики (ПТХ) цифровой интегральной схемы нечетное количество логических элементов включают по схеме...
Тип: Изобретение
Номер охранного документа: 0002697028
Дата охранного документа: 08.08.2019
12.10.2019
№219.017.d50f

Сигнализатор температуры

Изобретение относится к области измерения температуры и может быть использовано для регулирования температуры нагрева или охлаждения объекта. Сигнализатор температуры содержит генератор прямоугольных импульсов из нечетного количества инверторов цифровой интегральной микросхемы, соединенных по...
Тип: Изобретение
Номер охранного документа: 0002702685
Дата охранного документа: 09.10.2019
19.11.2019
№219.017.e374

Устройство автоматического повторного включения

Использование: в области электротехники. Технический результат – повышение чувствительности устройства при автоматическом повторном включении после самоустранения короткого замыкания и уменьшение массогабаритных показателей. Устройство автоматического повторного включения содержит...
Тип: Изобретение
Номер охранного документа: 0002706332
Дата охранного документа: 18.11.2019
29.04.2020
№220.018.1a56

Способ измерения тепловых сопротивлений переход-корпус и тепловых постоянных времени переход-корпус кристаллов полупроводниковых изделий в составе электронного модуля

Изобретение относится к технике измерения тепловых параметров кристаллов бескорпусных полупроводниковых изделий в составе электронных модулей и может быть использовано для контроля качества сборки электронных модулей как на этапах разработки и производства электронных модулей, так и на входном...
Тип: Изобретение
Номер охранного документа: 0002720185
Дата охранного документа: 27.04.2020
06.07.2020
№220.018.2f81

Способ измерения граничной частоты электролюминесценции локальных областей светоизлучающей гетероструктуры

Изобретение относится к технике измерения динамических характеристик светодиодов и полупроводниковых светоизлучающих структур и может быть использовано для диагностики однородности светоизлучающих гетероструктур (СГС) и их характеристики по динамическим свойствам. Способ измерения граничной...
Тип: Изобретение
Номер охранного документа: 0002725613
Дата охранного документа: 03.07.2020
+ добавить свой РИД