×
20.05.2015
216.013.4d5b

Результат интеллектуальной деятельности: СПОСОБ ИММОБИЛИЗАЦИИ ХИМОТРИПСИНА НА НАНОЧАСТИЦАХ СЕЛЕНА ИЛИ СЕРЕБРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биотехнологии, биохимии и медицины. Предложен способ иммобилизации химотрипсина на наночастицах селена или серебра. К раствору химотрипсина с концентрацией от 1·10 до 1 мас.% добавляют раствор селенистой кислоты в интервале концентраций 1,3·10 - 1,5 мас.% или нитрата серебра в интервале концентраций 1·10 - 1 мас.%. Затем в реакционную среду вводят аскорбиновую кислоту в концентрации от 1·10 - 0,7 мас.% или раствор борогидрида натрия в концентрации от 0,01 до 0,6 мас.%. Раствор перемешивают и оставляют для завершения реакции. Процесс ведут при температуре от 0 до 50°C. Способ позволяет получить устойчивый фермент-коллоидный комплекс и сохранить в нем более 90% активности химотрипсина в широком диапазоне рН, а в определенных интервалах рН повысить каталитическую активность нанокомплесов выше активности нативного химотрипсина в точке оптимума. 3 табл., 3 пр.
Основные результаты: Способ иммобилизации химотрипсина на наночастицах селена или серебра, характеризующийся тем, что ведут образование нанокомплексов окислительно-восстановительной реакцией в присутствии раствора фермента следующим образом: к раствору фермента - химотрипсина с концентрацией от 1·10 до 1 мас.% добавляют раствор селенистой кислоты (HSeO) в интервале концентраций 1,3·10 - 1,5 мас.% или нитрата серебра (AgNO) в интервале концентраций 1·10 - 1 мас.%; затем в реакционную среду вводят восстановители: аскорбиновую кислоту в концентрации от 1·10 - 0,7 мас.% или раствор борогидрида натрия в концентрации от 0,01 до 0,6 мас.%; процесс ведут при температуре от 0 до 50°C, раствор перемешивают и оставляют для завершения реакции.

Изобретение относится к области биоорганической химии, биотехнологии и нанохимии, конкретно к разработке способов иммобилизации ферментов, обеспечивающих сохранение стабильности их молекул, а также повышение специфической ферментативной активности.

Иммобилизованные ферменты обладают рядом преимуществ перед нативными: непрерывность проведения ферментативного процесса с возможностью регулирования скорости катализируемой реакции и выхода продукта; направленное изменение свойств фермента (специфичность, зависимость каталитической активности от рН и других параметров среды, стабильность к денатурирующим воздействиям); возможность регулирования каталитической активности иммобилизованных ферментов путем изменения свойств носителя.

В данной области известно большое число технических решений, среди которых наибольшее распространение получили химические и физические способы иммобилизации.

Химический способ иммобилизации заключатся в ковалентном связывании биомолекул с предварительно активированным носителем, модифицированным реакционно-способными функциональными группами (амино-, азидо-, карбоксильные, гидроксильные и др.).

Физический способ иммобилизации заключается в адсорбции фермента на твердом носителе (чаще всего полимерном) за счет физических сил (ион-ионных, гидрофобных, водородных связей и т.д).

Известен также способ получения иммобилизованного протеолитического фермента (RU №1041567, МПК C12N 11/10, 15.09.1983), предусматривающий растворение содержащего альдегидные группы носителя в буферном растворе и последующее присоединение протеолитического фермента. В качестве носителя используют ксилоуронид, растворенный в 0,1 М трисоксиметиламинометановом буфере (рН 8,5), а присоединение фермента осуществляют при соотношении носитель-фермент 1:1. К основным недостаткам данного способа относятся следующие: дефицитный и дорогостоящий носитель - ксилоуронид, низкая стабильность целевого продукта, необходимость хранения препарата при низкой температуре (0-4°C).

Известен также физический способ иммобилизации ферментов (RU 2167197, МПК C12N 11/14, С12Р 19/02, 20.05.2001), описывающий композит для осахаривания крахмала, включающий фермент глюкоамилазу и твердый носитель, на поверхности которого иммобилизована глюкоамилаза, носителем является зауглероженный алюмосиликат, который имеет удельную поверхность не менее 2 м2/г и выполнен в форме гранул, сотовых монолитов или пеноматериала. При этом носитель готовят способом, который позволяет усилить адсорбционные свойства зауглероженного алюмосиликата. При приготовлении носителя на исходный алюмосиликат с удельной поверхностью 0,1-24 м2/г наносят никель. Затем проводят пиролиз пропан-бутановой смеси в присутствии данного носителя, в результате чего получают зауглероженный алюмосиликат, удельная поверхность которого в несколько раз превышает удельную поверхность исходного алюмосиликата. Приготовленный таким образом носитель имеет структуру, содержащую большое количество мезопор, пригодных по размеру для сорбции в них молекул фермента. Иммобилизация глюкоамилазы заключается в проведении процесса ее физической адсорбции на поверхности полученного носителя. Физическая адсорбция осуществляется путем погружения носителя в водный раствор фермента и выдерживания его в течение 6 часов при периодическом перемешивании.

Недостатки данного изобретения связаны с многостадийностью технологического процесса, с использованием пиролиза для нанесения слоя пористого углерода на поверхность носителя, что связано с высокими энергетическими затратами и большим расходом органических веществ (пропан-бутан). Кроме того, в результате сорбции иммобилизованный фермент имеет невысокую активность -50-80%(от активности свободного фермента).

Наиболее близким техническим решением является способ иммобилизации L-фенилалани-аммоний-лиазы на магнитных наночастицах (см. пат. РФ №RU 2460790, МПК С12Р 19/04, B01D 15/38, С07С 31/10, 10.09.2012), заключающийся в использования в качестве носителя для иммобилизации магнитных наночастиц, представляющих собой оксиды металлов. Иммобилизация фермента на наночастицах реализуется через предварительную модификацию их поверхности. На первом этапе осуществляется получение магнитных наночастиц, содержащих на поверхности электрофильные сложноэфирные группы, путем взаимодействия полиметилметакрилата, соответствующего хлорида металла и диэтиленгликоля. Вторая стадия заключается в формировании на поверхности наночастиц слоя аминопропилтриэтоксисисилана за счет протекания реакции аминолиза электрофильных фрагментов носителя. Полученные наночастицы служат для последующей иммобилизации ферментов с использованием 1-этил-3-(3-диметиламинопропил) карбодиимида.

Существенными и очевидными недостатками описанного способа являются многостадийность, необходимость в ресуспензировании наночастиц, полученных на первой стадии, проведение дополнительной модификации поверхности и последующей химической иммобилизации фермента на поверхность наночастиц, что подразумевает использование дополнительных реагентов и усложняет процесс. Кроме того, химическая иммобилизация существенно влияет на конформацию фермента, что понижает его каталитическую активность. Иммобилизованный фермент сохранял лишь от 64% до 75% от его активности в свободном состоянии в узком интервале рН от 7,5 до 9,0.

Технической задачей и положительным результатом заявляемого изобретения является разработка одностадийного способа иммобилизации различных ферментов на наночастицах различной природы, результатом которого является получение стабильного во времени коллоидного раствора нанокомплекса, ферментативная активность которого сравнима или превышает активность свободного фермента в широком диапазоне рН и не обладающего недостатками заявленного прототипа.

Сущность изобретения заключается в разработке способа иммобилизации ферментов (в частности, химотрипсина) на наночастицах биогенных элементов (например - селена и серебра).

Указанная задача и результат в изобретении достигается проведением окислительно-восстановительной реакции в присутствии раствора фермента, предназначенного для иммобилизации, например - химотрипсина, в ходе которой образуются наночастицы с адсорбированным ферментом. К раствору фермента, концентрация которого может варьироваться от 0,001 до 1 масс.% добавляют раствор окислителя, например, селенистой кислоты (H2SeO3) в интервале концентраций 1,3·10-4-1,5 масс.% или нитрата серебра (AgNO3) в интервале концентраций 1·10-4-1 масс.%. Затем в реакционную среду вводят восстановители, например, аскорбиновую кислоту (от 1·10-3-0,7 масс.%) или раствор борогидрида натрия (от 0,01 до 0,6 масс.%). Процесс ведут при температуре от 0 до 50°C. Растворы перемешивают и оставляют для завершения реакции. По окончанию реакции получаются стабильные растворы наночастиц с иммобилизованными на их поверхности ферментами за счет сил физической адсорбции.

Отличительными признаками предлагаемого способа являются указанные выше; предлагаемый способ иммобилизации ферментов имеет очевидные преимущества перед прототипом.

Анализ известного уровня техники не позволил найти опубликованные решения, в которых была бы использована вся совокупность существенных признаков заявленного способа. Это свидетельствует о соответствии способа изобретению по условиям патентоспособности как «новизна» и «изобретательский уровень».

При выявлении существенности новизны признаков было получено следующее.

Каталитическая активность фермент-коллоидного комплекса сохраняется практически на уровне свободного фермента или превышает таковую.

Иммобилизованный таким способом фермент проявляет более высокую каталитическую активность в более широком диапазоне рН, в том числе и в неоптимальных интервалах для нативного фермента, в отличие от прототипа.

Способ позволяет иммобилизовать фермент на наночастицах различной природы, совмещая в одном препарате как каталитические свойства фермента, так и собственную биологическую активность матрицы-носителя.

Предложенный способ иммобилизации - одностадийный и легко реализуем в технологическом отношении.

Способ иммобилизации фермента по своей природе физический и не требует траты дополнительных химических агентов или предварительной модификации поверхности частицы.

Нанокомплексы проявляют стабильность до 1 года.

Выбранные интервалы концентраций прекурсоров и восстановителей обусловлены тем, что при больших значениях концентраций реагирующих веществ (более 1,5 масс.% H2SeO3 и 1 масс.% AgNO3) образуются агрегативно неустойчивые растворы нанокомплексов с низкой ферментативной активностью. При низких значениях концентрации (менее 1,3·10-4 масс.% H2SeO3 и 1·10-4 масс.%) AgNO3) остается большое количество свободного фермента и повышения ферментативной активности не наблюдается.

Изменением соотношения концентрации фермента и наночастиц можно регулировать их размер и ферментативную активность.

Изменяя количество восстановителя можно менять размеры получаемых нанокомплексов.

Полученный нанокомплекс позволяет комбинировать в одном препарате различные свойства, связанные как с природой наночастиц (антимикробные, антиоксидантные, противовоспалительные, антиканцерогенные, детоксицирующие), так и со свойствами ферментов (каталитическая активность, субстратная специфичность, сопряженные ферментативные реакции).

Иммобилизованный фермент показывает более высокую протеолитическую активность или во всем диапазоне рН или на отдельных участках рН профиля.

Для доказательства соответствия заявленного решения условию патентоспособности «промышленная применимость» и для лучшего понимания сущности заявленного изобретения приводятся примеры конкретного исполнения для химотрипсина на наночастицах селена и серебра.

Пример 1. Для иммобилизации химотрипсина на наночастицах селена

В плоскодонную колбу на 30 мл помещают 0,5 мл 0,2% раствора химотрипсина (XT), прибавляют 7,5 мл дистиллированной воды, затем при перемешивании на магнитной мешалке добавляют 1 мл 0,013М селенистой кислоты (H2SeO3) и после перемешивания в течение 10 мин добавляют в качестве восстановителя аскорбиновую кислоту (C6H8O6) 1 мл 0,025М. Продолжают перемешивать еще 5 мин и затем оставляют до завершения реакции (24 часа) при комнатной температуре. Полученный молекулярный раствор имеет характерный красновато-оранжевый цвет, рН раствора 3,2. Раствор устойчив до 1 года. Нанокомплекс селен-химотрипсин показывает более высокую протеолитическую активность по сравнению с чистым ферментом в широком диапазоне рН.

Пример 2. Для иммобилизации химотрипсина на наночастицах серебра

В плоскодонную колбу на 30 мл помещают навеску боргидрида натрия (NaBH4) 0,011 г, помещают колбу и добавляют 10 мл дистиллированной воды. Растворенный NaBH4 выдерживается 30-40 мин. Одновременно в колбу на 50 мл вводится 5 мл 0,1% раствора XT и 1 мл 0,02% раствора азотнокислого серебра (AgNO3). Смесь перемешивается круговыми движениями колбы в кристаллизаторе со льдом и остается в нем 30-40 минут. После выравнивания температуры в колбу с XT и азотнокислым серебром вводится 4 мл приготовленного раствора. Начинается бурная реакция, реакционная колба остается во льду в течении 1 часа, а затем помещается в холодильник на 18-24 часа. В результате реакции получается раствор черного цвета, рН которого 10,4. Раствор стабилен от 1 месяца до 1 года.

В результате применения способа получают препараты, позволяющие эффективно сохранить каталитические свойства фермента - более 90% или значительно их превысить по сравнению со свободным ферментом. Фермент-коллоидный комплекс проявляет высокую активность в широком диапазоне рН. Способ позволяет проводить иммобилизацию на наночастицах, обладающих собственной биологической активностью и различных по природе. Весь процесс одностадийный и легко реализуем в технологическом отношении.

Пример

Для иммобилизации химотрипсина на наночастицах селена при 50°C в плоскодонную колбу на 30 мл помещают 0,5 мл 0,2% раствора химотрипсина (XT), прибавляют 7,5 мл дистиллированной воды, затем при перемешивании на магнитной мешалке добавляют 1 мл 0,013М селенистой кислоты (H2SeO3) и после перемешивания в течении 10 мин колбу помещают в термостат, нагретый до 50°C, или на водяную баню при той же температуре. После выдерживания реакционной колбы в термостате в течение 30-45 мин (когда температура в ней станет равна 50°C) добавляют в качестве восстановителя аскорбиновую кислоту (C6H8O6) 1 мл 0,025М. Продолжают перемешивать еще 5 мин и затем оставляют до завершения реакции (24 часа) в термостате при температуре 50°C. Полученный молекулярный раствор имеет характерный красный цвет, рН раствора 3,2. Раствор устойчив до 1 года. Нанокомплекс селен-химотрипсин показывает более высокую протеолитическую активность по сравнению с чистым ферментом в широком диапазоне рН.

Способ иммобилизации химотрипсина на наночастицах селена или серебра, характеризующийся тем, что ведут образование нанокомплексов окислительно-восстановительной реакцией в присутствии раствора фермента следующим образом: к раствору фермента - химотрипсина с концентрацией от 1·10 до 1 мас.% добавляют раствор селенистой кислоты (HSeO) в интервале концентраций 1,3·10 - 1,5 мас.% или нитрата серебра (AgNO) в интервале концентраций 1·10 - 1 мас.%; затем в реакционную среду вводят восстановители: аскорбиновую кислоту в концентрации от 1·10 - 0,7 мас.% или раствор борогидрида натрия в концентрации от 0,01 до 0,6 мас.%; процесс ведут при температуре от 0 до 50°C, раствор перемешивают и оставляют для завершения реакции.
Источник поступления информации: Роспатент

Showing 11-20 of 50 items.
27.08.2014
№216.012.ed80

Способ получения (2r,4r)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот

Изобретение относится к способу получения производных (2R,4R)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот - потенциальных антигипертензивных веществ, ингибиторов ангиотензинпревращающего фермента (АПФ). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002526619
Дата охранного документа: 27.08.2014
27.11.2014
№216.013.0a9a

Термостойкие адгезивы для соединения кристаллов и металлов с полиимидным основанием

Изобретение относится к термостойким адгезивам для соединения кристаллов и металлов с полиимидным основанием. Адгезивы (составы) содержат в качестве полимерного связующего новый преполимер - поли(о-гидроксиамид) - продукт реакции поликонденсации 3,3′-дигидрокси-4,4′-диаминодифенилметана и...
Тип: Изобретение
Номер охранного документа: 0002534122
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.181f

Полимер-неорганические нанокомпозиционные материалы на основе полиметилметакрилата с настраиваемым спектром фотолюминесценции

Изобретение относится к полимер-неорганическим композиционным материалам на основе полиметилметакрилата и наночастиц твердых растворов ZrO с лантанидами, выбранными из Eu, Tb и Tm. Такие нанокомпозиты предназначены для использования в оптике и оптоэлектронике, в частности могут быть применены в...
Тип: Изобретение
Номер охранного документа: 0002537603
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
27.02.2015
№216.013.2dd7

Первапорационная мембрана для разделения смеси простейших моно- и двухатомных спиртов

Изобретение относится к мембранным технологиям, составу и структуре мембран, предназначенных для разделения смеси простейших моно- и двухатомных спиртов методом первапорации. В качестве материала мембраны используют композицию, включающую поли(2,6-диметил-1,4-фениленоксид) и гибридный...
Тип: Изобретение
Номер охранного документа: 0002543203
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3f87

Мембрана для разделения смеси метанол - метилацетат

Изобретение относится к области химии высокомолекулярных соединений, конкретно к нано- и гибридным функциональным материалам. Мембрана получена из полимерного материала с преобладающей проницаемостью для метанола. В качестве полимерного материала мембраны использован нанокомпозит на основе...
Тип: Изобретение
Номер охранного документа: 0002547751
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4d5d

Способ деструкции рибонуклеиновых кислот

Изобретение относится к области биотехнологии. Предложен способ деструкции рибонуклеиновых кислот. Раствор, содержащий рибонуклеиновую кислоту, пропускают через макропористый полиметакрилатный сорбент монолитного типа, содержащий иммобилизованную рибонуклеазу А, а затем через макропористый...
Тип: Изобретение
Номер охранного документа: 0002551319
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.526b

Полимерные кетиминовые производные антибиотика доксициклина

Изобретение относится к химии биологически активных полимеров, конкретно к полимерным кетиминовым производным доксициклина, которые получают путем конденсации гидрохлорида доксициклина с катионными сополимерами акриламида с 2-амимноэтилметакрилатом (ММ=16-20 кДа), при молярном соотношении...
Тип: Изобретение
Номер охранного документа: 0002552620
Дата охранного документа: 10.06.2015
20.10.2015
№216.013.8398

Концентрированный состав для обработки семян и посадочного материала растений против бактериальных и грибковых болезней

Изобретение относится к концентрированным составам для защиты растений от бактериальных и грибковых болезней путем предпосевной обработки семян и посадочного материала растений. Состав содержит компоненты в следующих соотношениях, мас.%: фурацилин - 0,45-0,9, катапол - 0,45-0,9,...
Тип: Изобретение
Номер охранного документа: 0002565291
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.9170

Трубчатый имплантат органов человека и животных и способ его получения

Группа изобретений относится к медицинской технике и может быть использована в области трансплантологии для замены в организме трубчатых органов. Описан трубчатый имплантат органов человека и животных, выполненный из нетканого пористого полимерного материала, сформированного из нано- и/или...
Тип: Изобретение
Номер охранного документа: 0002568848
Дата охранного документа: 20.11.2015
Showing 11-20 of 45 items.
20.08.2014
№216.012.ec9c

Способ получения композитного волокна на основе гидролизного лигнина с полиакрилонитрилом

Изобретение относится к области получения композиционного волокна на основе гидролизного лигнина с полиакрилонитрилом и может быть использовано для формирования прекурсорных композитных волокон в качестве исходного материала для образования углеродных волокон повышенной прочности и...
Тип: Изобретение
Номер охранного документа: 0002526380
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ed80

Способ получения (2r,4r)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот

Изобретение относится к способу получения производных (2R,4R)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот - потенциальных антигипертензивных веществ, ингибиторов ангиотензинпревращающего фермента (АПФ). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002526619
Дата охранного документа: 27.08.2014
27.11.2014
№216.013.0a9a

Термостойкие адгезивы для соединения кристаллов и металлов с полиимидным основанием

Изобретение относится к термостойким адгезивам для соединения кристаллов и металлов с полиимидным основанием. Адгезивы (составы) содержат в качестве полимерного связующего новый преполимер - поли(о-гидроксиамид) - продукт реакции поликонденсации 3,3′-дигидрокси-4,4′-диаминодифенилметана и...
Тип: Изобретение
Номер охранного документа: 0002534122
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.181f

Полимер-неорганические нанокомпозиционные материалы на основе полиметилметакрилата с настраиваемым спектром фотолюминесценции

Изобретение относится к полимер-неорганическим композиционным материалам на основе полиметилметакрилата и наночастиц твердых растворов ZrO с лантанидами, выбранными из Eu, Tb и Tm. Такие нанокомпозиты предназначены для использования в оптике и оптоэлектронике, в частности могут быть применены в...
Тип: Изобретение
Номер охранного документа: 0002537603
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a7f

Способ получения углеводсодержащих полимеров

Изобретение относится к органической химии и предназначено для синтеза гомо- и сополимеров N-гликозидов винилсодержащих аминов посредством радикально-инициируемой полимеризации. Предложен способ получения углеводсодержащих полимеров на основе N-гликозидов винилсодержащих аминов радикальной...
Тип: Изобретение
Номер охранного документа: 0002538211
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
27.02.2015
№216.013.2dd7

Первапорационная мембрана для разделения смеси простейших моно- и двухатомных спиртов

Изобретение относится к мембранным технологиям, составу и структуре мембран, предназначенных для разделения смеси простейших моно- и двухатомных спиртов методом первапорации. В качестве материала мембраны используют композицию, включающую поли(2,6-диметил-1,4-фениленоксид) и гибридный...
Тип: Изобретение
Номер охранного документа: 0002543203
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3f87

Мембрана для разделения смеси метанол - метилацетат

Изобретение относится к области химии высокомолекулярных соединений, конкретно к нано- и гибридным функциональным материалам. Мембрана получена из полимерного материала с преобладающей проницаемостью для метанола. В качестве полимерного материала мембраны использован нанокомпозит на основе...
Тип: Изобретение
Номер охранного документа: 0002547751
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4d5d

Способ деструкции рибонуклеиновых кислот

Изобретение относится к области биотехнологии. Предложен способ деструкции рибонуклеиновых кислот. Раствор, содержащий рибонуклеиновую кислоту, пропускают через макропористый полиметакрилатный сорбент монолитного типа, содержащий иммобилизованную рибонуклеазу А, а затем через макропористый...
Тип: Изобретение
Номер охранного документа: 0002551319
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.526b

Полимерные кетиминовые производные антибиотика доксициклина

Изобретение относится к химии биологически активных полимеров, конкретно к полимерным кетиминовым производным доксициклина, которые получают путем конденсации гидрохлорида доксициклина с катионными сополимерами акриламида с 2-амимноэтилметакрилатом (ММ=16-20 кДа), при молярном соотношении...
Тип: Изобретение
Номер охранного документа: 0002552620
Дата охранного документа: 10.06.2015
+ добавить свой РИД